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Figure 1: A set with n = 7 points that determines 2n� 5 = 9 dire
tions.In 1982, after some initial results by Burton and Purdy [3℄, Ungar [18℄ solved the�rst problem, by verifying S
ott's 
onje
ture that in the plane the above minimumis equal to 2bn=2
, for any n > 3. For even n, this result is 
onsiderably strongerthan the 
orollary of the Gallai-Sylvester theorem mentioned above. Ungar's proofis a real gem, a brilliant appli
ation of the method of allowable sequen
es inventedby Goodman and Polla
k [8℄, [9℄. Moreover, it solves the problem in an elegant
ombinatorial setting, for \pseudolines", as was suggested independently by Goodmanand Polla
k and by Cordovil [4℄. Interestingly, there is an overwhelming diversity ofextremal 
on�gurations, for whi
h equality is attained. Four in�nite families andmore than one hundred sporadi
 
on�gurations were 
ataloged by Jamison and Hill[11℄. See also [10℄ for an ex
ellent survey by Jamison, and the monograph of Aignerand Ziegler [1℄, where Ungar's proof and some of its relatives are reprodu
ed.In la
k of a natural ordering of all dire
tions in 3-spa
e, Ungar's method doesnot seem to generalize. This explains why until re
ently there had not been mu
hprogress 
on
erning S
ott's se
ond question. S
ott's 
onstru
tion of a double pyramidwhose base is a regular polygon with an even number of edges, in
luding the 
enterof the base (see Figure 1), shows that the number of dire
tions determined by n non-
oplanar points 
an be as small as 2n� 5 if n is odd. This bound was 
onje
tured tobe tight. Under the additional assumption that no three points of the set are 
ollinear,Blokhuis and Seress [2℄ proved that the number of dire
tions determined by n � 6non-
oplanar points in 3-spa
e is at least 7n=4 � 2. Using the same 
ondition, wehave re
ently su

eeded in proving the tight bound 2n� 2 if n is odd and 2n� 3 if nis even [14℄.In the present paper we solve S
ott's se
ond problem in full generality (for the
ase of n odd), by removing the assumption that no three points are 
ollinear.Theorem 1.1. Every set of n � 6 points in R3 , not all of whi
h are on a plane,determines at least 2n� 5 di�erent dire
tions if n is odd, and at least 2n� 7 di�erentdire
tions if n is even. This bound is sharp for every odd n � 7.The 
ase where n is even is handled by removing one point and applying the bound2



non-
onvergent 
onvergentFigure 2: Convergent and non-
onvergent segments.for odd n. Therefore, from this point on we assume that n is odd. Nevertheless, webelieve that the bound for even n 
an be improved. We note that the double-pyramid
onstru
tion in Figure 1, without the 
enter, yields an upper bound of 2n � 3 for neven.The idea of the proof is outlined in Se
tion 2. A key new ingredient of ourargument is Theorem 3.1, proved in Se
tion 3, whi
h is a far rea
hing \bipartite"variant of Ungar's aforementioned theorem.De�nition 1.2. Two 
losed segments in Rd are 
alled 
onvergent if (i) they do notbelong to the same line, and (ii) their supporting lines interse
t, and the interse
tionpoint does not belong to any of the segments. See Figure 2.An alternative de�nition is that two segments are 
onvergent if and only if theyare disjoint and their 
onvex hull is a planar quadrilateral. Two parallel segments thatlie on distin
t lines are also 
onsidered to be 
onvergent (by regarding their lines tomeet at in�nity, or a

ording to the alternative de�nition). Note also that 
ondition(ii) rules out pairs of segments with a 
ommon endpoint.Instead of Theorem 1.1, in Se
tion 4 we establish the following signi�
antlystronger result.Theorem 1.3. Every set of n � 6 points in R3 , not all of whi
h are on a plane,determine at least 2n � 5 segments if n is odd, and at least 2n � 7 segments if n iseven, no two of whi
h are 
onvergent and no two 
ollinear. This bound is sharp forevery odd n � 7.We apply Theorem 1.3 in Se
tion 5 to partially settle in the aÆrmative a 
onje
tureof Blokhuis and Seress [2℄, showing (in Theorem 5.1) that any set P of n points inR4 , not 
ontained in a hyperplane and not having three 
ollinear points, determine atleast 3n� 8 di�erent dire
tions, if n is even, and at least 3n� 10 di�erent dire
tionsif n is odd. The bound is sharp for every even n � 8.R�edei's monograph on la
unary polynomials [15℄ was the starting point of manyinvestigations related to algebrai
 variants of the above problem. For instan
e, itwas proved in [15℄ that if n is a prime, then any set of n points in the aÆne planeAG(2; n) determines at least (n + 3)=2 di�erent dire
tions. Lov�asz and S
hrijver3



[13℄ 
hara
terized all sets for whi
h equality is attained. In the �nite proje
tiveplane PG(2; N), a set P of n > 4 points, no three of whi
h are 
ollinear, is knownto determine at least n di�erent dire
tions if N is odd and at least n � 1 if N iseven. Equality is attained here if and only if P spans a (properly de�ned) aÆnelyregular n-gon (see [7, 12℄). The last theorem, due to Wettl [19℄ answers a questionof Gus Simmons in 
ryptography. For many similar results and appli
ations in �nitegeometry, algebrai
 number theory, and group theory, 
onsult the survey of Sz}onyi[17℄.2 PreliminariesLet P be a set of n points in R3 su
h that not all of them lie in a 
ommon plane.Let p0 be an extreme point of P , i.e., a vertex of the 
onvex hull of P . Consider asupporting plane to P at p0, and translate it to the side that 
ontains P . Let � denotethe resulting plane. Proje
t from p0 all points of P n fp0g onto �. We obtain a setR of points in �, not all on a line, so that ea
h point is the image of some points ofP . We regard R as a set of weighted points, where the weight w(r) of a point r 2 Ris the number of points of P n fp0g that proje
t onto it.1 The sum of the weights isn� 1. For a subset A � R, we de�ne w(A) :=Pq2A w(q).We assume that n is odd, thus w(R) = n� 1 is even. We attempt to partition Rinto two subsets R+; R�, so that w(R+) = w(R�) = (n � 1)=2 and all points of R+lie to the left of every point of R� with respe
t to some generi
 
oordinate frame in�, in whi
h no two elements of R have the same x-
oordinate.For the 
hoi
e of the 
oordinate frame and the partition, we begin with the fol-lowing elementary geometri
 fa
t. Re
all that a 
ommon inner tangent to two 
onvexsets with disjoint interiors is a line that is tangent to both sets and separates betweenthe interiors of the sets.Lemma 2.1. Let R be a set of non-
ollinear weighted points in the plane, with a totaleven weight m. Let r be any vertex of the 
onvex hull of R whose weight is smallerthan m=2. Then one of the following properties holds:(i) There exists a partition of R into two subsets, R� and R+, ea
h of overall weightm=2, whose 
onvex hulls are disjoint and whi
h have a 
ommon inner tangent m0passing through r.(ii) There exists a point q 2 R and a partition of Rnfqg into two subsets, R�0 and R+0 ,ea
h of overall weight < m=2, so that the 
onvex hulls of R�0 [fqg and R+0 [fqg meetonly at q, whi
h is a 
ommon vertex of both hulls, and the line m0 passing throughr and q is an inner 
ommon tangent to the two hulls (supporting one of them in theedge qr).1In the pre
eding paper [14℄, where it was assumed that no three points of P are 
ollinear, R wasa set, or, rather, the weight of ea
h point was 1. 4
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(ii)Figure 3: The primal 
onstru
tion of R� and R+: Case (i) (left) and Case (ii) (right).Proof: See Figure 3. Rotate a dire
ted line ` 
ounter
lo
kwise about r, starting withall the points of R n frg lying to the left of `, until the 
losed halfplane to the rightof ` 
ontains for the �rst time points with overall weight larger than m=2. Let R�0denote the set R0 of points in the open halfplane to the right of `, plus the largest setof initial points of ` \ R along ` (in their order along ` starting at r) whose overallweight does not ex
eed m=2� w(R0).If the overall weight of R�0 is exa
tly m=2, we are in 
ase (i). We de�ne R� := R�0 ,and R+ := R n R�0 . See Figure 3(i). It is 
lear that the 
onvex hulls of R+ and R�are disjoint, and that the �nal position of ` is the desired 
ommon inner tangent m0.If the overall weight of R�0 is less than m=2, we are in 
ase (ii). Let q be the nextpoint of `\R along `, and de�ne R+0 := R n (R�0 [ fqg). See Figure 3(ii). It is easilyseen that the properties asserted in (ii) hold, with m0 being the �nal position of `. �We apply Lemma 2.1 to our set R � �, with m = n�1. In 
ase (ii), we split q intotwo 
o-lo
ated points q�; q+, and distribute the weight w(q) between them, so thatw(q�) = (n�1)=2�w(R�0 ) and w(q+) = (n�1)=2�w(R+0 ). We set R� := R�0 [fq�gand R+ := R+0 [ fq+g. We refer to q as the 
entral bi
hromati
 point of R.Let m1 denote the other inner tangent of the 
onvex hulls of R� and R+. In 
ase(ii), m1 also passes through q and through at least one other point of one of the twosets. Now 
hoose in � an orthogonal (x; y)-
oordinate system whose y-axis is eithera line that stri
tly separates R� and R+ in 
ase (i), or a line through q that stri
tlyseparates R�0 and R+0 in 
ase (ii). We 
an 
arry out the 
onstru
tion so that (a)R+ and R� are to the left and to the right of the y-axis, respe
tively, (b) r 2 R�,and (
) m0 is oriented from r away from the other 
onta
t point(s), and the positivey-dire
tion lies 
ounter
lo
kwise to it. See Figure 3. This still leaves us with somefreedom in �xing the 
oordinate frame. We will later impose further 
onstraints onit to fa
ilitate 
ertain steps in our analysis.The presen
e of q adds an extra level of 
ompli
ation to the proof. We note that5
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Figure 4: The sets P+h and P�h . (a) The 
ase where the 
entral bi
hromati
 point q(if it exists at all) does not lie on `. (b) The 
ase where q exists and lies on `.in the 
on�guration shown in Figure 1, 
hoosing p0 to be any vertex of the hull, say,the lowest point, the weighted set R has a 
entral bi
hromati
 point q, as shown inFigure 31(ii). As will follow from our analysis, the bounds in both Theorems 1.1 and1.3 improve to 2n� 2, for n odd, when q does not exist.Let P+ (resp., P�) denote the set of points of P n fp0g that proje
t from p0 topoints of R+ (resp., R�). Points proje
ting to q are split between P+ and P�. This
an be best visualized by a plane �0 that separates P+ and P�. If q does not exist, �0is the plane spanned by p0 and the y-axis in �. If q exists, �0 
uts the line 
ontainingthe preimages of q into two pie
es, one of whi
h 
ontains w(q+) preimages and theother 
ontains w(q�) preimages. Without loss of generality, we may assume that thew(q+) preimages 
losest to p0 belong to P+.A brief overview of the proof of Theorem 1.3. In Se
tion 4, we 
onstru
t a setF of mutually non-
onvergent segments in �, whose endpoints belong to R. With fewex
eptions, the segments in F 
onne
t points of R+ to points of R�. Observe that asegment in � 
onne
ting two points r1 and r2 of R is in fa
t a proje
tion to � (throughp0) of a segment 
onne
ting two points of P whi
h proje
t to r1 and r2, respe
tively.Moreover, if e0 and f 0 are two segments in R3 whose respe
tive proje
tions onto � aree and f , and if e and f are non-
onvergent, then so are e0 and f 0, as is easily 
he
ked.This is more or less the strategy used in our pre
eding study [14℄. In the setupassumed there, ea
h point of R was the image of a unique point of P n fp0g, and thenumber of segments in F was roughly jRj. Then the segments in 3-spa
e that proje
tto the segments of F , together with the segments 
onne
ting p0 to ea
h of the otherpoints of P , yielded the desired set of mutually non-
onvergent segments determinedby P .However, the 
ru
ial di�eren
e between the setup in Theorem 1.3 and that in themain theorem of [14℄ is that now the 
entral proje
tion from p0 of P onto R may be6



many-to-one, be
ause P may have many points that are 
ollinear with p0, in whi
h
ase they all proje
t to a single point of R. As a result, the set R may 
onsist of mu
hfewer than jP j � 1 points, and hen
e the set F may not 
ontain the desired numberof mutually non-
onvergent segments. (In the extreme 
ase, R might 
onsist of onlytwo points and F of just one segment!)To resolve this issue, we take advantage of the fa
t that many points in P proje
tto the same point in �, and use it to map ea
h segment f 2 F to a set E(f)of pairwise non-
onvergent segments in 3-spa
e, determined by P , and lying in theplane h spanned by p0 and f . The sum of the sizes jE(f)j, over f 2 F , is at leastequal to the desired bound on the number of di�erent dire
tions.In more detail, let f 2 F be one of the segments we 
olle
ted on �. Let ` be theline in � that 
ontains f , and let h be the plane spanned by ` and p0. Put Ph = P \h,and de�ne P+h = P+ \ h and P�h = P� \ h. Note that any segment that 
onne
tstwo points in Ph proje
ts to a segment in � that is 
ollinear with f , and thus f isthe only segment in F that 
an be obtained in su
h a way. To 
ompensate for this\waste", we apply Theorem 3.1 (stated and proved in Se
tion 3), whi
h implies theexisten
e of a (suÆ
iently large) set E(f) of pairwise non-
onvergent segments in Ph.Ea
h segment e 2 E(f) either 
onne
ts a point of P+h to a point of P�h , or 
onne
ts p0to some point in Ph, su
h that the proje
tion e� of e from p0 on the line ` supportingf either fully 
ontains f , or is a point, outside the interior of f ; see Figure 4(a).We note that the proof of Theorem 3.1 itself, whi
h is a far-rea
hing bipartitevariant of Ungar's theorem, is rather intri
ate, and o

