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Abstract

An (n, s) Davenport–Schinzel sequence, for positive integers n and s, is a sequence
composed of n distinct symbols with the properties that no two adjacent elements
are equal, and that it does not contain, as a (possibly non-contiguous) subsequence,
any alternation a · · · b · · · a · · · b · · · of length s + 2 between two distinct symbols a and
b. The close relationship between Davenport–Schinzel sequences and the combinatorial
structure of lower envelopes of collections of functions make the sequences very attractive
because a variety of geometric problems can be formulated in terms of lower envelopes.
A near-linear bound on the maximum length of Davenport–Schinzel sequences enable
us to derive sharp bounds on the combinatorial structure underlying various geometric
problems, which in turn yields efficient algorithms for these problems.
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Introduction 1

1 Introduction

Davenport–Schinzel sequences, introduced by H. Davenport and A. Schinzel in the 1960s,
are interesting and powerful combinatorial structures that arise in the analysis and construc-
tion of the lower (or upper) envelope of collections of univariate functions, and therefore
have applications in a variety of geometric problems that can be reduced to computing such
an envelope. In addition, Davenport–Schinzel sequences play a central role in many re-
lated geometric problems involving arrangements of curves and surfaces. For these reasons,
they have become one of the major tools in the analysis of combinatorial and algorithmic
problems in geometry.

Definition 1.1 Let n and s be two positive integers. A sequence U = 〈u1, . . . , um〉
of integers is an (n, s) Davenport–Schinzel sequence (a DS (n, s)-sequence for short) if it
satisfies the following conditions:

(i) 1 ≤ ui ≤ n for each i ≤ m,

(ii) ui 6= ui+1 for each i < m, and

(iii) there do not exist s+ 2 indices 1 ≤ i1 < i2 < · · · < is+2 ≤ m such that

ui1 = ui3 = ui5 = · · · = a, ui2 = ui4 = ui6 = · · · = b,

and a 6= b.

In other words, the third condition forbids the presence of long alternations of any pair
of distinct symbols in a Davenport–Schinzel sequence. We refer to s as the order of U , to
n as the number of symbols composing U , and to |U | = m as the length of the sequence U .
Define

λs(n) = max { |U | | U is a DS (n, s)-sequence }.

Curiously, the original papers by Davenport and Schinzel [47, 48] were entitled On a
combinatorial problem connected with differential equations, because they were motivated
by a particular application that involved the pointwise maximum of a collection of inde-
pendent solutions of a linear differential equation. This, however, is only a special case of
more general lower or upper envelopes. Davenport and Schinzel did establish in [47, 48] the
connection between envelopes and these sequences, and obtained several non-trivial bounds
on the length of the sequences, which were later strengthened by Szemerédi [146]. The po-
tential of DS -sequences to geometric problems, however, remained unnoticed until Atallah
rediscovered and applied them to several problems in dynamic computational geometry [21].
It is easy to show that λ1(n) = n and λ2(n) = 2n−1 (see Theorem 3.1). Hart and Sharir [77]
proved that λ3(n) = Θ(nα(n)), where α(n) is the inverse Ackermann function (see below
for details), and later Agarwal et al. [10] (see also Sharir [134, 135]) proved sharp bounds
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on λs(n) for s > 3. These somewhat surprising bounds show that λs(n) is nearly linear in
n for any fixed s. Davenport–Schinzel sequences have become a useful and powerful tool
for solving numerous problems in discrete and computational geometry, usually by show-
ing that the geometric structure being analyzed has smaller combinatorial complexity than
what more naive methods would have implied. Many such geometric applications have been
obtained in the past decade, and we review some of these applications below. The recent
book by the authors [139] gives a more detailed description of the theory of DS -sequences
and of their geometric applications.

As noted above, and will be shown in more detail below, Davenport–Schinzel sequences
provide a complete combinatorial characterization of the lower envelope of a collection of
univariate functions. In many geometric problems, though, one faces the more difficult prob-
lem of calculating or analyzing the envelope of a collection of multivariate functions. Even
for bivariate functions this problem appears to be considerably harder than the univari-
ate case. Nevertheless, recent progress has been made on the multivariate case, leading to
almost-tight bounds on the complexity of envelopes in higher dimensions [74, 138]. Higher-
dimensional lower envelopes and related combinatorial structures will be reviewed by the
authors in Chapter ?? on arrangements.

The material reviewed in this chapter is a mixture of the basic combinatorial analysis of
Davenport–Schinzel sequences and of their geometric applications, both combinatorial and
algorithmic. Section 2 shows the connection between DS -sequences and lower envelopes.
Sections 3–5 discuss the analysis of the maximum length of (n, s) Davenport–Schinzel
sequences. Section 6 presents basic combinatorial geometric applications of Davenport–
Schinzel sequences to two-dimensional arrangements of lines, segments, and arcs, and stud-
ies the role that these sequences play in various structures in such arrangements, including
envelopes, individual faces, zones, and levels. Finally, Section 7 surveys a miscellany of
other geometric applications of Davenport–Schinzel sequences. The material given in this
survey is, to a large extent, an abridged version of the material presented in the recent book
[139], and we refer the reader to that book for more details.