upies a signi�
ant portion ofthe paper. Although the proof bears some \synta
ti
" similarities to the proof ofour main Theorem 1.3, it deals with a 
ompletely di�erent s
enario, and is thereforepresented separately, as a stand-alone result (whi
h we believe to be of independentinterest).Finally, we let E denote the union of all the sets E(f). Using a fairly intri
ateanalysis, based on the properties of the 
onstru
tion in Theorem 3.1 noted above,we show (assuming that n is odd) that (a) E 
onsists of at least 2n � 5 segments(Se
tion 4.4), and (b) every pair of distin
t segments in E are non-
onvergent andtherefore non-parallel (Se
tion 4.5). On
e (a) and (b) are established, Theorems 1.3and 1.1 follow, be
ause the dire
tions of the segments in E are all di�erent.We emphasize on
e again that Theorem 1.3 is 
onsiderably stronger than Theo-rem 1.1. Besides being of independent interest, we expe
t this strengthening to beuseful for extending our results to higher dimensions, using indu
tion on the dimen-sion; see the 
on
luding se
tion for more details.3 A Bipartite Ungar-type TheoremA 
ru
ial ingredient of our analysis is the following variant of Ungar's theorem, whi
hwe believe to be of independent interest. 7



p0
X+ X�

Figure 5: An example where Theorem 3.1 does not hold.Theorem 3.1. Let X+ and X� be two �nite sets of points in the plane, and let p0be a point in the plane, su
h that p0 is an extreme point of X+ [ X� [ fp0g, andthere is a line through p0 that stri
tly separates X+ and X�. We also assume that0 < jX�j � jX+j and that the innermost ray from p0 to a point of X+ (forming thesmallest angle with the separating line) 
ontains more than jX+j� jX�j points. Thenone 
an sele
t at least jX+j + jX�j + 1 pairwise non-
onvergent and non-
ollinearsegments 
onne
ting points of X+ [ fp0g to points of X� [ fp0g.We remark that the \+1" term in the above bound is 
ru
ial for our analysis, andthat we may lose this term if the assumption on the points in the innermost ray doesnot hold, as is illustrated in Figure 5, where jX+j + jX�j + 1 = 5 but at most fourpairwise non-
onvergent segments 
an be sele
ted.Corollary 3.2. Assume the 
onditions of Theorem 3.1, with the di�eren
e that theinnermost ray from p0 to a point of X+ 
ontains exa
tly jX+j�jX�j points. Then one
an sele
t at least jX+j + jX�j pairwise non-
onvergent and non-
ollinear segments
onne
ting points of X+ [ fp0g to points of X� [ fp0g.We note that Ungar's theorem \almost" follows from Theorem 3.1 and its 
orol-lary. That is, let P be a set of n non-
ollinear points in the plane, where n is even.Pi
k an extreme point p0 of P , and �nd a line that passes through p0 and splitsP n fp0g into two subsets X+; X� whose sizes are as equal as possible. Suppose thatjX+j � jX�j. Then the innermost ray from p0 to points of X+ must 
ontain atleast jX+j � jX�j points, for otherwise we 
ould have transferred these points to X�and get a split with a smaller size di�eren
e. If the number of points on the inner-most ray is larger than jX+j � jX�j, then Theorem 3.1 applies, and yields at leastjX+j � jX�j+ 1 = jP j pairwise non-
onvergent segments 
onne
ting the points of P ,whi
h implies (and is mu
h stronger than) Ungar's theorem. However, if the numberof points on the innermost ray is equal to jX+j� jX�j, then only Corollary 3.2 
an beapplied, and it only yields jX+j � jX�j = jP j � 1 pairwise non-
onvergent segments
onne
ting the points of P , one shorter of what Ungar's theorem gives. We leave itas an open problem to determine whether Ungar's theorem 
an always be dedu
edfrom Theorem 3.1 and Corollary 3.2.Proof of Corollary 3.2: Remove one point from X+ whi
h is not on the innermost8



Figure 6: Two possible kinds of 
onvergent double wedges.ray from p0 to a point of X+ (note that X+ is not fully 
ontained in that ray, sin
ejX�j > 0), and apply Theorem 3.1 to the resulting set of points. �Proof of Theorem 3.1: Fix an (x; y)-
oordinate system in the plane. We apply astandard duality transform that maps a point p = (p1; p2) to the line p� with equationy + p1x + p2 = 0. Vi
e versa, a non-verti
al line l with equation y + l1x + l2 = 0 ismapped to the point l� = (l1; l2). Consequently, any two parallel lines are mappedinto points having the same x-
oordinate. It is often 
onvenient to imagine that thedual pi
ture lies in another, so-
alled dual, plane, di�erent from the original one,whi
h is referred to as the primal plane.The above mapping is in
iden
e and order preserving, in the sense that p liesabove, on, or below ` if and only `� lies above, on, or below p�, respe
tively. Thepoints of a non-verti
al segment e = ab in the primal plane are mapped to the set ofall lines in the 
losed double wedge e�, whi
h is bounded by a� and b� and does not
ontain the verti
al dire
tion. All of these lines pass through the point q = a� \ b�,whi
h is 
alled the apex of the double wedge e�. All double wedges used in this paperare assumed to be 
losed, and they never 
ontain the verti
al dire
tion.We 
all two double wedges 
onvergent if their api
es are distin
t and the apex ofneither of them is 
ontained in the other. See Figure 6.It is easy to see that, a

ording to this de�nition, two non-
ollinear segments inthe primal plane are 
onvergent if and only if they are mapped to 
onvergent doublewedges.Without loss of generality, we assume that p0 is the origin, that X+ lies to theleft of the y-axis, that X� lies to its right, and that both sets lie below the x-axis;see Figure 7(a). The duality maps p0 into the x-axis, whi
h we denote as `0, the lines
onne
ting p0 to points in X+ (resp., X�) to points on the negative (resp., positive)x-axis, and the points of X+ (resp., X�) to lines with positive (resp., negative) slopes;see Figure 7(b). Let �+, �� denote the set of lines dual to the points of X+, X�,respe
tively. Enumerate the points dual to the lines 
onne
ting p0 to the points ofX+ as q1; : : : ; qk in this left-to-right order, and the points dual to the lines 
onne
tingp0 to the points of X� as q01; : : : ; q 0̀ in this right-to-left order; thus q1 is the leftmostpoint and q01 is the rightmost. Put n+ = j�+j = jX+j, n� = j��j = jX�j.De�ne �� := �� [ f`0g. Let �e denote the set of n+ � n� lines of �+ that pass9



(a)`
p0X+ X� q1 q2 q3 q02q03 q01v2

(b) ���+ o `0 2 ��v3v1
Figure 7: The setup in Theorem 3.1. (a) The primal 
on�guration. (b) The dual
on�guration. Sin
e jX+j = 8 and jX�j = 6, we have two ex
ess lines, shown asdashed.through q1 and have the shallowest (smallest in absolute value) slopes; we refer tothese lines as ex
ess lines. De�ne �+ = �+n�e. We have j��j = j�+j+1 = n�+1. Wenote that by an appropriate 
hoi
e of the 
oordinate frame in the duality transform,we may assume that the slopes of the ex
ess lines are the smallest among all lines in�+.Constru
ting jun
tions. We apply an iterative pruning pro
ess that 
onstru
tsa sequen
e of verti
es (\jun
tions") v1; : : : ; vm whi
h are interse
tion points of linesfrom �� and lines from �+, and sets of intermediate verti
es (\stations") betweensu

essive jun
tions, as well as a set of \termini" to the right of the rightmost jun
tion.The sequen
e J of jun
tions hv1; v2; : : : ; vki is 
onstru
ted as follows.Step 1: Set i := 1 and �+1 := �+, ��1 := ��.Step 2: If �+i = ;, the 
onstru
tion of J terminates. Otherwise, as guaranteedby the 
onstru
tion, neither set is empty. Let vi be the leftmost interse
tion pointbetween a line in �+i and a line in ��i . Let d+i (and d�i ) denote the number of linesof �+i (and ��i , respe
tively) in
ident to vi, and put di := minfd+i ; d�i g. De�ne �+i+1(resp., ��i+1) as the set of lines obtained from �+i (resp., ��i ) by deleting from it thedi lines that are in
ident to vi and have the largest (resp., smallest) slopes amongthose in
ident lines. (That is, if d+i = d�i , then all lines in
ident to vi are deleted;otherwise, if, say, d+i > d�i , we are left with d+i � d�i lines through vi that belong to�+i and separate the deleted elements of �+i from the deleted elements of ��i . SeeFigure 8, where di = d�i = 2, d+i = 3, and the dashed lines, two from �+i and twofrom ��i , are removed at vi.) Set i := i + 1, and repeat Step 2.Note that, due to the spe
ial stru
ture of the arrangement, we have v1 = q1 andd1 = 1. See Figure 7(b). Re
all also that the ex
ess lines do not parti
ipate in thejun
tion 
onstru
tion pro
ess. 10



vi vi+1�+i
��i

Figure 8: Constru
ting the jun
tion vi in J . The dashed lines, two from �+ and twofrom ��, are removed at vi. The next jun
tion vi+1 is also shown.It is easy to verify the following properties of this 
onstru
tion.Claim 3.3. (i) j��i j = j�+i j+ 1, for ea
h i = 1; : : : ; k; �+k+1 = ; and j��k+1j = 1.(ii) For every 1 � i < j � k, the jun
tion vi lies in the left unbounded fa
e fj ofA(�+j [ ��j ) whi
h separates �+j and ��j at x = �1 (and whose rightmost vertex isvj). vi lies in the interior of fj if d+i = d�i ; otherwise it may lie on the boundary offj.(iii) Pki=1 di = j�+j = n�: �Colle
ting stations. Next, between any two 
onse
utive jun
tions vi and vi+1, for1 � i < k, we spe
ify di + di+1 � 1 further verti
es of A(�+ [ ��), 
alled stations(thus, the ex
ess lines are still kept out of the 
onstru
tion).Fix an index 1 � i < k, and 
onsider the verti
al slab between vi and vi+1. ByClaim 3.3 (ii), vi lies inside or on the boundary of the fa
e fi+1 of A(�+i+1 [ ��i+1),whose rightmost vertex is vi+1. See Figure 9. Hen
e, the segment e = vivi+1 is
ontained in the 
losure of fi+1. Now at least one of the following two 
onditions issatis�ed: (a) all the di lines removed from �+i and all the di+1 lines removed from��i+1 pass stri
tly above e (ex
ept possibly for its endpoints), or (b) all the di linesremoved from ��i and all the di+1 lines removed from �+i+1 pass stri
tly below e.Indeed, if vi lies in the interior of fi+1 then the di+1 lines of �+i+1 (resp., of ��i+1)that are removed at vi+1 pass stri
tly below (resp., above) vi. In this 
ase, the validityof either (a) or (b) follows by 
onsidering the position of vi among the lines of �+i [��ithat are removed at vi. If vi lies on the boundary of fi+1 (as shown in Figure 9), thenit has to lie on a line of �+i+1 [ ��i+1, say it lies on a line ` of �+i+1 (as shown in the�gure). Then all the di+1 lines removed from ��i+1 pass stri
tly above vi and e. Nowthe line ` belongs to �+i and passes through vi. Sin
e it was not removed at vi, all the11
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Figure 9: Colle
ting stations between vi and vi+1. We have di = di+1 = 2. Thelines removed at vi are drawn as dashed, and those removed at vi+1 are drawn asdashed-dotted.di lines of �+i that were removed pass stri
tly above e, by 
onstru
tion, so (a) holds.If vi lies on a line of ��i+1, a symmetri
 argument shows that (b) holds.Assume, by symmetry, that (a) holds. Denote the lines removed from �+i by`+1 ; : : : ; `+di, listed a

ording to in
reasing slopes, and those removed from ��i+1 by`�1 ; : : : ; `�di+1, listed a

ording to de
reasing slopes. See Figure 9. De�ne the set ofstations Si in the verti
al slab between vi and vi+1 as the 
olle
tion of all interse
tionpoints of `+di with the lines `�1 ; : : : ; `�di+1 , and all interse
tion points of `�di+1 with thelines `+1 ; : : : ; `+di. Clearly, we have jSij = di + di+1 � 1 su
h points; see Figure 9.We refer to the grid-like 
rossing pattern between the lines `+1 ; : : : ; `+di and the lines`�1 ; : : : ; `�di+1, as the upper grid between vi and vi+1. The 
olle
ted stations lie onthe \upper rim" of that grid. In 
omplete analogy, when 
ase (b) applies, we 
olle
tstations along the \lower rim" of the lower grid between vi and vi+1.The des
ription so far mat
hes the one given in [14℄. We now des
ribe the newfeatures of the present 
olle
tion pro
ess. They involve (a) 
olle
ting \ex
ess stations"for the ex
ess lines, and (b) 
olle
ting verti
es (that we refer to as \termini") to theright of vk.Colle
ting ex
ess stations. The 
olle
tion of ex
ess stations pro
eeds as follows.As we 
olle
t the jun
tions vi, we maintain a subset �ei of `surviving' ex
ess lines. Forea
h i, the lines in �ei satisfy the property that they pass below or through ea
h of thejun
tions v1; : : : ; vi. Initially, �e1 = �e, all of whose lines 
learly satisfy this property(they pass through v1). When we rea
h a new jun
tion vj, we remove 
ertain linesfrom �ej�1. When an ex
ess line is removed, we asso
iate with it a new ex
ess stationthat lies somewhere to the left of vj. Typi
ally, but not always, it will be a grid12



vjvj�1
Figure 10: Charging ex
ess lines of �ej�1 that pass above vj to ex
ess stations in theupper grid between vj�1 and vj.vertex between vj�1 and vj. To disambiguate between the two kinds of stations, wewill sometimes refer to the previously 
onstru
ted stations as standard stations. Theremoval of ex
ess lines and the 
onstru
tion of ex
ess stations pro
eed a

ording tothe following rule:(i) Our default option is to use the upper grid for 
olle
ting intermediate (standard)stations between vj�1 and vj. Re
all that, for this to be possible, all lines of ��in
ident to vj and removed there have to pass stri
tly above vj�1, and all lines of �+in
ident to vj�1 and removed there have to pass stri
tly above vj. If the �rst 
onditionis violated then the shallowest line of �� in
ident to vj and removed there also passesthrough vj�1 (by Claim 3.3(ii), it 
annot pass below vj�1), and if the se
ond 
onditionis violated then the shallowest line of �+ in
ident to vj�1 and removed there passesthrough or below vj. Thus, if none of the two latter 
onditions arise, we use the uppergrid.Assuming this to be the 
ase, we remove ea
h surviving ex
ess line that passesabove vj. The removed ex
ess lines meet the steepest line of �� in
ident to vj at pointsthat lie along the upper grid and are further to the right of all the other grid points(and thus to the right of all the standard stations in Sj�1). This latter property is a
onsequen
e of the fa
t that all these ex
ess lines pass below or through vj�1 and haveslopes smaller than those of the lines of �+ that are in
ident to vj�1; see Figure 10.In 
on
lusion, ea
h removed ex
ess line is asso
iated with a new upper grid vertexof the arrangement, and these are the ex
ess stations that we have promised to 
olle
t.We set �ej to be the set of surviving ex
ess lines, whi
h still pass through or below vj(so the invariant 
ontinues to hold), and 
ontinue the pro
ess with j := j + 1.(ii) Suppose that we have to use the lower grid for 
olle
ting intermediate stations13



vj�1
(a)

vj ` vj�1
(b)