2 Davenport–Schinzel Sequences and Lower Envelopes

2.1 Lower envelopes of totally defined functions

Let F = {f1, . . . , fn} be a collection of n real-valued, continuous totally defined functions
so that the graphs of every pair of distinct functions intersect in at most s points (this is
the case for polynomials of fixed degree, Chebychev systems, etc). The lower envelope of
F is defined as

EF (x) = min
1≤i≤n

fi(x),

i.e., EF is the pointwise minimum of the functions fi; see Figure 1. Let I1, . . . , Im be the
maximal connected intervals on the x-axis so that they cover the entire x-axis and, for each
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k ≤ m, the same function fuk
appears on EF for all points in Ik (i.e., EF (x) = fuk

(x) for
all x ∈ Ik). In other words, m is the number of (maximal) connected portions of the graphs
of the fi’s that constitute the graph of EF . The endpoints of the intervals Ik are called the
breakpoints of EF . Assuming that I1, . . . , Im are sorted from left to right, put

U(F) = 〈u1, . . . , um〉.

U(F) is called the lower-envelope sequence of F ; see Figure 1. The minimization diagram
of F , denoted by MF , is the partition of the x-axis induced by the intervals I1, . . . , Im.
The endpoints of these intervals are called the breakpoints of MF . For convenience, we add
−∞,+∞ as the breakpoints of MF .

31424
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Figure 1. A lower-envelope sequence.

The upper envelope of F is defined, in a fully symmetric manner, to be

E∗
F (x) = max

1≤i≤n
fi(x),

and the maximization digram M∗
F is defined as the corresponding partition of the real line,

as in the case of lower envelopes. In this chapter we mostly consider lower envelopes. This
choice is arbitrary, and all the results, of course, apply equally well to upper envelopes.

Theorem 2.1 ([21, 48]) U(F) is a DS (n, s)-sequence. Conversely, for any given DS (n, s)-
sequence U , one can construct a set F = {f1, . . . , fn} of continuous, totally defined, univari-
ate functions, each pair of whose graphs intersect in at most s points, such that U(F) = U .

Proof (Sketch): For the first part, note that, by definition, the lower-envelope sequence
U = U(F) does not contain a pair of adjacent equal elements. For simplicity, assume that
the graphs of functions in F intersect transversally at each intersection point. The proof can
easily be extended to the case when the graphs of two functions touch each other. Suppose U
contains s+2 indices i1 < i2 < · · · < is+2 so that ui1 = ui3 = · · · = a and ui2 = ui4 = · · · = b
for a 6= b. By definition of the lower-envelope sequence, we must have fa(x) < fb(x) for
x ∈ (int(Ii1) ∪ int(Ii3) ∪ · · · ) and fa(x) > fb(x) for x ∈ (int(Ii2) ∪ int(Ii4) ∪ · · · ), where
int(J) denotes the interior of the interval J . Since fa and fb are continuous, there must
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exist s+1 distinct points x1, . . . , xs+1 so that xr lies between the intervals Iir and Iir+1 and
fa(xr) = fb(xr), for r = 1, . . . , s+ 1. This, however, contradicts the fact that the graphs of
fa and fb intersect in at most s points.

For the converse statement, let U = 〈u1, . . . , um〉 be a given DS (n, s)-sequence. Without
loss of generality, suppose the symbols 1, 2, . . . , n, of which U is composed, are ordered so
that the leftmost appearance of symbol i in U precedes the leftmost appearance of symbol j
in U if and only if i < j. We now define the required collection of functions F = {f1, . . . , fn}
as follows. We choose m− 1 distinct “transition points” x2 < x3 < . . . < xm on the x-axis,
and n+m− 1 distinct horizontal “levels,” say, at y = 1, 2, . . . , n,−1,−2, . . . ,−(m− 1). For
each symbol 1 ≤ a ≤ n the graph of the corresponding function fa is always horizontal at
one of these levels, except at short intervals near some of the transition points, where it
can drop very steeply from one level to a lower one. At each transition point exactly one
function changes its level. More specifically:

(i) Before x2, the function fa is at the level y = a, for a = 1, . . . , n.

(ii) At the transition point xi, let a = ui; then fa drops down from its current level to the
highest still “unused” level. See Figure 2 for an illustration.

4

2311312 441

3
2
1

Figure 2. Realization of the DS (4, 3)-sequence 〈1, 2, 1, 3, 1, 4, 1, 4, 3, 2〉.

It is clear from this construction that U(F) = U , and it can be shown that each pair of
functions intersect in at most s points. This completes the proof of the theorem. ✷

Corollary 2.2 For any collection F = {f1, . . . , fn} of n continuous, totally defined, uni-
variate functions, each pair of whose graphs intersect in at most s points, the length of the
lower-envelope sequence U(F) is at most λs(n), and this bound can be attained by such a
collection F .