� vj `
Figure 11: Using the lower grid between vj�1 and vj.between vj�1 and vj. As just mentioned, the lower grid has to be used either when (a)vj lies on or above at least one of the dj�1 lines of �+ in
ident to vj�1 and removedthere, or when (b) vj�1 lies on the shallowest of the dj lines of �� in
ident to vj andremoved there.In 
ase (a), let ` denote the shallowest line in �+ through vj�1 that is removed atvj�1. Refer to Figure 11(a), and note that vj lies on or above `. In this 
ase, ea
hex
ess line in �ej�1 must pass below vj, be
ause it passes below or through vj�1 andits slope is smaller than that of `. Hen
e, in this 
ase we do not remove any ex
essline, and thus set �ej := �ej�1. In parti
ular, the invariant property holds for �ej inthis 
ase, and we 
ontinue the 
olle
tion pro
ess with j := j + 1.In 
ase (b), whi
h is depi
ted in Figure 11(b), let ` denote the shallowest line in�� through vj that is removed at vj. ` passes also through vj�1. We use the lowergrid to 
onstru
t ex
ess stations for the ex
ess lines of �ej�1 that pass above vj. Thesewill be the interse
tion points of these lines with the steepest line of �� in
ident tovj�1. Be
ause of the slope 
onditions, these points lie to the left of all the standardstations between vj�1 and vj. However, if there exists an ex
ess line � through vj�1,this pro
edure will fail to produ
e an additional ex
ess station for �. To gain su
h astation elsewhere, we observe that j � 1 6= 1 (sin
e `0 is the only line of �� throughv1, so that it is deleted there and does not belong to ��2 ), and that we must have usedthe upper grid between vj�2 and vj�1. This holds be
ause vj�2 must lie on or below `and on or above �. Hen
e, all the lines of �+ in
ident to vj�2 must pass stri
tly abovevj�1 (sin
e they have slopes larger than that of �), and all the lines of �� in
ident tovj�1 and removed there must pass stri
tly above vj�2 (sin
e they are all steeper than`). Note that the number of lines of �� through vj�1 is greater than dj�1, be
ausethis set also 
ontains `, whi
h has not been removed at vj�1. Using that extra line,we 
an therefore gain one additional interse
tion point as the required ex
ess stationin the upper grid between vj�2 and vj�1. 14



u `vj�3 v vj�2w w0v0 vj�1 �
vj

Figure 12: Handling the modi�ed 
ase (b), where ` passes through additional verti
espre
eding vj�1.However, one su
h extra grid station may fail to exist if vj�2 also lies on `. Referto Figure 12.In this 
ase, it is easily seen that, as far as the 
olle
tion of standard stations goes,we 
an use the lower grid between vj�2 and vj�1 instead of the upper grid. Indeed, allthe lines of �� in
ident to vj�2 and removed there pass below vj�1 (be
ause ` passesthrough vj�1 and is not removed there), and all the lines of �+ in
ident to vj�1 andremoved there pass below vj�2 (be
ause � passes through vj�1 and below vj�2). Ifvj�2 is not in
ident to an ex
ess line, then all ex
ess lines in �ej�2 that pass throughor above vj�1 (in
luding �) determine ex
ess stations on the lower grid between vj�2and vj�1. Hen
e in this 
ase we obtain on the lower grid one additional ex
ess station,formed by �, and 
an therefore quit this pro
ess. If vj�2 is in
ident to an ex
ess line,we attempt to 
olle
t an extra ex
ess station in the upper grid between vj�3 and vj�2,exploiting, as above, the ex
ess of lines of �� at vj�2. Again, this may fail if vj�3 alsolies on `, so we move to the lower grid between vj�3 and vj�2, and we keep applyingthis ba
ktra
king pro
ess until we rea
h a jun
tion vs that lies stri
tly below `. Thiswill happen, if not earlier, when we rea
h v1, sin
e the only line of �� in
ident to v1is `0, whi
h is di�erent from `.To re
ap, this pro
ess 
reates an ex
ess station for ea
h ex
ess line removed atvj. Note that if the 
onstru
tion had to ba
ktra
k from vj through several pre
edingjun
tions, then ` is the shallowest line of ��j that passes through vj. Hen
e, if ba
k-tra
king will also be required at some later jun
tion vj0, for j 0 > j, then the pro
esswill have to terminate at a jun
tion to the right of vj (be
ause no surviving line of��j passes through vj). That is, the ba
ktra
king pro
esses are independent of ea
hother, and none of them a�e
ts any of the pre
eding ones.15



(a)
vk ``0 (b)

` �0vk
`0`0Figure 13: Colle
ting termini.Colle
ting termini. Finally, 
onsider the last jun
tion vk and the �nal set �ek ofsurviving ex
ess lines. There are dk lines of �� as well as dk lines of �+ that passthrough vk, and there is another surviving line ` of ��, whi
h passes through or abovevk. Our goal is to 
olle
t dk + j�ekj+ 1 additional verti
es of A(�) to the right of vk,to whi
h we refer as termini.If ` passes above vk, then we obtain on it the distin
t interse
tion points with `0,with the ex
ess lines in �ek, and with the dk lines of �+ through vk (it is easy to verifythat all these interse
tion points are indeed distin
t); see Figure 13(a). Altogether,we 
olle
t dk + j�ekj+ 1 termini.If ` passes through vk (see Figure 13(b)), let `0 denote the steepest line of ��in
ident to vk. We 
harge ea
h of the dk+1 lines of �� in
ident to vk to its interse
tionwith `0. In addition, ea
h ex
ess line in �ek, with the ex
eption of the ex
ess line �0that passes through vk (if there is su
h a line), meets `0 at a vertex, and we add theseverti
es to the set of 
olle
ted termini; their x-
oordinates are all distin
t, and lie tothe right of vk and to the left of any point q0j 
harged by the lines of �� in
ident tovk. Altogether we 
olle
t at least dk+ j�ekj termini. The only 
ase in whi
h we do notobtain dk+ j�ekj+1 termini is when there is an ex
ess line �0 through vk. In this 
asewe must have used the upper grid between vk�1 and vk, whi
h is argued as in 
ase(ii) of the pre
eding analysis. As above, we 
an gain an extra ex
ess station in thisupper grid, be
ause the number of lines of �� through vk is in fa
t at least dk + 1.Again, the same te
hni
al diÆ
ulty that we fa
ed earlier may arise here as well, whenvk�1 also lies on `. We resolve this exa
tly as before, ba
ktra
king to the left throughjun
tions vj that lie on `, swit
h to lower grids between them without de
reasing thenumber of 
olle
ted stations, and gaining the desired extra station when we rea
h ajun
tion vj that lies stri
tly below ` or that is not in
ident to an ex
ess line.In both 
ases, we have managed to 
harge an extra terminus for every ex
ess lineleft in �ek, and an additional terminus for the extra surviving line ` of ��. Note thatall termini, or all but one, lie to the right of vk.Adding these termini to the jun
tions and stations, we obtain, ex
luding the ex
ess16



stations and termini, and re
alling that d1 = 1, a total of(d1 + d2 � 1) + (d2 + d3 � 1) + � � �+ (dk�1 + dk � 1) + k + (dk + 1) =1 + 2 kXi=1 di = 2n� + 1verti
es. Hen
e, sin
e we manage to 
olle
t one additional vertex for ea
h ex
ess line,we obtain a total of 2n�+1+(n+�n�) = n++n�+1 verti
es. Observe that all the
olle
ted verti
es are either on `0 or are interse
tion points of lines of (the original)�+ with lines of (the original) ��. In other words, ea
h of the 
olle
ted verti
esrepresents a segment in the primal plane, 
onne
ting a point of X+ [ fp0g to a pointof X� [ fp0g.Let Q denote the set of all 
olle
ted jun
tions, stations, and termini. Asso
iatewith ea
h element q 2 Q the maximal double wedgeW (q) (not 
ontaining the verti
alline through q), whi
h is bounded by a pair of lines passing through q.To 
omplete the proof of the theorem, we show that the 
olle
ted wedges arepairwise non-
onvergent.Claim 3.4. The set fW (q) j q 2 Qg of n double wedges has no two 
onvergentelements.Proof: Let u; v 2 Q with u lying to the left of v. Re
alling the de�nition of 
onvergentdouble wedges, we need to show that either u 2 W (v) or v 2 W (u). We distinguishbetween several 
ases:Case A: Both u and v are jun
tions.Put u = vi and v = vj, with i < j. Then W (v) is bounded by a line ` 2 �+j andby a line `0 2 ��j . By Claim 3.3(ii), vi lies between these two lines, and thus belongsto W (v).Case B: u is a jun
tion and v is a (standard or ex
ess) station to the left of vk.Put u = vi and let Sj be the set of stations that 
ontains v, where i � j < k.Then W (v) is bounded by two lines `; `0, where either ` 2 �+j [ �ej and `0 2 ��j+1 (ifv lies on the upper grid), or ` 2 �+j+1 [ �ej and `0 2 ��j (if v lies on the lower grid).By 
onstru
tion, we have, in both 
ases, ` 2 �+j [ �ej and `0 2 ��j . If ` 2 �+j , theanalysis is 
ompleted as in Case A. If ` 2 �ej, it passes through or below vi, so thesame analysis applies here as well.Case C: u is a (standard or ex
ess) station to the left of vk and v is a jun
tion or astation to the left of vk.Let Si be the set of stations 
ontaining u; i.e., u lies in the upper or lower gridbetween vi and vi+1. The arguments in Case A and Case B imply that vi 2 W (v). If vis also a station in Si or v = vi+1 then it is easy to verify, by 
onstru
tion, that W (u)17



and W (v) are non-
onvergent (see Figure 9); this also holds if u and/or v are ex
essstations. Suppose then that v lies to the right of vi+1. Consider �rst the 
ase whereu is a standard station. Then both vi and vi+1 lie in the left wedge of W (v), and u isin
ident to a line � that passes through vi and to a line �0 that passes through vi+1.If u =2 W (v) then a boundary line of W (v) must separate u from vi and vi+1, in whi
h
ase v 2 W (u); see Figure 14(a).Suppose next that u is an ex
ess station on the upper grid between vi and vi+1.If u =2 W (v) then u must lie above W (v). In this 
ase u is in
ident to a line � (anex
ess line) that passes through or below vi and to a line �0 that passes through vi+1.As above, it is easily seen that the line through v that bounds the left wedge of W (v)from above must 
ross � to the left of u and �0 to the right of u and to the left of v,again implying that v 2 W (u); see Figure 14(b).A fully symmetri
 argument applies when u is an ex
ess station on the 
orre-sponding lower grid.Note that 
ases B and C also apply to ex
ess stations 
onstru
ted in the ba
k-tra
king pro
esses, starting either from some jun
tion that pre
edes vk or from vkitself.Case D: u is a jun
tion and v is a terminus to the right of vk.Refer to Figure 13 to re
all the types of termini that we 
onstru
t. Consider �rstthe 
ase where v is the interse
tion point of an ex
ess line � that passes through orbelow vk, with either the line ` (in the 
ase depi
ted in Figure 13(a)), or the line `0(in the 
ase depi
ted in Figure 13(b)). By 
onstru
tion, � passes through or below uand ` or `0 passes through or above u, so u 2 W (v).Consider next the 
ase where v is the interse
tion of ` with some line � in �+k .Here too it is easily veri�ed that u lies between the two lines, so u 2 W (v). The sameargument applies to the last possible 
ase, where v is the interse
tion of `0 with someline of ��k .Case E: u is a station and v is a terminus to the right of vk.Let Si be the set of stations 
ontaining u. The arguments in Case D imply thatvi; vi+1 2 W (v). If u =2 W (v) then, arguing as in 
ase C, we must have v 2 W (u).Case F: Both u and v are termini to the right of vk.This 
ase follows from a dire
t inspe
tion of all the possible types of pairs oftermini; see Figure 13.This 
ompletes the proof of the 
laim, and thus of Theorem 3.1. �
18
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vi u �vi+1 v�0 vi �0 �u vvi+1

Figure 14: Illustrating Case C of the proof thatW (u) andW (v) 
annot be 
onvergent.(a) u is a standard station. (b) u is an ex
ess station on the upper grid.4 Constru
ting the Sets of Segments F and E inthe Plane � and in 3-Spa
eConsider the proje
ted set R of non-
ollinear points in the plane �, as de�ned inSe
tion 2, and re
all that we assume that its total weight w(R) = n�1 is even. Re
allalso that we have partitioned R into two sets, R+ and R�, by some verti
al line whi
hwe 
hoose to be the y-axis. Instead of sele
ting the suitable set of segments F in �, itwill be more 
onvenient to work in the dual plane, using the same duality transformas in the proof of Theorem 3.1, where segments 
orrespond to double wedges. First,we will de�ne the api
es v of these double wedges W (v), that are verti
es in thearrangement of lines dual to the elements of R, and then we spe
ify the boundarylines of ea
hW (v), whi
h are the duals of the endpoints of the 
orresponding segmentf(v) in the `primal' plane �.The main part of the sele
tion algorithm is an iterative pruning pro
ess that 
ol-le
ts two types of di�erent 
rossing points v, so-
alled jun
tions and stations, betweenthe lines dual to the points of R. This pro
ess has many aspe
ts similar to the onedis
ussed in [14℄, and to the one given in the pre
eding se
tion, but here the analysisis 
onsiderably more involved, be
ause we have to handle weighted lines, and be
ausethe potential presen
e of the 
entral bi
hromati
 point q further 
ompli
ates 
ertainsteps of the analysis.After asso
iating ea
h 
olle
ted vertex v with a 
ertain double wedge W (v) thathas v as an apex, we 
onsider the set F of segments f(v) in the primal plane � that 
or-respond to these double wedges, by duality. Ea
h segment f(v) 
onne
ts two elementsof R in �, and we show that these segments are pairwise non-
onvergent. Ea
h seg-ment f(v) 2 F spans with p0 a plane h(v) in R3 , and we apply Theorem 3.1 to 
olle
tsegments that 
onne
t pairs of points of P within h(v). We denote by E(f(v)) = E(v)(and sometimes also by E(f)) the set of segments in R3 that are spanned by P andare determined (in this manner) by f(v), and we set E := Sf2F E(f).19



4.1 Colle
ting jun
tions in the dual planeDenote by L the set of lines dual to the elements of R. By 
hoosing the dire
tions ofthe 
oordinate frame suÆ
iently generi
, we may assume that no two lines in L areparallel. (In the primal plane �, this would 
orrespond to the requirement that notwo points of R have the same x-
oordinate.) Ea
h line ` 2 L has a weight w(`) equalto the weight of its dual point, soP`2L w(`) = n�1. Let L+, L� denote respe
tivelythe sets of lines dual to R+ and R�. Sin
e we have assumed in Se
tion 2 that R+lies to the left of the y-axis and R� lies to its right, it follows that all lines in L�have negative slopes and all lines in L+ have positive slopes. The 
entral bi
hromati
point q, when it exists, is mapped to a horizontal line q�, whi
h we assume to be thex-axis. This line appears as two 
oin
ident 
opies, (q+)� 2 L+ and (q�)� 2 L�, with
orresponding weights w(q+), w(q�).We begin by 
onstru
ting a sequen
e J = hv1; v2; : : : ; vki of verti
es of A(L), 
alledjun
tions.Step 1: Set i := 1 and L+i := L+, L�i := L�.Step 2: If L+i = L�i = ;, the 
onstru
tion of J terminates. Otherwise, as we willsee, neither set is empty. Let vi be the leftmost interse
tion point between a line inL+i and a line in L�i . Let d+i , d�i denote the overall weight of those lines of L+i , L�i ,respe
tively, that are in
ident to vi, and put di := minfd+i ; d�i g. Suppose, withoutloss of generality, that di = d+i . Remove from L+i all its lines in
ident to vi, and pruneL�i as follows. Remove as many of the steepest lines of L�i (those with the smallestslopes) in
ident to vi as possible, so that their overall weight 
i does not ex
eed di.If this weight is equal to di, we are done. Otherwise, we take the next steepest line` and redu
e its weight by di � 
i. The line ` is not removed from L�i . Note thatea
h of the remaining lines of L�i in
ident to vi separates the removed lines of L+ifrom the removed lines of L�i . See Figure 15. Set L+i+1 and L�i+1 to be the sets ofsurviving weighted lines of L+i and L�i , respe
tively, where the line `, if exists, has itsnew redu
ed weight. Set i := i+ 1 and repeat Step 2.Sin
e m1 is the line with the largest slope 
onne
ting a point of R+ and a pointof R�, our duality implies that m�1, the dual of m1, is the leftmost interse
tion pointbetween a line of L+ and a line of L�. Hen
e, we have v1 = m�1.If q exists, then v1 = m�1 is the leftmost vertex along the line q� (see Figure 3(ii)).At least one of the 
oin
ident 
opies (q+)�, (q�)� of q� 
ontributes its full weight tod1. Consequently, at least one of these 
opies is removed at v1, whi
h implies thatq� belongs from this point on to only one of the sets L+i , L�i . In other words, thepresen
e of q will only a�e
t the 
onstru
tion \in the vi
inity" of v1; see below fordetails.As our 
onstru
tion sweeps the dual plane from left to right, we 
olle
t jun
tions(and stations) whose dual lines rotate 
lo
kwise from m1 onwards (see Figure 3).As in the proof of Theorem 3.1, it is easy to verify the following properties of the20
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L�
L+Figure 15: Choosing the �rst jun
tion v1. Lines are labeled with their weight. Wehave d1 = 5. The dashed lines, two from L+ and two from L�, are removed, andthe remaining line ` has its weight redu
ed by 2 at v1. The double wedge W (v1) isshaded. The next jun
tion v2 is also shown.above 
onstru
tion (
onsult Figure 15):Claim 4.1. (i) w(L+i ) = w(L�i ), for ea
h i = 1; : : : ; k.(ii) For every 1 � i < j � k, the jun
tion vi lies in the left unbounded fa
e fj ofA(L+j [L�j ) that separates L+j and L�j at x = �1, and whose rightmost vertex is vj.The point vi lies in the interior of fj if d+i = d�i ; otherwise it may lie on the boundaryof fj.(iii) Pki=1 di = (n� 1)=2. �(iv) At the time when vi is 
onstru
ted, the weights of all lines that are removed orweight-redu
ed at vi, are equal to their original weights (i.e., before being redu
ed atany pre
eding jun
tion), with the only possible ex
eption of the two shallowest linesin their respe
tive sets, whose weights 
ould have been earlier redu
ed.To see (iv), let `+ be a line of L+i that is removed at vi and is di�erent from theshallowest su
h line `+a . Then, by property (ii), `+ must pass stri
tly below ea
h of thepreviously 
onstru
ted jun
tions, so it did not parti
ipate in any pre
eding pruningstep. The argument for L�i is fully symmetri
. �We de�ne, for ea
h 1 � i � k, the set of lines of L+i (resp., L�i ) that are in
identto vi and are either removed at vi or have their weight redu
ed there, by D+i (resp.,D�i ). We also put Di := D+i [D�i .We asso
iate with ea
h jun
tion vi the double wedge W (vi) bounded by the shal-lowest lines in D+i and D�i , respe
tively. See Figure 15.
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4.2 Constru
ting segments in E from the jun
tionsIn the primal plane �, ea
h jun
tion vj, for j = 1; : : : ; k, 
orresponds to some line v�jin �, whi
h 
ontains proje
tions (from p0) of some points of P . Let h denote the planespanned by v�j and p0. We apply Theorem 3.1 to a 
ertain subset of P \ h, therebyobtaining a set of pairwise non-
onvergent segments determined by the points in thatsubset.The presen
e of the 
entral bi
hromati
 point q may for
e us to modify the analysisat v1. We �rst des
ribe the analysis under the assumption that q does not exist(we sometimes refer to this situation as the standard 
ase), and then dis
uss themodi�
ations needed at v1 when q exists.The 
ase where q does not exist. Fix an index 1 � i � k. Let `+1 ; : : : ; `+a denotethe lines of D+i , and let `�1 ; : : : ; `�b denote the lines of D�i . We enumerate the lines inthe order of their slopes, so that `+a and `�b are the shallowest lines of D+i and D�i ,respe
tively. Consider the line v�i dual to vi, and let h be the plane spanned by v�iand p0. Let X+ (resp., X�) denote the set of points of P n fp0g whose proje
tionfrom p0 is one of the duals of `+1 ; : : : ; `+a (resp., `�1 ; : : : ; `�b ) on �. By 
onstru
tion,jX+j; jX�j � di; either of jX+j and jX�j may 
onsist of more than di points, in the
ase when either L+i or L�i has a line whose weight is redu
ed (at vi or in some earlierjun
tion). By Claim 4.1(iv), only `+a and `�b (whi
h are the shallowest lines of D+i andD�i ) may have redu
ed weight. By 
onstru
tion, the sets X+ and X� are separatedby a line in h (
onsult with Figure 7(a)).Clearly, jX+j = Paj=1w(`+j ) and jX�j = Pbj=1w(`�j ), where the w(`)'s denotethe original weights of the 
orresponding lines `. We 
laim that Theorem 3.1 
anbe applied to the set X = X+ [ X� within the plane h. Indeed, assume withoutloss of generality that jX+j � jX�j. It follows from the 
onstru
tion that the pointsproje
ting to (`+a )� lie on the innermost ray from p0 to X. Sin
e `+a is either deletedat vi or has its weight redu
ed there, it follows that Pa�1j=1 w(`+j ) < Pbj=1w(`�j ).Therefore jX+j � jX�j = aXj=1 w(`+j )� bXj=1 w(`�j ) < w(`+a ):Theorem 3.1 
an thus be applied to the set X = X+[X� within the plane h, andit yields a total of at least jX+j+ jX�j+1 pairwise non-
onvergent segments, ea
h ofwhi
h 
onne
ts a point ofX+[fp0g to a point of X�[fp0g. However, there may existone segment that has to be ex
luded be
ause of potential 
ollinearity with segmentsgenerated at other jun
tions: This is a segment e along the ray from p0 to the dualof the unique line ` among `+a ; `�b whose weight is redu
ed at vi but whi
h is notremoved there, if su
h a line exists. (Note that this ray is the innermost among thoserays 
onne
ting p0 to points of the 
orresponding set X+ or X�.) In that 
ase, ` willalso 
ontribute weight to another subsequent jun
tion vi0 , where a segment 
ollinearwith e may be generated in the primal plane, and these two segments 
annot both be22



in
luded in the output set E (whose elements have to be pairwise non-
onvergent).Redu
ing the 
ount due to this potential double 
ounting, we are therefore left withat least w(D+i ) + w(D�i ) + 1� �i = aXj=1 w(`+j ) + bXj=1 w(`�j ) + 1� �ipairwise non-
onvergent segments, where �i = 1 if there is a line whose weight hasbeen redu
ed at vi but whi
h was not removed there, and �i = 0 otherwise. Herew(D+i ), w(D�i ) denote the total original weight of these sets.Handling the 
entral bi
hromati
 point q. As noted, the presen
e of q mayfor
e us to modify the analysis at the �rst jun
tion v1, be
ause the dual line q� appearsthere as two 
oin
ident lines (q�)� 2 L�1 and (q+)� 2 L+1 . Let d+0 (resp., d�0 ) denotethe total weight of all the lines of D+1 n f(q+)�g (resp., of D�1 n f(q�)�g); re
all thatat least one of the sets D+1 ; D�1 in
ludes the respe
tive 
opy of q� with its full weight.We have d1 = minfd+0 +w(q+); d�0 +w(q�)g; assume, without loss of generality, thatd1 = d+0 + w(q+) � d�0 + w(q�).Suppose �rst that d�0 � d+0 + w(q+). Refer to Figure 16. Then (q�)� =2 D�1 . LetX� denote the set of all points p 2 P n fp0g that proje
t to the points dual to thelines of D�1 . If D�1 
ontains a line ` whose weight is only redu
ed at v1, let b1 > 0denote the surviving weight of `; otherwise, put b1 = 0. We have jX�j = d1 + b1.Let X+ denote the set of all points p 2 P n fp0g that proje
t to the points dual tothe lines of D+1 , in
luding q (with its full weight w(q) = w(q�) + w(q+)). We havejX+j = d1 + w(q�). If b1 � w(q�), then jX+j � jX�j = w(q�) � b1 < w(q); theright-hand side is the number of points on the innermost ray from p0 to the pointsof X+ (see Figure 16). If b1 > w(q�), then jX�j � jX+j = b1 � w(q�) < w(`); theright-hand side is the number of points on the innermost ray from p0 to the pointsof X�. Hen
e, in either 
ase, Theorem 3.1 is appli
able to X+ [ X� [ fp0g, and ityields a set E(v1) of at leastw(D�1 ) + w(D+1 n fqg) + w(q) + 1 = w(D�1 ) + w(D+1 ) + w(q�) + 1pairwise non-
onvergent segments, where, as above, ea
h line in D�1 [ D+1 is takenwith its full original weight. Compared with the 
ount in the standard 
ase, we 
olle
tw(q�) additional segments in this 
ase.Suppose next that d�0 < d+0 + w(q+) � d�0 + w(q�). See Figure 17. In this 
ase,D�1 
ontains (q�)� and D+1 
ontains (q+)�. We let X+0 (resp., X�0 ) denote the setof all points of P n fp0g that proje
t to the points dual to the lines of D+1 n f(q+)�g(resp., the lines of D�1 n f(q�)�g). We have jX+0 j = d+0 and jX�0 j = d�0 .First, assume further that d+0 6= d�0 , say d+0 > d�0 . In this 
ase we set X+ := X+0and take X� to be the union of X�0 with the set of all points of P n fp0g that proje
tto q. We have jX�j = d�0 +w(q) > jX+j, and jX�j � jX+j = d�0 � d+0 +w(q) < w(q).A symmetri
 argument holds when d+0 < d�0 . Hen
e, Theorem 3.1 is again appli
able,23



�0
hv�1

X�X+
p0

33 v1 (q+)�(q�)�1
423

Figure 16: Colle
ting segments in E(v1) when q exists. Here (q�)� 62 D�1 . We haved1 = 6, jX�j = 7 and jX+j = 9. The lines (q�)� and (q+)� are 
oin
ident, but aredrawn as separate lines for the purpose of illustration.
�0

hv�1
X�X+

p0
33 v1 (q+)�(q�)�2
123Figure 17: Colle
ting segments in E(v1) when q exists. Here (q�)� 2 D�1 , d1 = 6,jX�j = 5, jX+j = 9, and Theorem 3.1 
an be applied.