Corollary 2.3 Let F = {f1, . . . , fn} and G = {g1, . . . , gn} be two collections of n contin-
uous, totally defined, univariate functions, such that the graphs of any pair of functions of
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F , or of any pair of functions of G, intersect in at most s points, and the graphs of any pair
of functions in F × G intersect in a (possibly larger) constant number of points. Then the
number of intersection points of graphs of functions in F ∪G that lie on the boundary of the
region lying between the upper envelope of G and the lower envelope of F (see Figure 3),
i.e., the region

ΠF ,G = {(x, y) | E∗
G(x) ≤ y ≤ EF (x)},

is O(λs(n)).

Figure 3. The region between E∗
G and EF is shown shaded; the graphs of the functions in F (resp.

in G) are drawn solid (resp. dashed).

Proof: Let L = (b1, . . . , bt) be the sequence of breakpoints of MF and M∗
G , sorted from

left to right. By definition, t ≤ 2λs(n). In each interval (bi, bi+1), the envelopes EF , E∗
G are

attained by a unique pair of functions f (i) ∈ F , g(i) ∈ G. Hence, there are O(1) intersection
points on the boundary of ΠF ,G whose x-coordinates lie in (bi, bi+1). This completes the
proof of the corollary. ✷

2.2 Lower envelopes of partially defined functions

It is useful to note that a similar equivalence exists between Davenport–Schinzel sequences
and lower envelopes of partially defined functions. Specifically, let f1, . . . , fn be a collection of
partially defined and continuous functions, so that the domain of definition of each function
fi is an interval Ii, and suppose further that the graphs of each pair of these functions
intersect in at most s points. The lower envelope of F is now defined as

EF (x) = min fi(x),

where the minimum is taken over those functions that are defined at x. One can then define
the minimization diagram MF and the lower-envelope sequence U(F) in much the same way
as for totally defined functions; see Figure 4. In this case the following theorem holds.

Theorem 2.4 ([77]) The lower-envelope sequence U(F) is a DS (n, s+2)-sequence. Con-
versely, for any DS (n, s + 2)-sequence U one can construct a collection F = {f1, . . . , fn}
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Figure 4. The lower envelope of a collection of (nonvertical) segments.

of partially-defined, continuous functions, each defined over an interval, and each pair of
which intersect in at most s points, such that U(F) = U .

Hence, we can conclude

Theorem 2.5 ([77]) Let F be a collection of n partially-defined, continuous, univariate
functions, with at most s intersection points between the graphs of any pair. Then the
length of the lower-envelope sequence U(F) is at most λs+2(n).

The functions constructed in Theorems 2.1 and 2.4, to realize arbitraryDS (n, s)-sequences,
have fairly irregular structure. A problem that arises naturally in this context is whether any
DS (n, s)-sequence can be realized as the lower envelope sequence of a collection of n partial
or total functions of some canonical form. For example, can any (n, 3) Davenport–Schinzel
sequence be realized as the lower envelope sequence of a collection of n line segments (see
Figure 4)? Some partially affirmative results on geometric relatization of DS (n, s)-sequences
will be mentioned below, although the problem is still wide open.

2.3 Constructing lower envelopes

We conclude this section by presenting a simple, efficient divide-and-conquer algorithm for
computing the minimization diagram of a set F of n continuous, totally defined, univariate
functions, each pair of whose graphs intersect at most s times, for some constant parameter
s. Here we assume a model of computation that allows us to compute the intersections
between any pair of functions in F in O(1) time.

We partition F into two subsets F1,F2, each of size at most ⌈n/2⌉, compute the min-
imization diagrams MF1 ,MF2 recursively, and merge the two diagrams to obtain MF .
We merge the lists of breakpoints of MF1 and of MF2 into a single list V = (v1 =
−∞, v2, . . . , vt = +∞), sorted from left to right. Notice that, for any 1 ≤ i < t, there

is a unique pair of functions f
(1)
i ∈ F1, f

(2)
i ∈ F2, that attain the respective envelopes EF1 ,

EF2 over (vi, vi+1). We compute the real roots r1, . . . , rk (k ≤ s) of the function f
(1)
i − f

(2)
i
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that lie in the interval (vi, vi+1), and add them to the list V . Let V ′ = (v′1, . . . , v
′
t′) denote

the new list of points. It is clear that, for each i, a unique function fi ∈ F attains EF over
the interval (v′i, v

′
i+1). We associate fi with this interval. If the same function is associated

with two adjacent intervals (v′i−1, v
′
i) and (v′i, v

′
i+1), we delete the breakpoint v′i from V ′.

The resulting list represents the minimization diagram MF of F . The total time spent in
the merge step is

O(|V ′|) = O(|V |) = O(|MF1 |+ |MF2 |) = O(λs(n)).

Hence, the overall running time of the algorithm is O(λs(n) log n).

If the functions in F are partially defined, an easy modification of the above algorithm
constructs MF in time O(λs+2(n) log n). In this case, however, MF can be computed in
time O(λs+1(n) log n), using a more clever algorithm due to Hershberger [78].