�0
hv�1

X�X+
p0v1 (q+)�(q�)�1

22323Figure 18: Colle
ting segments in E(v1) when q exists. Here (q�)� 2 D�1 , d1 = 6,jX�j = 4, jX+j = 9, and jX+j � jX�j = w(q), so only Corollary 3.2 
an be applied.
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and yields a set E(v1) of at leastd�0 + d+0 + w(q) + 1 � w(D+1 ) + w(D�1 ) + 1pairwise non-
onvergent segments, where, as above, ea
h line in D�1 [ D+1 is takenwith its full original weight. Here the lower bound is the same as the one yielded inthe standard 
ase.The �nal, problemati
 
ase arises when d+0 = d�0 . See Figure 18. In this 
ase, thepoints of P n fp0g that proje
t to q 
an be added to either set X�0 , X+0 , say we addthem to X�0 . Then the resulting sets X�; X+ satisfy jX+j = d+0 , jX�j = d�0 + w(q),and jX�j � jX+j = w(q). In this 
ase Theorem 3.1 is not appli
able, and we 
an onlyapply Corollary 3.2, to obtain a set E(v1) with at leastd�0 + d+0 + w(q) � w(D+1 ) + w(D�1 )pairwise non-
onvergent segments. That is, we lose one segment in E(v1), as 
om-pared with the standard situation. (Note that in this 
ase all lines through v1 areremoved, ex
ept perhaps for (q�)�.)In addition, as in the standard 
ase, we need to subtra
t 1 from any of the boundsobtained above, in 
ase D+1 or D�1 has a line whose weight is only redu
ed at v1, toa

ommodate the potential double 
ounting due to 
ollinear segments generated atsubsequent jun
tions.The double wedge W (v1) asso
iated with v1 is de�ned as in the standard 
ase,ex
ept that in some of the above 
ases it may degenerate to the single line q� (italways has (q�)� or (q+)� as one of its bounding lines). In this 
ase, we still 
onsiderW (v1) to have its apex at v1. In the primal plane, the 
orresponding segment f(v1)degenerates to the singleton point q, but it is still 
onsidered to lie along the line v�i .Wrapping up. We repeat this 
olle
tion pro
ess to ea
h of the jun
tions vi, andsum up the resulting bounds. This sum 
an be rearranged as follows. Let `1; : : : ; `tdenote an enumeration of all the lines in L, and put wj = w(`j) (the original weight),for j = 1; : : : ; t. (In 
ase q exists, the lines (q+)� and (q�)� appear as two separatelines in this enumeration, with their respe
tive weights.) For ea
h j, let �j denotethe number of jun
tions vs that are in
ident to `j, su
h that `j 2 Ds. Observe that if�j > 1, then in the �rst �j�1 of these jun
tions vs, the weight of `j is redu
ed at vs but`j is not removed there. Hen
e �s = 1 at ea
h of these jun
tions vs, and we \blame"this redu
tion in the 
ount on `j, making its e�e
tive weight 
ontribution at vs equalto wj�1. `j is removed only at the last (i.e., the �j-th) of these jun
tions. Therefore,the overall number of segments in E generated at all the jun
tions v1; : : : ; vk is atleast k + tXj=1(�j � 1)(wj � 1) + tXj=1 wj � "0 = k + t+ tXj=1 �j(wj � 1)� "0; (1)where "0 = 1 if q exists and the problemati
 
ase d�0 = d+0 arises at v1, and "0 = 0 inall other 
ases. 25



L+i efi+1L�i vi+1vi
`+1 `

`�2 `+2`�1

Figure 19: Colle
ting stations (shown highlighted) between vi and vi+1. The dashedlines are those removed at vi, and the dashed-dotted ones are those removed at vi+1.4.3 Colle
ting stations in the dual plane and 
orrespondingsegments in EIn the next step we 
olle
t additional verti
es, 
alled stations, between pairs of su
-
essive jun
tions vj, vj+1. We �rst handle the standard 
ase, in whi
h either q doesnot exist, or q exists and j � 2, and then present a modi�ed analysis for the 
asewhere q exists and j = 1.The standard 
ase. Fix an index 1 � i < k, and 
onsider the verti
al slab betweenvi and vi+1. By Claim 4.1(ii), vi lies inside or on the boundary of the fa
e f = fi+1of A(L+i+1 [ L�i+1) whose rightmost vertex is vi+1; see Figure 19. Hen
e, the segmente = vivi+1 is 
ontained in (the 
losure of) f . We distinguish two 
ases:Case 1: e is 
ontained in the interior of f (ex
ept for its right endpoint).This implies that the lines of D�i+1 (resp., of D+i+1) pass stri
tly above (resp.,below) e. Moreover, either all the lines of D�i pass below e, or all the lines of D+i passabove e. Suppose, without loss of generality, that the se
ond 
ase arises. Denote thelines of D+i by `+1 ; : : : ; `+�i, ordered a

ording to in
reasing slope, and those of D�i+1by `�1 ; : : : ; `��i+1, ordered a

ording to de
reasing slope. See Figure 19 (whi
h depi
tsthis 
on�guration, even though it illustrates the following Case 2).Ea
h of the lines `+s interse
ts every line `�t in the slab between vi and vi+1, be
ause`+s passes through the left endpoint of e, `�t passes through the right endpoint of e, andthey both lie above e. We refer to the points of interse
tion between these two setsof lines as the upper grid between vi and vi+1; the lower grid is de�ned analogously.Consider the verti
es of A(L) where `+�i interse
ts the lines `�1 ; : : : ; `��i+1, and the26



u� (`+s )� (`�t )�
�+ �� hp0Figure 20: The set E(u) of segments (drawn dashed-dotted) spanned by P that aredetermined by a station u.verti
es where `��i+1 interse
ts the lines `+1 ; : : : ; `+�i. There are �i + �i+1 � 1 distin
tverti
es of this kind (see Figure 19), and we let the set of stations Si 
onsist of allthese verti
es. We asso
iate with ea
h station u the double wedge W (u) between thetwo lines from D+i and D�i+1 that meet at u.Ea
h station u generates a set E(u) of segments spanned by P in R3 , as follows.Suppose that u is in
ident to some line `+s through vi and to some line `�t throughvi+1 (where either s = �i or t = �i+1). Consider the primal line u� dual to u, andlet h denote the plane in 3-spa
e spanned by p0 and u�. The plane h 
ontains twosegments that 
onne
t p0 to the two respe
tive dual points (`+s )�, (`�t )�, both lyingon u�. The �rst segment �+ 
ontains w(`+s ) points of R+, and the se
ond segment ��
ontains w(`�t ) points of R�. We 
an easily 
olle
t here as many as w(`+p )+w(`�q )�1segments into E(u), no two of whi
h are 
onvergent; for example, one 
an get thatmany distin
t segments by taking all segments one of whose endpoints is either thenearest point to p0 on �+ or the nearest point to p0 on ��; See Figure 20.These segments 
onstitute the set E(u). Hen
e, the total number of segmentsthat are 
olle
ted in this manner for all the new stations u is����� [u2SiE(u)����� = �i+1Xt=1�w(`+�i) + w(`�t )� 1�+ �i�1Xs=1�w(`+s ) + w(`��i+1)� 1�:Note that the sum P�is=1w(`+s ) is at least di; it may ex
eed di if it involves anon-deleted line with redu
ed weight, be
ause in the sum we use the full weight ofthat line. Similarly, P�i+1t=1 w(`�t ) � di+1. Therefore, the total number of segmentsthat we 
olle
t this way is at least di + di+1 � 1: (2)We note that this estimate is rather 
onservative. In general, if the weights of thelines are greater than 1 and �i; �i+1 > 1, we get a larger lower bound.Case 2: e is an edge of f . 27



In this 
ase, e is 
ontained in a line ` whi
h is in
ident to vi but whi
h was notremoved when vi was 
onstru
ted (it 
ould have been the one whose weight has beenredu
ed there). Assume �rst that ` is not the line whose weight has been redu
ed atvi. By 
onstru
tion, it then follows that the lines of D�i pass stri
tly below e, andthe lines of D+i pass stri
tly above e. Now either all the lines of D�i+1 pass above e,or all the lines of D+i+1 pass below e. We 
an now repeat the pre
eding arguments,and obtain, as above, a set Si of stations of A(L) along either the upper or the lowergrid, whi
h generate a total of at least di + di+1 � 1 segments spanned by P , whi
hare added to E. Figure 19 depi
ts this 
ase of the analysis.Suppose next that the line ` 
ontaining e is the (unique) weight-redu
ed line atvi. If ` does not belong to Di+1, then the �rst 
ase of the analysis applies, and yieldsthe same lower bound of di + di+1 � 1 on the number of 
olle
ted segments that areadded to E. We thus assume that ` does belong to Di+1.Let ai and ai+1 denote the 
ontribution of ` to di and di+1, respe
tively. Thatis, the overall weight of the lines from the same family of ` (i.e., L+ or L�) that areremoved at vi (resp., at vi+1) is 
i = di � ai (resp., 
i+1 = di+1 � ai+1).Claim 4.2. In this 
ase one 
an 
onstru
t stations along either the upper or the lowergrid between vi and vi+1, from whi
h at least
i + 
i+1 = di + di+1 � (ai + ai+1) (3)new segments 
an be 
olle
ted in E (in the same manner as before).Indeed, suppose, without loss of generality, that ` 2 L+. Then the total weight ofthe lines of L� that are in
ident to vi (resp., to vi+1) is di (resp., di+1), and the totalweight of the lines of L+ that are in
ident to vi (resp., to vi+1) and are removed thereis 
i (resp., 
i+1). See Figure 21.If both 
i and 
i+1 are 0, the 
laim is trivial, so assume that, say, 
i > 0 (seeFigure 21). In this 
ase, the upper grid between vi and vi+1 exists, and generates,arguing as above, at least
i + di+1 � 1 = di + di+1 � ai � 1 � di + di+1 � (ai + ai+1)new segments in E, as 
laimed. The 
ase where 
i+1 > 0 (and 
i = 0) is fullysymmetri
, ex
ept that in this 
ase we use the lower grid (see Figure 21). Thisestablishes our 
laim. �We denote by E(Si) the set of segments in E that are 
onstru
ted from the stations
olle
ted between the two 
onse
utive jun
tions vi and vi+1.We have thus showed that jE(Si)j � di+di+1�1, if there is no line that 
ontributesweight to both jun
tions. If on the other hand there is a line ` that 
ontributes aweight of ai � 1 to vi and a weight of ai+1 � 1 to vi+1, then jE(Si)j � di + di+1 �ai � ai+1. 28



eL�i
L+i vifi+1 `vi+1

`+2 `+1`�1̀�2 
i+1
i
di+1

diFigure 21: Illustrating the proof of Claim 4.2.The 
ase where q exists and j = 1. Suppose next that the 
entral bi
hromati
point q exists, and 
onsider the 
onstru
tion of S1. If q� does not pass through v2,then the analysis pro
eeds in essentially the same manner as in the standard 
ase. Forthe sake of 
ompleteness, we repeat the details. Suppose, without loss of generality,that q� passes below v2. The 
ase where v1v2 is interior to the fa
e f2 is handled inexa
tly the same way as above: One 
an use the lower grid between v1 and v2, and
onstru
t stations that 
ontribute a total of at least d1 + d2 � 1 segments to E; seeFigure 22. The same holds for the 
ase where there is a line (di�erent from q�) thatpasses through both v1 and v2 but it belongs to at most one of the sets D1; D2 (in this
ase, one of the upper or lower grids will generate stations with jE(S1)j � d1+d2�1).Consider then the 
ase where there exists su
h a line ` whose weight has been redu
edat both jun
tions (it may have been removed at v2). Sin
e the entire L�-weight of qmust have been removed at v1 (be
ause no surviving line of L� 
an pass below v2),it follows that ` 2 L+1 . Again, this 
ase 
an be handled as in Claim 4.2, and yields atleast d1+d2�a1�a2 in E, a

ording to the pre
eding notation. In summary, we 
analways 
olle
t from the stations in S1 at least either d1 + d2 � 1 or d1 + d2 � a1 � a2segments into E, depending on the 
ases 
onsidered above. (Note that in some ofthese 
ases we may a
tually gain w(q+) additional segments in E(S1).)Assume then that q� passes through v2. Without loss of generality assume that(q+)� is fully removed at v1. The following 
ases 
an arise:Case 1. (q�)� 2 D�2 .Let a1 (resp., a2) denote the weight removed from (q�)� at v1 (resp., at v2). (Itis possible that a1 = 0.) We 
laim that one 
an 
olle
t at least d1 + d2 � (a1 + a2)segments into E(S1) in either the upper or lower grid between v1 and v2. This isargued in mu
h the same way as in the 
ase where q does not exist. Spe
i�
ally, let29



v2v1 q�
Figure 22: Colle
ting stations in S1 when q� passes below v2.
1 = d1� a1 (resp., 
2 = d2� a2) denote the L�-weight removed at v1 (resp., v2) fromthe lines in L� other than (q�)�.If both 
1 and 
2 are 0, then there is nothing to prove. If 
1 > 0, then, ex
eptfor (q�)�, all other lines of D�1 pass stri
tly below v2, and have total weight at least
1 = d1 � a1. By assumption, all lines of D+2 pass stri
tly below v1, and have totalweight at least d2. Therefore the lower grid between v1 and v2 
an be used to produ
eat least 
1 + d2 � 1 = d1 + d2 � 1� a1 � d1 + d2 � (a1 + a2) segments in E(S1).If 
1 = 0 and 
2 > 0, then, ex
ept for (q�)�, all other lines of D�2 pass stri
tlyabove v1, and have total weight at least 
2 = d2 � a2. As 
1 = 0, there are no linesfrom L� through v1 other then (q�)�, and therefore at least one additional line (otherthan (q+)�) of L+ must pass through v1 (or else v1 would not be a vertex of thearrangement). Therefore, the upper grid between v1 and v2 exists, and we may use itto 
olle
t at least 1+ 
2� 1 = 
2 = d2� a2 = (d1� a1)+ d2� a2 = d1+ d2� (a1+ a2)segments into E(S1).Case 2. (q�)� =2 D�2 (but it still passes through v2).In this 
ase, depi
ted in Figure 23, the sets D+2 , D�2 are both nonempty, and alllines of D+2 (resp., D�2 ) pass stri
tly below (resp., above) v1; the total weight of eitherset is d2. Set w+ = w(q+), w� = w(q�). There must exist either lines of L+ or linesof L� (other than q�) that pass through v1 and are removed there. In the former
ase, the total removed L+-weight of these lines is d1�w+, and we may use the uppergrid between v1 and v2 (whi
h ne
essarily exists), to 
olle
t at least d1 + d2�w+� 1segments into E(S1). In the latter 
ase, arguing in an essentially symmetri
 manner,we may use the lower grid between v1 and v2 (whi
h ne
essarily exists), to 
olle
tat least d1 + d2 � w�1 � 1 segments into E(S1), where w�1 is the weight that (q�)�
ontributes at v1.As will follow from the later 
ounting phase, given in Se
tion 4.4, we need to
ompensate for the loss of either w+ or w�1 segments in E(S1), whi
h we do byin
luding the points on the ray p0q in the set X+ when we 
onstru
t E(v2), eventhough neither (q+)� nor (q�)� belongs to D2. Before doing so, the size of X+ isexa
tly d2, and the size of X� is at least d2; it 
an be larger if there is a negativeline whose weight is only redu
ed at v2. We add the points on the ray p0q to X+.30