Theorem 2.6 ([21, 78]) The lower envelope of a set F of n continuous, totally defined,
univariate functions, each pair of whose graphs intersect in at most s points, can be con-
structed, in an appropriate model of computation, in O(λs(n) log n) time. If the functions
in F are partially defined, then EF can be computed in O(λs+1(n) log n) time. In particular,
the lower envelope of a set of n segments in the plane can be computed in optimal O(n logn)
time.

3 Simple Bounds and Variants

One of the main goals in the analysis of DS -sequences is to estimate the value of λs(n).
In this section we review some of the earlier results that established nontrivial bounds on
λs(n). These bounds are somewhat weaker than the best known bounds, but have simpler
proofs. We begin our analysis by disposing of the two simple cases s = 1 and s = 2.

Theorem 3.1 ([48]) (a) λ1(n) = n. (b) λ2(n) = 2n− 1.

Proof (Sketch): (a) Let U be a DS(n, 1)-sequence. U cannot contain any subsequence of
the form 〈a · · · b · · · a〉, for a 6= b, and any two adjacent elements of U are distinct, therefore
all elements of U are distinct, which implies that |U | ≤ n. The bound is tight, because
U = 〈1 2 3 · · ·n〉 is a DS (n, 1)-sequence.

(b) The proof proceeds by induction on n. The case n = 1 is obvious. Suppose the
claim holds for n − 1, and let U be any DS (n, 2)-sequence. Without loss of generality, we
can assume that the leftmost occurrence of i in U is before the leftmost occurrence of j if
and only if i < j. It can then be shown that there is only one occurrence of n in U , or
else a forbidden subsequence of the form 〈x · · ·n · · ·x · · ·n〉 would arise. Remove this single
appearance of n from U , and if the two symbols adjacent to n are equal, remove also one of
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them from U . The resulting sequence is clearly a DS (n− 1, 2)-sequence, and is one or two
elements shorter than U . The induction hypothesis then implies |U | ≤ 2n− 3+ 2 = 2n− 1.
Since the sequence 〈1 2 3 · · ·n− 1 n n− 1 · · · 3 2 1〉 is clearly a DS (n, 2)-sequence of length
2n− 1, the bound is tight. ✷

A cyclic sequence U is called a DS (n, 2)-cycle if no two adjacent symbols are equal and
if U does not contain a subcycle of the form 〈a · · · b · · · a · · · b〉, for any a 6= b. Notice that
the maximum length of a DS (2, 2)-cycle is 2. The same argument as in Theorem 3.1(b) can
be used to prove the following.

Corollary 3.2 The maximum length of a DS (n, 2)-cycle consisting of n symbols is 2n− 2.

As we will see later, obtaining a sharp bounds on the maximum length of a DS (n, s)-
sequence, for s ≥ 3, is not as simple. Let us first give a simple proof of the following
bound:

Theorem 3.3 ([48]) λ3(n) = O(n logn).

Proof (Sketch): Let U be a DS(n, 3)-sequence of length λ3(n). There must exist a
symbol x that appears in U at most λ3(n)/n times. For any appearance of x which is
neither the leftmost nor the rightmost, the symbols immediately preceding and succeeding
x must be different, or else we would have obtained a forbidden subsequence of the form
〈x · · · yxy · · ·x〉. Hence, if we erase from U all appearances of x, and, if necessary, at most
two other elements, near the first and last appearances of x, we obtain a DS(n − 1, 3)-
sequence, so this analysis implies the recurrence

λ3(n) ≤ λ3(n− 1) +
λ3(n)

n
+ 2 ,

or
λ3(n)

n
≤

λ3(n− 1)

n− 1
+

2

n− 1
,

from which the claim follows easily. ✷

This bound was later improved by Davenport [47] to O(n logn/ log logn). For any
given n and s, a trivial upper bound on λs(n) is sn(n− 1)/2+ 1 (use Corollary 2.2 and the
observation that the total number of intersections between the functions in F is at most
s
(

n
2

)

). Roselle and Stanton [128] proved that, for s > n, one has

λs(n) ≥ sn(n− 1)/2− cn3,

where c < 1 is a constant. Davenport and Schinzel [48] proved that, for any fixed s,
there is a constant Cs depending on s, such that λs(n) ≤ n · 2Cs

√
log n. The problem was
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also studied in several early papers [51, 105, 109, 119, 127, 129, 144, 145], but the next
significant improvement on the bound of λs(n) was made by Szemerédi [146], who proved
that λs(n) ≤ Asn log∗ n, for each s ≥ 3 and for appropriate positive constants As (doubly
exponential in s). The currently best known bounds on λs(n) for s ≥ 3, stated below, are
by Hart and Sharir [77] and Agarwal et al. [10].

λ3(n) = Θ(nα(n)),

λ4(n) = Θ(n · 2α(n)),

λ2s+2(n) = n · 2Θ(αs(n)), for s ≥ 2,

λ2s+3(n) = n · 2O(αs(n) logα(n)), for s ≥ 1;

more precise forms of these bounds are given in Theorems 4.3, 4.5, 5.1, and 5.2 below.