In general, we 
an apply Theorem 3.1 to the modi�ed sets X�; X+, ex
ept whenjX�j = jX+j = d2, in whi
h 
ase we 
an only apply Corollary 3.2. The modi�ed E(v2)thus 
onsists of at least w(D+2 ) + w(D�2 ) + w(q) + 1 = 2d2 + w(q) + 1 pairwise non-
onvergent segments, if jX�j 6= jX+j, or of at least w(D+2 )+w(D�2 )+w(q) = 2d2+w(q)pairwise non-
onvergent segments, if jX�j = jX+j. In the most pessimisti
 s
enario,we 
an only apply Corollary 3.2, whereas, when q was not in
luded, we 
ould haveapplied Theorem 3.1 to 
olle
t 2d2 + 1 segments in E(v2). We thus gain at leastw(q) � 1 additional segments. However, we may have to subtra
t 1 extra segmentfrom the 
ount, be
ause (q�)� may 
ontribute weight to a further jun
tion. Thus, inthe worst 
ase, we 
an only guarantee w(q)� 2 = w+ +w� � 2 additional segments.In general, these suÆ
e to 
ompensate for the loss of maxfw+; w�1 g a E(S1), unlessminfw+; w�1 g = 1. In this spe
ial 
ase, we lose one segment in our 
ount.The pri
e that we pay for in
luding q is that the double wedgeW (v2) has to shrink,and be bounded by q� and by the shallowest line in D�2 . However, as we will latershow, in Se
tion 4.5, the 
olle
ted double wedges will remain pairwise non-
onvergent.
v1 v2w(q�)w(q+)

d2 d1 � w+

d2d1 (q�)� = (q+)�
� d1 � w�1Figure 23: The problemati
 
ase in the 
onstru
tion of S1 in the presen
e of a 
entralbi
hromati
 point q: Here d1 = d+1 , so (q+)� is removed at v1. We also assumethat (q�)� 62 D�2 . In this 
ase we 
an only guarantee the generation of at leastd1+d2�maxfw+; w�1 g�1 segments in E, and we lose maxfw+; w�1 g segments in thebound.

Colle
ting stations to the left of v1 and to the right of vk. We next de�nethe last set of stations Sk, whi
h are stations that lie to the right of vk or to the leftof v1. Re
all the spe
i�
 partition of R into R+ and R�, as presented in Se
tion 2.We will exploit 
ertain features of this partition in the 
onstru
tion of Sk, and will�nd it 
onvenient to \
ip" between the primal and dual settings as we go. For the
onvenien
e of the reader, we reprodu
e here Figure 3 as Figure 24.31
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q
y

(ii)Figure 24: Reprodu
ing the primal 
onstru
tion of R� and R+: Case (i) (left) andCase (ii) (right).Claim 4.3. At least one of the following two 
onditions will be satis�ed:(i) The last jun
tion, vk, is identi
al to m�0, the dual of m0.(ii) r�, the dual of r 2 R�, passes through vk and is the unique element of L�deleted during the pro
edure at vk.Proof: Suppose that during the pro
edure r� is deleted at a jun
tion vj, for somej � k. Clearly, v�j passes through r and at least one point t 2 R+, whose dual line isalso deleted, or has its weight redu
ed, at v�j .If, in the primal plane �, v�j passes through another point r0 6= r of R�, thenv�j = m0 (otherwise it has to lie 
lo
kwise to m0 and then it 
annot meet any point ofR+). In this 
ase, in the dual plane there 
annot be any interse
tion point between aline of L� and a line of L+ to the right of vj, so that j = k. That is, we have v�k = m0,and (i) holds.Suppose then that, in the primal plane �, v�j does not pass through any elementr0 2 R� other than r. If j = k, then 
ondition (ii) is satis�ed. So we 
an assumethat j < k and v�k 6= m0. Refer to Figure 25). Take any two lines `� 2 L� and`+ 2 L+ in the dual plane that are deleted during the pro
edure at the last jun
tionvk. By assumption and 
onstru
tion, we have `�� 6= r, and the slope of the segment`�+`�� � v�k 
onne
ting their duals in the primal plane (i.e., the slope of v�k) is smallerthan that of the segment tr. We 
laim that the two segments `�+`�� � v�k and tr � v�jare 
onvergent. Indeed, sin
e m0 (weakly) separates R+ and R�, the 
losed segment`�+`�� must meet m0, and this must happen at a point to the left of (and above) r,or else r would not be an extreme point of R (see Figure 25). For a similar reason,`�� must lie above v�j . These fa
ts, together with the slope relationship between v�jand v�k, imply that the two segments are 
onvergent. This, in turn, implies thatthe double wedges dual to tr and to `��; `�+ are 
onvergent. Sin
e W (vk) and W (vj)32



rR+t `�+ R�`��v�kv�jm0Figure 25: The segments tr and `�+`�� must be 
onvergent.are 
ontained in these respe
tive double wedges, they are also 
onvergent. However,W (vk) is bounded by a line of L+k and by a line of L�k , and Claim 4.1(ii) implies thatvj lies between these lines, and hen
e in W (vk), showing that W (vj) and W (vk) arenon-
onvergent.2 This 
ontradi
tion 
ompletes the proof of the 
laim. �The above argument is valid for any 
oordinate system whose y-axis stri
tly sepa-rates the sets R� and R+, or, in 
ase q exists, passes through q and stri
tly separatesR�0 and R+0 . We spe
ify a 
oordinate system with this property as follows.Choose the y-axis to be very 
lose to m0, so that, in the dual plane, the slope ofevery line of L passing through m�0 has smaller absolute value than the slope of anyother line of L; that is, the x-
oordinates of the points ofm0\R have smaller absolutevalues than those of any other point of R. See Figures 26(a), 27(a), and 28(a). Inaddition, if q exists, we make the y-axis pass through q, as already stated.Now we are in a position to de�ne the set of stations Sk. The reason for 
hoosingthe spe
i�
 way of partitioning R, and the 
oordinate frame, is to for
e the stations inSk to lie to the left of v1, whi
h will be useful when establishing the non-
onvergen
eof the segments in F and in E. With one possible ex
eption, all stations in Sk doindeed lie to the left of v1.Pass to the dual plane. The �rst jun
tion, v1, lies inside or on the boundary ofthe fa
e fk of A(L�k [L+k ), whose rightmost vertex is vk, so that the segment e = v1vkis 
ontained in the 
losure of fk. We distinguish the following 
ases:Case A: Suppose �rst that vk = m�0 and that the point 
 := m0 \m1 does not belongto R�.Let `�1 ; : : : ; `��1 and ��1 ; : : : ; ���k denote the lines ofD�1 and all the lines of L�k = D�k ,respe
tively, listed in the de
reasing order of their slopes. By the spe
ial 
hoi
e of our
oordinate system, ea
h line `�i interse
ts every line ��j to the left of v1. Indeed, allthe lines of L�k pass above or through v1, by Claim 4.1(ii), but no line passes through2This is a spe
ial 
ase of a more general argument, given in Lemma 4.4 below.33



both vk and v1, be
ause su
h a line is dual to the point m0 \ m1, whi
h we haveassumed not to belong to R�. The slope of the primal segment (��j )�(`�i )� is largerthan that of m1, be
ause, by what has just been argued, (��j )� 2 m0 lies below m1and to the left of (`�i )� 2 m1; see Figure 26(a). Hen
e the dual interse
tion point liesto the left of v1. De�ne the last set of stations, Sk, as the 
olle
tion of all interse
tionpoints of `��1 with the lines ��1 ; : : : ; ���k , and all interse
tion points of ���k with thelines `�1 ; : : : ; `��1 . See Figure 26(b). Clearly, we have jSkj = �k + �1 � 1 su
h stations,all lying to the left of v1. Sin
e the total (original) weight of the lines `�1 ; : : : ; `��1 isat least d1, and the total (original) weight of the lines ��1 ; : : : ; ���k is at least dk, itfollows, as in the 
onstru
tion of the other sets of stations, that the stations in Skgenerate in this 
ase at least d1 + dk � 1 segments in E(Sk).Case B: Suppose next that vk = m�0 and that the point 
 := m0 \m1 does belong toR�.Note that if q exists it must 
oin
ide with 
. We �rst 
onsider the 
ase whereq does not exist, and then dis
uss the modi�
ations that are needed when q exists.The dual line 
� passes through both v1 and vk. Sin
e we assume for now that q doesnot exist, 
 does not belong to R+. We thus swit
h to R+, and 
olle
t stations usingthe dual lines in L+, in a manner similar to that in 
ase A. All lines in D+k = L+kpass stri
tly below v1, and the lines of D+1 pass stri
tly above vk. Arguing exa
tlyas in 
ase A, let `+1 ; : : : ; `+�1 and �+1 ; : : : ; �+�k denote the lines of D+1 and the lines ofD+k = L+k , respe
tively, listed in the in
reasing order of their slopes. The spe
ial
hoi
e of our 
oordinate system implies that ea
h line `+i interse
ts every line �+j tothe left of v1. Indeed, the slope of the primal segment (�+j )�(`+i )� is larger than thatof m1, be
ause (�+j )� 2 m0 lies above m1 and to the right of (`+i )� 2 m1. Hen
e thedual interse
tion point lies to the left of v1. In this 
ase we de�ne Sk as the 
olle
tionof all interse
tion points of `+�1 with the lines �+1 ; : : : ; �+�k , and all interse
tion pointsof �+�k with the lines `+1 ; : : : ; `+�1. Clearly, we have jSkj = �k + �1 � 1 su
h stations, alllying to the left of v1, and they generate, as above, at least d1 + dk � 1 segments inE(Sk).Case C: Suppose �nally that vk 6= m�0.In this 
ase, a

ording to Claim 4.3, vk lies on r� and �k = 1. Refer to Figure 28.Again, let `�1 ; : : : ; `��1 denote the lines of D�1 , listed in the de
reasing order of theirslopes. In the dual plane, the line r� passes above v1 and, by the 
hoi
e of the
oordinate system, it interse
ts every `�i to the left of v1, with the possible ex
eptionof `�1 . The interse
tion r� \ `�1 
an lie to the right of v1 (and of vk) only if the point
 := m0 \m1 belongs to R� and is dual to a line in D�1 , in whi
h 
ase that line mustbe `�1 = 
�. Note that in this 
ase r�\ `�1 = r�\ 
� is identi
al to the point m�0 dual tom0, and the 
hoi
e of the 
oordinate system implies that this is the rightmost vertexof A(L) on r�. We de�ne Sk to be the set of interse
tion points between the lines`�1 ; : : : ; `��1 and r�. Thus, either all points of Sk, or all but one (namely, m�0) lie tothe left of v1. Clearly, we have jSkj = �1 = �k + �1 � 1, and, as above, these stationsgenerate at least d1 + dk � 1 segments in E.34



(a) (b)
v1 vk t� ��1��2 = r�`�1`�2

yt m1 = v�1(`��1)�R�
m0 = v�k

R+ (���k )�r = (��1 )�
Figure 26: Case A of the 
onstru
tion of Sk, where vk = m�0 and m0 \m1 62 R�. (a)The primal stru
ture. (b) The stations in Sk (highlighted to the left of v1).We asso
iate with ea
h station u 2 Sk the double wedge W (u) formed by the twolines `�i ; ��j (or `+i ; �+j ) that meet at u.Constru
ting Sk when q exists. Suppose now that the 
entral bi
hromati
 pointq exists. Examining the three 
ases in the 
onstru
tion of Sk, we note that Case A
annot arise, be
ause in this 
ase the point m0 \m1, whi
h has to be equal to q, doesnot belong to R�, 
ontradi
ting the de�nition of q. In Case C we 
an pro
eed exa
tlyas above, and 
olle
t at least d1 + dk � 1 segments in E(Sk). (In fa
t, sin
e we usethe full weight of q, we get w(q+) additional segments in E(Sk).)It therefore remains to 
onsider Case B, in whi
h vk = m�0 and q = m0 \m1. Inthe dual plane, q� passes through both v1 = m�1 and vk = m�0. Suppose, without lossof generality, that (q+)� was removed at v1. See Figure 29.We 
onsider two sub
ases. In ea
h of them the analysis be
omes simpler if (q�)� 2D�k . Moreover, we assume in what follows that k > 2. The 
ase k = 2 will be treatedseparately later.Case 1. Suppose �rst that D+1 n f(q+)�g is nonempty.In this 
ase, we use the lower grid, to the left of v1, formed by the lines of D+1 nf(q+)�g and the lines of L+k (whi
h, by assumption, do not in
lude (q+)�). Clearly,L+k is not empty. Sin
e D+1 
ontains lines other than (q+)�, the lower grid 
an indeedbe used. The lines of L+k 
ontribute the full weight dk, but the lines of D+1 n f(q+)�g
ontribute only d1�w+ overall weight, so the grid generates (at least) d1+dk�w+�1segments in E(Sk).If (q�)� 2 D�k , the loss of w+ segments in E(Sk), as 
ompared with the analysisin the standard 
ase, will be automati
ally 
ompensated in the 
onstru
tion of E(vk),35