We conclude this section by mentioning some generalizations of DS (n, s)-sequences. Let
U = 〈u1, u2, . . . , um〉 be a DS (n, s)-sequence. For 1 ≤ j ≤ m, let µ(j) denote the number
of symbols whose leftmost occurrences in U occur at an index ≤ j and whose rightmost
occurrences occur at an index > j. We define the depth of U to be the maximum value of
µ(j), for j ≤ m. Define a DS (n, s, t)-sequence to be a DS (n, s)-sequence whose depth is at
most t, and let λs,t(n) denote the maximum length of a DS (n, s, t)-sequence. Huttenlocher
et al. [80] proved that λs,t(n) ≤ ⌈n/t⌉λs(2t) (see also Har-Peled [75]). This result has the
following interesting consequence:

Corollary 3.4 ([80]) Let F = {f1, . . . , ft} be a collection of t continuous, real-valued,
piecewise-linear functions (i.e., the graph of each fi is an x-monotone polygonal chain). Let
n be the total number of edges in the graphs of the functions of F . Then the lower envelope
of F has at most λ3,t(n) ≤ ⌈n/t⌉λ3(2t) = O(nα(t)) breakpoints.

Adamec et al. [2] have studied some generalizations of Davenport–Schinzel sequences.
In particular, they bound the length of sequences not containing more general forbidden
subsequences, for example, subsequences consisting of more than two symbols. They also
showed that the maximum length of a sequence not containing any forbidden subsequence
〈ai1bi2ai3bi4〉, where i1, i2, i3, i4 are some fixed positive constants, is linear. See also [92, 93,
94, 95, 96] for related results.

4 Sharp Upper Bounds on λs(n)

In the previous section we mentioned some weak upper bounds on λs(n). The problem of
bounding λs(n) lay dormant for about 10 years after Szemerédi’s result [146], until Hart and
Sharir [77] proved a tight bound of Θ(nα(n)) on λ3(n); here α(n) is the inverse Ackermann
function, defined below. Later, Sharir [134] extended the analysis of Hart and Sharir to
prove that λs(n) = n · α(n)O(α(n)s−3), for s > 3. Applying a more careful analysis, Agarwal
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et al. [10] improved the bounds further, and obtained sharp, nearly tight bounds on λs(n),
for any fixed s. The best known upper bounds on λs(n) are summarized in Theorem 4.3
(for s = 3) and Theorem 4.5 (for larger values of s). Since the proofs of these theorems are
quite technical, we will sketch the proof of Theorem 4.3, and only briefly mention how the
proof extends to the case s > 3.

4.1 Ackermann’s function—A review

In this subsection we recall the definition of Ackermann’s function and its functional inverse,
which appears in the upper and lower bounds for λs(n). Ackermann’s function (also called
“generalized exponentials”) is an extremely fast growing function defined over the integers
in the following recursive manner [1].

Let N denote the set of positive integers. Given a function g from a set into itself, denote
by g(s) the composition g ◦ g ◦ . . . ◦ g of g with itself s times, for s ∈ N. Define inductively
a sequence {Ak}

∞
k=1 of functions from N into itself as follows:

A1(n) = 2n n ≥ 1,
Ak(1) = 2 k ≥ 2,
Ak(n) = Ak−1(Ak(n− 1)) n ≥ 2, k ≥ 2.

Finally, define Ackermann’s function itself as A(n) = An(n). The function A grows very
quickly; its first few values are: A(1) = 2, A(2) = 4, A(3) = 16, and A(4) is an exponential
“tower” of 65536 2s. See [90, 118, 123] for a discussion on Ackermann’s and other rapidly
growing functions.

Let αk and α denote the functional inverses of Ak and A, respectively. That is,

αk(n) = min{s ≥ 1 | Ak(s) ≥ n} and α(n) = min{s ≥ 1 | A(s) ≥ n}.

The functions αk are easily seen to satisfy the following recursive formula:

αk(n) = min{s ≥ 1 : α
(s)
k−1(n) = 1}; (4.1)

that is, αk(n) is the number of iterations of αk−1 needed to go from n to 1. In particular,
(4.1) implies that, for n ∈ N,

α1(n) = ⌈n/2⌉, α2(n) = ⌈logn⌉, and α3(n) = log∗ n.

For each k, the function αk is nondecreasing and unbounded. The same holds for α too,
which grows more slowly than any of the αk. Note that α(n) ≤ 4 for all n ≤ A(4), which
is an exponential tower with 65536 2s, thus α(n) ≤ 4 for all practical values of n. We will
need the following two easily established properties of αk(n):

αα(n)(n) = α(n) and, for n > 4, αα(n)+1(n) ≤ 4. (4.2)
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4.2 The upper bound for λ3(n)

Let U be a DS(n, 3)-sequence. A chain in U is a contiguous subsequence in which each
symbol appears at most once. One can show that any such U can be decomposed into at
most 2n− 1 pairwise disjoint chains, by splitting U just before the leftmost and rightmost
appearances of each symbol. Let Ψ(m,n) denote the maximum length of a DS(n, 3)-
sequence that can be decomposed into at most m chains.