(a) (b)


y m1 = v�1(�+�k )� R�(`+�1)� rm0 = v�k

R+ 
� `+2 `+1 �+2�+1r�vkv1
Figure 27: Case B of the 
onstru
tion of Sk, where vk = m�0 and 
 = m0 \m1 2 R�.(a) The primal stru
ture. (b) The stations in Sk (highlighted to the left of v1).sin
e this analysis gains \for free" the weight w+ of (q+)� when it handles the line(q�)�. The 
ase (q�)� =2 D�k will be handled shortly.Case 2. (q+)� is the only line in D+1 .In this 
ase, the lower grid does not exist, and we have d1 = w+. Clearly, theremust exist lines of L�1 through v1 other than (q�)�. Moreover, the line r� passesby 
onstru
tion through vk = m�0 (see Figure 27). If (q�)� 2 L�k , then r� must alsobelong to L�k , for otherwise it would have to pass through some pre
eding jun
tion vj,so (q�)� would pass below vj, whi
h is impossible for lines of L�k . If (q�)� 62 L�k , thenall the lines of L�k (whi
h is a nonempty set) pass above v1. Hen
e we may use in this
ase the upper grid, whi
h generates at least d1�w�1 +dk�w�k �1 segments in E(Sk),where w�1 ; w�k are the weights that (q�)� 
ontributes at the respe
tive jun
tions v1; vk.If w�1 = w�k = 0, we obtain the standard bound d1 + dk � 1.If w�1 > 0 and w�k = 0, we are in a symmetri
 version of the situation in Case 1that still needs to be treated. Both versions will be treated together below.If w�1 = 0 and w�k > 0, we automati
ally 
ompensate for the loss of w�k segmentsin the 
ount, in the 
onstru
tion of E(v1), whi
h, similar to the argument in Case 1,gives us w(q�) � w�k extra segments \for free".If w�1 > 0 and w�k > 0, we interpret the bound in the 
ontext of Claim 4.2, ex
eptthat our bound is 1 smaller than what the Claim guarantees.It remains to analyze the sub
ases where (q�)� =2 D�k , and where we still need to
ompensate for the loss of maxfw+; w�1 g segments in E(Sk).Note that this loss is identi
al to the potential loss at E(S1), dis
ussed above. We
ompensate for it in the same way|by in
luding q in the 
onstru
tion of E(vk). The36



R+
(a) v�k

R�(`��1)�
m1 = v�1
r

yt
m0 (b)

`��1
� = `�1 v1 vkr� m�0t�
Figure 28: Case C of the 
onstru
tion of Sk, where vk 6= m�0. (a) The primal stru
ture.(b) The dual pi
ture. v1 vk(q+)�(q�)�dk d1 � w+Figure 29: Constru
ting Sk in the presen
e of q�.same analysis shows that we 
an always 
ompensate for the loss, unless minfw+; w�g =1, in whi
h 
ase we lose one segment in the 
ount.(Note that, for this analysis to work, it is 
ru
ial that k > 2. Otherwise we needto 
ompensate twi
e for the loss of maxfw+; w�1 g segments, on
e in E(S1) and on
ein E(Sk), but if v2 = vk we 
an 
ompensate for it only on
e.)As in the 
ase of S1, here too we pay the pri
e of repla
ingW (vk) by the narrowerdouble wedge bounded by q� and by the shallowest lineof the set among D�k , D+k towhi
h q� was not adjoined. Nevertheless, we will show in Se
tion 4.5 that this doesnot a�e
t the pairwise non-
onvergen
e of the segments in F .
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4.4 Counting the Number of Segments in EThe standard 
ase. Let us �rst 
onsider the standard 
ase, where q does not exist.Combining the 
ontributions in (2) and (3) with the 
ontribution in (1), we obtainthat E 
onsists of a total of at leastk + t + tXj=1 �j(wj � 1) + 2 kXi=1 di �Xi2I1(ai + ai+1)�Xi2I2 1 (4)segments, where I1 is the set of indi
es i for whi
h there exists a (unique) line whi
h
ontributes to both di and di+1 (or to d1 and dk, for i = k), and I2 is the 
omplemen-tary set.Assume �rst that there is no line that 
ontributes to all the k weights d1; : : : ; dk.Then ea
h line `j 
an 
ontribute to at most �j � 1 pairs of su

essive weights di; di+1,and ea
h of the 
orresponding terms (ai + ai+1) is at most wj. Even if there existsa line that 
ontributes to all k weights di, it does not a�e
t the 
onstru
tion ofthe segments from the stations of Sk, whi
h always produ
es at least d1 + dk � 1segments (when q does not exist). That is, we 
an always pretend that k 2 I2,so the analysis pro
eeds in the same way in this 
ase, too. The remaining pairs ofsu

essive weights 
ontribute �1 to the expression above (in the summation overi 2 I2). Therefore, an overestimate of the (absolute value of the) negative terms in(4) is Ptj=1(�j � 1)wj + (k �Ptj=1(�j � 1)).Using the fa
t that 2Pki=1 di =Ptj=1wj = n� 1, the bound in (4) is greater thanor equal tok + t+ tXj=1 �j(wj � 1) + tXj=1 wj � k � tXj=1(�j � 1)(wj � 1) = 2 tXj=1 wj = 2n� 2:
The 
ase where q exists. The di�eren
es between this 
ase and the standard 
aseare:(i) We may lose one segment in E(v1).(ii) We may lose one segment in E(S1). Even if we do not lose the segment, we may
olle
t there only d1 + d2 � (a1 + a2) segments, where one of a1; a2 is 0.(iii) A similar situation may o

ur for Sk.(iv) It is possible that (q�)� or (q+)� 
ontributes weight to all jun
tions v1; : : : ; vk,whi
h may 
ause the set I1 to 
onsist of all indi
es 1; : : : ; k, and I2 to be empty.Assume �rst that the situation in (iv) does not arise. Then the analysis pro
eeds asin the standard 
ase, sin
e, as is easily veri�ed, it is not a�e
ted by having some of the38



q� v2 = vkL+1 L+kL�kL�1
(a) (b) m0

m1q rv1 R�R+ W+1 W�1W+2 W�2
Figure 30: The 
ase of only two jun
tions in the presen
e of q�: (a) The dual 
on�g-uration. (b) The primal 
on�guration (in �).ai's vanish, ex
ept that we need to subtra
t 3 from the overall 
ount, to a

ommodatethe potential losses in (i){(iii). Hen
e, in this 
ase we have jEj � 2n� 5.If the situation in (iv) arises, say, with (q�)� being the line that 
ontributes weightto all jun
tions, then Pi2I1(ai + ai+1) = 2w�, and all lines `j 6= (q�)� have �j = 1.The total number of segments in E is therefore at least (without loss of generality,we assume that (q�)� is the t-th line)k(w� � 1) + t�1Xj=1(wj � 1) + n� 1� 2w� + k + t� 3 =(k � 2)w� + (n� 1) + t� (t� 1) + (n� 1� w�)� 3 = (k � 3)w� + 2n� 4:Hen
e, if k � 3, we have jEj � 2n � 4. (Re
all that the 
ount so far a
tually reliedon the assumption that k � 3.)It thus remains to 
onsider the 
ase where only two jun
tions are generated. Inthis 
ase, by 
onstru
tion, all the lines of L must pass either through v1 or throughv2; see Figure 30(a). Hen
e, in the primal plane, all points of R must lie on the linesm0 and m1, with q lying on both lines; see Figure 30(b).In this very degenerate 
ase, we 
onstru
t E expli
itly, working in the primalplane �, as follows. Denote by W+1 ;W�1 ;W+2 ;W�2 the overall weight of all points ofR+ \m1, R� \m1, R+ \m0, R� \m0, respe
tively, ex
luding q in all four 
ases.(i) Apply Theorem 3.1 or Corollary 3.2 in the planes de�ned by m0 and m1, respe
-tively, and by p0 (or, equivalently, at the dual jun
tions m�1 = v1 and m�0 = v2). Tobe on the safe side, we assume that only Corollary 3.2 
an be used at either jun
-tion, and, as usual, we subtra
t 1 from the bound at v1 to allow for potential double
ounting of a segment. This yields a total of at least(W+1 +W�1 + w(q)� 1) + (W+2 +W�2 + w(q)) =39
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Figure 31: (i) The set of Figure 1 with n = 7 points that determines 2n � 5 = 9dire
tions. (ii) The weighted set R in the primal plane �, obtained by proje
tingfrom p0, with the 
entral bi
hromati
 point q of weight 2. (iii) The dual 
onstru
tionof jun
tions and stations. We 
olle
t 4 segments in E(v1) (using Corollary 3.2), 3 inE(v2) (using Corollary 3.2 and subtra
ting 1), 1 in E(S1), and 1 in E(S2), for a totalof 9 pairwise non-
onvergent segments.(W+1 +W�1 +W+2 +W�2 + w(q)) + w(q)� 1 = (n� 1) + w(q)� 1segments in E.(ii) Suppose, without loss of generality, that W�2 � W+2 . We then generate segmentsin F , in addition to those lying on m0; m1, as shown in Figure 30(b). That is, we
onne
t the point of R+ \ m0 farthest from q to all the points on m1, ex
luding q,and 
onne
t the two points of R+ \ m1, R� \ m1 farthest from q to all the pointsof R+ \m0. Here it is easy to verify dire
tly that all these segments, in
luding thesegments f(v1) � m1, f(v2) � m0 (where the �rst may degenerate to the singletonpoint q, but is still 
onsidered to lie along m1), are pairwise non-
onvergent. TheF -segments that we have 
onstru
ted are dual to the stations in S1 [ S2. The totalnumber of segments in E that are generated from these stations, in the standardmanner, is at least(W�1 +W+2 � 1)+ (W+1 +W+2 � 1) � W+1 +W�1 +W+2 +W�2 � 2 = n� 1�w(q)� 2:Adding the bounds from (i) and (ii), we get jEj � 2n� 5. We note that the 
on�gu-ration in Figure 31 falls into this 
ase.4.5 Pairwise Non-
onvergen
e of the Colle
ted SegmentsTo 
omplete the proof, we have to show that no pair of segments in E are 
onvergent.We �rst show:Lemma 4.4. Let Q denote the set of all jun
tions and stations that we have 
olle
ted.For any u; v 2 Q, the segments f(u) and f(v) asso
iated with these verti
es are non-
onvergent in the primal plane �. 40



Proof: Let us �rst 
onsider the standard 
ase, where q does not exist. Let u; v 2 Qwith u lying to the left of v. The property that f(u) and f(v) are non-
onvergent isdual to the property that W (u) and W (v) are non-
onvergent, that is, either u liesin (the 
losure of) W (v) or v lies in (the 
losure of) W (u). We distinguish betweenseveral 
ases:Case A: Both u and v are jun
tions.Put u = vi and v = vj, with i < j. Then W (v) is bounded by a line ` 2 L+j andby a line `0 2 L�j . By Claim 4.1(ii), u = vi lies between these two lines, and thusbelongs to W (vj) = W (v).Case B: u is a jun
tion and v is a station not in Sk.Put u = vi and let Sj be the set of stations that 
ontains v, where i � j < k. ThenW (v) is bounded by two lines `; `0, where either ` 2 L+j and `0 2 L�j+1, or ` 2 L+j+1and `0 2 L�j . By 
onstru
tion, we have in both 
ases ` 2 L+j and `0 2 L�j , and theanalysis is 
ompleted as in Case A.Case C: u is a station not in Sk and v is a jun
tion or a station not in Sk.Let Si be the set of stations 
ontaining u. The arguments in Case A and Case Bimply that vi 2 W (v). If v is also a station in Si or v = vi+1 then it is 
lear from the
onstru
tion of Si that W (u) and W (v) are non-
onvergent (see Figure 19). Supposethen that v lies to the right of vi+1. Then both vi and vi+1 lie in the left wedge ofW (v), and u is in
ident to a line ` that passes through vi and to a line `0 that passesthrough vi+1. If u =2 W (v) then a boundary line of W (v) must separate u from vi andvi+1, in whi
h 
ase v 2 W (u); 
ompare with Figure 14(a).Case D: u is a station in Sk to the left of v1 and v is a jun
tion or station.If both u and v belong to Sk, then the 
laim follows easily from the 
onstru
tionof Sk. We thus suppose that v 62 Sk. Then we have v 2 fvig [ Si [ fvi+1g, for some1 � i < k.We start with the 
ase vk = m�0. Refer to Figure 32. Suppose that u 2 Sk is theinterse
tion point of two lines `; �, passing through v1 and vk, respe
tively, whi
h,without loss of generality, we assume to belong to L�. If v is 
ontained in the doublewedge bounded by ` and �, then v 2 W (u), so W (v) and W (u) are non-
onvergent.Otherwise, sin
e u lies to the left of v1, v lies either above � or below `. If v is above �,then it is not a jun
tion, so it must be the 
rossing point of a line `+ 2 D+i and a line`� 2 D�i+1. See Figure 32(a). Both vi and vi+1 lie on or below �, so the left portionof the double wedge bounded by `� and `+ 
ontains u. Thus, we have u 2 W (v).If, on the other hand, v is below `, as in Figure 32(b), then it is either a jun
tion ora station, and it is the 
rossing point of a line `� 2 L� and a line `+ 2 L+ whi
hbound W (v), su
h that either both `+ and `� are in Di (if v = vi is a jun
tion), or`� 2 D�i and `+ 2 D+i+1 (if v 2 Si is a station). Now `� must pass above (or through)v1 and hen
e above u, while `+ must pass below u. Again we 
an 
on
lude that theleft portion of the double wedge bounded by `� and `+, and thus W (v), 
ontains u.41
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Figure 32: The proof that W (u) and W (v) are non-
onvergent when u is a station tothe left of v1. (a) v lies above W (u). (b) v lies below W (u).The 
ase where u lies on two lines of L+ is handled in a fully symmetri
 manner.If vk 6= m�0, the above argument 
an be repeated verbatim for stations u 2 Sk tothe left of v1. If v = m�0, the sole station to the right of vk, the 
laim is immediatefrom the 
onstru
tion of Sk. Hen
e, Case D of the Claim holds in either 
ase.Case E: u is a jun
tion or station not in Sk and v is a station in Sk (to the right ofvk).Case E 
an arise only when v = m�0 2 Sk. Now it is simplest to establish the 
laimin the primal plane, by noting that the segment dual to W (v) lies on the line m0, andthat, by 
onstru
tion (sin
e u =2 Sk), the segment dual to W (u) must 
onne
t a pointof R� to a point of R+, and thus must interse
t m0, showing that these two segmentsare non-
onvergent.Consider next the 
ase where the 
entral bi
hromati
 point q exists, whi
h requiresa few modi�
ations in the pre
eding analysis. First, if both (q�)� and (q+)� belongto D1, the double wedge W (v1) degenerates to the single line q�. (We still 
onsiderit to have v1 as an apex. In the primal plane, the segment f(v1) degenerates to thesingleton point q, but it is still 
onsidered to lie along the line v�1 .) It is easily veri�ed,though, by spe
ializing Cases A,B,D,E to this 
on�guration, that W (v1) and anyother wedge W (v) in our 
olle
tion are still non-
onvergent.The presen
e of q does not a�e
t any other 
ase in the pre
eding analysis, as longas we were not for
ed to in
lude q in the 
onstru
tion of E(v2) or E(vk). Supposethen that we had to in
lude q in the 
onstru
tion of E(v2) (even though neither (q+)�nor (q�)� belonged to D2). In Case A, v2 is 
ontained inW (vj) for any j > 2 (the 
asewhere W (vk) was also shrunk will be treated below), so it only remains to 
onsiderthe 
ase u = v1, v = v2, whi
h still works, sin
e v1 2 q�, and thus v1 still lies in themodi�ed W (v2). Case B is not a�e
ted by the shrinking of W (v2). In Case C, weonly need to 
onsider the sub
ase when u 2 S1, and the property 
ontinues to holdsin
e v2 2 W (u). In Case D, we have v2 2 W (u), whi
h easily follows from the fa
tthat v2 2 q�; see Figure 33. Case E is argued as in the standard 
ase.Suppose �nally that we had to in
lude q in the 
onstru
tion of E(vk) (even though42
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Figure 33: Case D of the analysis when W (v2) is shrunk: v2 2 q� lies above ` andbelow � and thus v2 2 W (u).neither (q+)� nor (q�)� belonged to Dk). Re
all that this 
an arise only in Case B ofthe 
onstru
tion of Sk, where vk = m�0. Now, ex
ept for the stations in Sk, for anyother vertex u 2 Q, f(u) 
onne
ts a point of R+ and a point of R�, and thus the line
ontaining f(vk), namely m0, must 
ross f(u), so f(u) and f(v) are non-
onvergent.If u is a station in Sk, then vk 2 W (u), by 
onstru
tion.Hen
e the lemma also holds when q exists. �Non-
onvergen
e of the elements of E. Re
all that, for ea
h v 2 Q, the points ofP that span the segments in E(v) are those points that proje
t to the line 
ontainingf(v) in �, so that their proje
tions are dual to lines in L that either were removed atv or had their weights redu
ed there (if v is a jun
tion), or are the two lines in
identto v (if v is a station).Moreover, ea
h segment e in E(v) has the property that either its proje
tion on� 
ontains the segment f(v) or it is a point not in the interior of f(v); the latter 
asearises when e is 
ontained in a ray emanating from p0, a situation that 
an arise whenwe apply Theorem 3.1 or Corollary 3.2 at one of the jun
tions v1; : : : ; vk.Let e1 and e2 be two segments in E. For i = 1; 2, let ui denote the vertex in Qfor whi
h ei 2 E(ui), and set fi = f(ui). It suÆ
es to 
onsider the 
ase u1 6= u2.The segments f1 and f2 are non-
onvergent in �. If the proje
tions �e1, �e2 on� from p0 of e1 and e2, respe
tively, are segments (so that they 
ontain f1 and f2,respe
tively), then �e1 and �e2 are non-
onvergent in �, whi
h is easily seen to implythat e1 and e2 are non-
onvergent in R3 . If the proje
tions of both e1; e2 are pointson �, then e1 and e2 share p0 as an endpoint and therefore are non-
onvergent.We are left with the 
ase in whi
h, without loss of generality, e1 proje
ts from p0to a point x 2 � (whi
h is on the line 
ontaining f1 but not in the interior of f1),whereas e2 proje
ts to a segment e02 
ontaining f2. See Figure 34. The point x maybe assumed to lie on the line 
ontaining f2, for otherwise e1 and e2 are non-
oplanar,and therefore non-
onvergent. If x 2 e02 then 
learly e1 and e2 are non-
onvergent,so we may assume that x =2 e02. It follows that x =2 f2 and sin
e f1 and f2 are non-
onvergent, x must be an endpoint of f1 (otherwise f1 and f2 would be 
onvergent,43
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Figure 34: Non-
onvergen
e of e1 and e2: An impossible 
on�guration.be
ause the lines on � that 
ontain them meet at x whi
h lies outside both segments).We 
laim that this 
ase is impossible. Indeed, we have already noted that if x isan endpoint of f1, then the vertex u1 dual to f1 must be a jun
tion vi. The line ` dualto x passes through both verti
es u1 = vi and u2, and it is the shallowest line in eitherD+i or D�i . If the 
entral bi
hromati
 point q exists, and u2 is not a station in Sk,then ` 
annot be equal to q�, i.e., x 
annot be equal to q, be
ause, by 
onstru
tion,q must lie inside f2, whi
h is delimited by a point of R+ and a point of R�. Hen
e,we may assume, without loss of generality, that ` 2 L+ n f(q+)�g. The 
ase where qexists and u2 is a station in Sk will be 
onsidered later.Case 1: u1 = vi lies to the left of u2.Sin
e x lies outside f2, the endpoint of f2 nearer to x is dual to a line `0 2 L+i thatpasses through u2 and has smaller slope than that of `. (Sin
e u2 is 
onstru
ted afteru1, the lines that de�ne W (u2) must belong to Li.) But then `0 must pass above viwhi
h is a 
ontradi
tion sin
e all the lines in L+i must pass through or below vi. SeeFigure 35(a).Case 2: u1 = vi lies to the right of u2.Assume �rst that u2 is not a station in Sk. Let 1 � j < i be the index su
h thateither u2 = vj or u2 is a station in Sj. Sin
e x lies outside f2, the R+-endpoint off2 (the one nearer to x) is dual to a line `0 2 D+j [ D+j+1, whi
h is shallower than` (sin
e x lies outside f2). If u2 = vj then `0 2 D+j , and, by 
onstru
tion, ` musthave also been removed at vj or at an earlier jun
tion, and thus it 
annot be dual toan endpoint of f1 (be
ause su
h a point must be the dual of some line in L+i ). SeeFigure 35(b). Hen
e this 
ase is impossible. Suppose then that u2 is a station in Sj.Regardless of whether `0 2 D+j or `0 2 D+j+1, sin
e ` is steeper than `0, vj+1 lies below`. Hen
e, we must have i > j + 1, and, sin
e ` 2 L+i , we obtain a 
ontradi
tion toClaim 4.1(ii); see Figure 35(
).Finally, assume that u2 is a station in Sk to the left of v1. Suppose �rst that u2lies on a line `� 2 D�1 and a line �� 2 D�k = L�k . In this 
ase, `0 = �� and ` passes44
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)
` = x�u1 = vi`0u2 = vju2` = x�`0u1 = vi u2 `0` = x�vj vj+1

u1 = vi
Figure 35: Showing the impossibility of the 
on�guration in Figure 34. (a) u1 is tothe left of u2. (b) u2 is a jun
tion to the left of u1. (
) u2 is a station to the left of u1.

(a) (b) (
)
` = x�u2 u1 = viv1 vk�� = `0`� u2 v1 vku1 = vi ` = x�`+ �+ = `0 u2 v1 vku1 = vi

` = x�
`+ = `0 �+

Figure 36: Showing the impossibility of the 
on�guration in Figure 34 when u2 is astation of Sk to the left of v1, and ` 2 L+. (a) u2 is formed by two lines of L�. (b)u2 is formed by two lines of L+, and ` is shallower than both of these lines. (
) u2 isformed by two lines of L+, and ` is steeper than both of these lines.above v1, whi
h is impossible, sin
e ` 2 L+1 ; see Figure 36(a). Suppose next that u2lies on a line `+ 2 D+1 and a line �+ 2 D+k = L+k . Sin
e x lies outside f2, ` is not
ontained in W (u2). If ` is shallower than �+ (see Figure 36(b)), then `0 = �+, andvi lies below �+ 2 L+k , whi
h is impossible. If ` is steeper than `+ (see Figure 36(
)),then `0 = `+, and v1 lies below `, whi
h is impossible, sin
e ` 2 L+1 . (Note that in allthree 
ases, ` 
annot be equal to q�, be
ause q� passes through v1 and ` does not.)All these 
ontradi
tions show that Case 2 is also impossible.This establishes the non-
onvergen
e of the segments in E, and thus, at long last,
ompletes the proof of Theorem 1.3. �As mentioned earlier, we 
an get a better bound when q does not exist:Theorem 4.5. Let P be a set of n � 6 non-
oplanar points in R3 , su
h that n isodd, and there exists an extreme point p0 of P , su
h that the proje
tion of P fromp0 produ
es a set R without a 
entral bi
hromati
 point. Then P determines at least2n� 2 segments, no two of whi
h are 
onvergent.45



This strengthens the bound 2n� 3 in Conje
ture 1 of Blokhuis and Seress [2℄ forn odd.5 Extensions and Open ProblemsIn this se
tion we 
onsider several extensions of our results, prove some of them, andleave the others as open problems.The most obvious open problem is to obtain the exa
t worst-
ase bound for neven. Currently there is a small gap between our lower bound 2n � 7 and the bestknown 
onstru
tion, whi
h gives 2n� 3 pairwise non-
onvergent segments.Theorem 1.3 yields the following extension to four dimensions. It settles Conje
-ture 9 of Blokhuis and Seress [2℄ in the aÆrmative for d = 4 and for even n.Theorem 5.1. Let P be a set of n points in R4 , not 
ontained in a hyperplane and nothaving three 
ollinear points. Then P determines at least 3n� 8 di�erent dire
tions,if n is even, and at least 3n� 10 di�erent dire
tions if n is odd. The bound is sharpfor every even n � 8.Proof: Let p0 be the lowest point of P (in the x4-dire
tion). Let H be a horizontalhyperplane (parallel to the x1x2x3-spa
e) far above all the points of P . Applying asmall rotation to P , we may assume that H is not parallel to any segment determinedby P .Proje
t the points of P n fp0g 
entrally from p0 onto H, and 
olor the proje
tedimages red. For ea
h dire
tion 
 determined by P , let L
 denote the line parallel to
 and passing through p0. If a dire
tion 
, determined by P , is not obtained throughp0, let b
 denote the interse
tion point of L
 with H. Color all su
h points b
 green.Clearly, every red or green point on H gives rise to a di�erent dire
tion determinedby P , and all these points are distin
t. The number of red points on H is n� 1.Sin
e P is not 
ontained in a hyperplane, the red points on H are not 
oplanar.Therefore, by Theorem 1.3, they determine at least 2(n � 1) � 5 = 2n � 7 pairwisenon-
onvergent segments, if n� 1 is odd, and at least 2(n� 1)� 7 = 2n� 9 pairwisenon-
onvergent segments, if n� 1 is even.We 
laim that along ea
h line L in H passing through two or more red pointsthere is a green point that lies outside the 
onvex hull of the red points on L. Indeed,
onsider the 2-plane through p0 and L. The dire
tion 
 in 4-spa
e, determined bythe two points of P that proje
t to the two extreme red points on L, is not obtainedthrough p0, and thus yields the desired green point outside the 
onvex hull of the redpoints on L. See Figure 37. Therefore, every 
olle
tion of m pairwise non-
onvergentsegments determined by the red points on H gives rise to m distin
t green points onH, formed in the manner just des
ribed. No two su
h green points 
an 
oin
ide, forthat would make the 
orresponding red segments 
onvergent.46
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Figure 37: The green point determined by a red segment in H.It follows that the number of points on H is at least n� 1+ 2n� 7 = 3n� 8, if nis even, and at least n� 1 + 2n� 9 = 3n� 10, if n is odd.We next show that the bound is sharp for even n � 8. The 
onstru
tion extendsthe one depi
ted in Figure 1. Spe
i�
ally, let P be the set of the verti
es of a regular(n� 4)-gon Q in the x1x2-plane, 
entered at the origin, and of the four points �e3 =(0; 0;�1; 0), �e4 = (0; 0; 0;�1). It is easy to see that P determines exa
tly 3n � 8di�erent dire
tions: n � 4 dire
tions in the x1x2-plane, n � 4 dire
tions obtained by
onne
ting the verti
es of Q to e3, n�4 dire
tions obtained by 
onne
ting the verti
esof Q to e4, and 4 dire
tions determined by �e3, �e4. �A major generalization of Theorem 5.1, still in four dimensions, would be toestablish the following 
onje
ture:Conje
ture A: Any set P of n points in R4 , not 
ontained in a single hyperplane,determines at least 3n � 
 pairwise non-
onvergent segments, for some 
onstant 
(that might be larger than those in the theorem).This 
onje
ture would imply, by an appropriate extension of the pre
eding proof,that any set of n points in R5 , not 
ontained in a hyperplane, and not having three
ollinear points, determines at least 4n� (
+ 4) di�erent dire
tions.The �nal grand 
hallenge is to establish the following 
onje
ture, whi
h strength-ens Conje
ture 9 of Blokhuis and Seress [2℄:Conje
ture B: Any set P of n points in Rd , for d � 4, not 
ontained in a singlehyperplane, determines at least (d� 1)n� 
d pairwise non-
onvergent segments, forsome 
onstant 
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