Lemma 4.1 Let m,n ≥ 1, and let b > 1 be a divisor of m. Then there exist integers
n⋆, n1, n2, . . . , nb ≥ 0 such that

n⋆ +
b

∑

i=1

ni = n,

and

Ψ(m,n) ≤ 4m+ 4n⋆ +Ψ(b, n⋆) +
b

∑

i=1

Ψ
(m

b
, ni

)

. (4.3)

Proof: Let U be a DS (n, 3)-sequence, consisting of at most m chains c1, . . . , cm, of length
Ψ(m,n), and let b > 1 be a divisor of m. Partition the sequence U into b blocks (contiguous
subsequences) L1, . . . , Lb, so that the block Li consists of p = m/b chains c(i−1)p+1, c(i−1)p+2, . . . , cip.
Call a symbol a internal to block Li if all the occurrences of a in U are within Li. A symbol
is called external if it is not internal to any block. Suppose that there are ni internal symbols
in block Li and n⋆ external symbols; thus n⋆ +

∑b
i=1 ni = n.

We estimate the total number of occurrences in U of symbols that are internal to Li, as
follows. Erase all external symbols from Li. Next scan Li from left to right and erase each
element that has become equal to the element immediately preceding it. This leaves us with
a sequence L⋆

i , which is clearly a DS (ni, 3)-sequence consisting of at most m/b chains, and
thus its length is at most Ψ(m/b, ni). Moreover, if two equal internal elements in Li have
become adjacent after erasing the external symbols, then these two elements must have
belonged to two distinct chains, thus the total number of deletions of internal symbols is at
most (m/b) − 1. Hence, summing over all blocks, we conclude that the total contribution
of internal symbols to |U | is at most

m− b+
b

∑

i=1

Ψ
(m

b
, ni

)

.

Next, to estimate the contribution of external symbols to |U |, we argue as follows. For
each Li, call an external symbol a a middle symbol if none of its occurrences in Li is the
first or the last occurrence of a in U . Otherwise we call a a non-middle symbol. We will
consider the contribution of middle and non-middle external symbols separately.
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Consider first the middle symbols. To estimate their contribution to the length of Li, we
erase all internal and non-middle symbols from Li, and also erase a middle symbol if it has
become equal to the symbol immediately preceding it. As above, at most (m/b)−1 deletions
of external middle symbols will be performed. Let L⋆

i be the resulting subsequence, and
suppose that it is composed of pi distinct symbols. It is easily seen that L⋆

i is a DS (pi, 1)-
sequence, so its length is at most pi. Hence, summing over all blocks, the total contribution
of external middle symbols is at most m − b +

∑b
i=1 pi. But

∑b
i=1 pi is the length of the

sequence obtained by concatenating all the subsequences L⋆
i . This concatenation can contain

at most b pairs of adjacent equal elements, and if we erase each element that is equal to its
predecessor, we obtain a sequence U⋆ which is clearly a DS (n⋆, 3)-sequence composed of b
chains (namely the subsequences L⋆

i ). The length of U⋆ is thus at most Ψ(b, n⋆). Hence,
the contribution of middle external elements to the length of U is at most m+Ψ(b, n⋆).

Consider next the contribution of non-middle symbols. A symbol is called starting (resp.
ending) in block Li if does not occur in any block before (resp. after) Li. To estimate the
contribution of starting symbols to the length of Li we erase from Li all symbols occurring
there except for starting symbols, and, if necessary, also erase each occurrence of a starting
symbol that has become equal to the element immediately preceding it. As above, at most
(m/b)− 1 deletions of external starting symbols will be performed. Let L#

i be the resulting
subsequence, and suppose that it is composed of pi distinct symbols.

Note first that each external symbol can appear as a starting symbol in exactly one
block, thus

∑b
i=1 pi = n⋆. It is easily seen that L#

i is a DS (pi, 2)-sequence, so the length of

L#
i is at most 2pi − 1, and, summing over all blocks, we conclude that the contribution of

all external starting symbols to the length of U is at most

m− b+
b

∑

i=1

(2pi − 1) = m− 2b+ 2n⋆.

In a completely symmetric manner, the contribution of external ending symbols to the
length of U is also at most m − 2b + 2n⋆. Summing up all these contributions we finally
obtain the asserted inequality (4.3). ✷

Next, we solve the recurrence derived in the previous lemma.

Lemma 4.2 For all m,n ≥ 1, and for k ≥ 2,

Ψ(m,n) ≤ (8k − 8)mαk(m) + (4k − 2)n. (4.4)

Proof (Sketch): For the sake of simplicity, we will only show that for n, s ≥ 1, k ≥ 2, and
m dividing Ak(s),

Ψ(m,n) ≤ (4k − 4)ms+ (4k − 2)n. (4.5)
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If m = Ak(s), then s = αk(m), and (4.5) implies the assertion of the lemma for these values
of m also. The case of an arbitrary m is then easy to handle; see [77, 139] for details.

We will use (4.3) repeatedly to obtain the series of upper bounds on Ψ, stated in (4.5)
for k = 2, 3, . . .. At each step we choose b in an appropriate manner, and estimate Ψ(b, n⋆)
using the bound obtained in the preceding step. This yields a new recurrence relation on
Ψ, which we solve to obtain a better upper bound on Ψ.

Specifically, we proceed by double induction on k and s. For k = 2, m divides A2(s) = 2s,
som is a power of 2. Choose b = 2 in (4.3); it is easily checked that Ψ(b, n⋆) = Ψ(2, n⋆) = 2n⋆

for all n⋆, so (4.3) becomes

Ψ(m,n) ≤ 4m+ 6n⋆ +Ψ
(m

2
, n1

)

+Ψ
(m

2
, n2

)

.

The solution to this recurrence relation, for m a power of 2 and n = n⋆ +n1 +n2 arbitrary,
is easily verified to be

Ψ(m,n) ≤ 4m logm+ 6n.

The case k > 2 and s = 1 is now a consequence of this bound (because m divides Ak(1) = 2
in this case).

Suppose next that k > 2 and s > 1, and that the induction hypothesis is true for all
k′ < k and s′ ≥ 1, and for k′ = k and all s′ < s. Let m = Ak(s), and t = Ak(s − 1),
and choose b = m/t, which is an integer dividing m = Ak(s) = Ak−1(t). Hence, by the
induction hypothesis for k − 1 and t, we have

Ψ(b, n⋆) ≤ (4k − 8)bt+ (4k − 6)n⋆ = (4k − 8)m+ (4k − 6)n⋆.

Then (4.3) becomes

Ψ(m,n) ≤ (4k − 8)m+ (4k − 6)n⋆ + 4m+ 4n⋆ +
b

∑

i=1

Ψ(t, ni).

Using the induction hypothesis once more (for k and s− 1), we obtain

Ψ(m,n) ≤ (4k − 4)m+ (4k − 2)n⋆ +
b

∑

i=1

((4k − 4)t(s− 1) + (4k − 2)ni)

= (4k − 4)ms+ (4k − 2)n,

because n⋆ +
∑b

i=1 ni = n.

The case where m only divides Ak(s) is handled by taking a concatenation of p =
Ak(s)/m copies of a sequence whose length is Ψ(m,n), using pairwise-disjoint sets of symbols
for the copies. The concatenated sequence is composed of pn symbols and has at most pm
chains, so

pΨ(m,n) ≤ Ψ(pm, pn) ≤ (4k − 4)pms+ (4k − 2)pn ,
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from which (4.5) follows.

This completes the proof of the asserted bound. ✷

Theorem 4.3 ([77]) λ3(n) = O(nα(n)).

Proof: By putting k = α(m) + 1 in (4.4) and using (4.2), we obtain

Ψ(m,n) ≤ 32mα(m) + (4α(m) + 2)n.

As noted in the beginning of this subsection, λ3(n) ≤ Ψ(2n − 1, n). Since α(2n − 1) ≤
α(n) + 1, the theorem follows. ✷

Applying a more careful analysis, Klazar [95] has shown that

λ3(n) ≤ 4nα(n) +O(n
√

α(n)),

provided that n is sufficiently large.

An immediate corollary of Theorem 4.3 is that the lower envelope of n segments in the
plane has O(nα(n)) breakpoints.

4.3 Upper bounds on λs(n)

We now briefly mention how the upper bounds on λs(n), for s > 3, are derived in [10].
Let Ψt

s(m,n) denote the maximum length of a DS (n, s)-sequence composed of at most m
contiguous subsequences, each of which is a DS (n, t)-sequence. As above, Agarwal et al.
[10] obtain a recurrence relation for Ψs(m,n), the length of a DS (n, s)-sequences composed
of at most m chains, but the recurrence is now written in terms of Ψs and Ψs−2

s . Let S
be a given DS (n, s)-sequence composed of at most m chains. The analysis in [10] divides
S into b blocks and counts the contributions of internal, middle, and non-middle symbols
separately, in a manner similar to that given above. This leads to the following lemma.

Lemma 4.4 Let m, n ≥ 1 and 1 < b < m be integers. For any partitioning m =
∑b

i=1mi,
with m1, . . . ,mb ≥ 1, there exist integers n⋆, n1, n2, . . . , nb ≥ 0 such that

n⋆ +
b

∑

i=1

ni = n

and

Ψs(m,n) ≤ Ψs−2
s (b, n⋆) + 2Ψs−1(m,n⋆) + 4m+

b
∑

i=1

Ψs(mi, ni). (4.6)
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If we choose b = 2, the solution of the recurrence is O(n logs−2 n). However, extending
the proof of Lemma 4.2, but using a rather involved analysis, one can obtain the following
bounds on λs(n).

Theorem 4.5 ([10]) (i) λ4(n) = O(n · 2α(n)).

(ii) For s > 1, there exists a polynomial Cs(q) of degree at most s− 1, such that

λ2s+1(n) ≤ n · 2α
s−1(n) logα(n)+Cs(α(n)),

λ2s+2(n) ≤ n · 2α
s(n)+Cs(α(n)).

5 Lower Bounds on λs(n)

An even more surprising result in the theory of Davenport–Schinzel sequences is that the
bounds stated in Theorems 4.3 and 4.5 are optimal for s = 3 and 4, and are very close
to optimal for s > 4. The first superlinear bound on λs(n) was obtained by Hart and
Sharir [77], who proved that λ3(n) = Ω(nα(n)). Their original proof transforms DS (n, 3)-
sequences into certain path compression schemes on rooted trees. A more direct proof for
the lower bound on λ3(n) was given by Wiernik and Sharir [149] — they describe an explicit
recursive scheme for constructing a DS (n, 3)-sequence of length Ω(nα(n)). See also [97] for
another proof of the same lower bound. We sketch Wiernik and Sharir’s construction,
omitting many details, which can be found in [139, 149].

Let {Ck(m)}k≥1 be a sequence of functions from N to itself, defined by

C1(m) = 1 m ≥ 1,
Ck(1) = 2Ck−1(2) k ≥ 2,
Ck(m) = Ck(m− 1) · Ck−1(Ck(m− 1)) k ≥ 2,m ≥ 2.

It can be shown that, for all k ≥ 4,m ≥ 1,

Ak−1(m) ≤ Ck(m) ≤ Ak(m+ 3). (5.1)

In what follows, let µ = Ck(m− 1), ν = Ck−1(Ck(m− 1)), and γ = µ · ν.

For each k,m ≥ 1, we construct a sequence Sk(m) that satisfies the following two
properties:

(P1) Sk(m) is composed of Nk(m) = m ·Ck(m) distinct symbols. These symbols are named
(d, l), for d = 1, . . . ,m, l = 1, . . . , γ, and are ordered in lexicographical order, so that
(d, l) < (d′, l′) if l < l′ or l = l′ and d < d′.

(P2) Sk(m) contains γ fans of size m, where each fan is a contiguous subsequence of the
form 〈(1, l) (2, l) · · · (m, l)〉, for l = 1, . . . , γ.
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Since fans are pairwise disjoint, by definition, the naming scheme of the symbols of
Sk(m) can be interpreted as assigning to each symbol the index l of the fan in which it
appears, and its index d within that fan. The construction of Sk(m) proceeds by double
induction on k and m, as follows.

1. k = 1: The sequence is a single fan of size m: S1(m) = 〈(1, 1) (2, 1) · · · (m, 1)〉.
Properties (P1) and (P2) clearly hold here (C1(m) = 1).

2. k = 2: The sequence contains a pair of disjoint fans of size m, with a block of elements
following each of these fans. Specifically,

S2(m) = 〈(1, 1) (2, 1) · · · (m− 1, 1) (m, 1) (m− 1, 1) · · · (1, 1)

(1, 2) (2, 2) · · · (m− 1, 2) (m, 2) (m− 1, 2) · · · (1, 2)〉.

Indeed, S2(m) contains C2(m) = 2 fans and is composed of 2m dsitinct symbols.

3. k ≥ 3,m = 1: The sequence is identical to the sequence for k′ = k − 1 and m′ = 2,
except for renaming of its symbols and fans: Sk−1(2) contains Ck−1(2) =

1
2Ck(1) fans,

each of which consists of two symbols; the symbol renaming in Sk(1) causes each of
these two elements to become a 1-element fan. Properties (P1) and (P2) clearly hold.

4. The general case k ≥ 3,m > 1:

(i) Generate inductively the sequence S′ = Sk(m − 1); by induction, it contains µ
fans of size m− 1 each and is composed of (m− 1) · µ symbols.

(ii) Create ν copies of S′ whose sets of symbols are pairwise disjoint. For each j ≤ ν,
rename the symbols in the jth copy S′

j of S′ as (d, i, j) where 1 ≤ d ≤ m − 1 is
the index of the symbol in the fan of S′

j containing it, and 1 ≤ i ≤ µ is the index
of this fan in S′

j .

(iii) Generate inductively the sequence S⋆ = Sk−1(µ) whose set of symbols is disjoint
from that of any S′

j ; by induction, it contains ν fans of size µ each. Rename the
symbols of S⋆ as (m, i, j) (where i is the index of that symbol within its fan, and
j is the index of that fan in S⋆). Duplicate the last element (m,µ, j) in each of
the ν fans of S⋆.

(iv) For each 1 ≤ i ≤ µ, 1 ≤ j ≤ ν, extend the ith fan of S′
j by duplicating its last

element (m − 1, i, j), and by inserting the corresponding symbol (m, i, j) of S⋆

between these duplicated appearances of (m − 1, i, j). This process extends the
(m− 1)-fans of S′

j into m-fans and adds a new element after each extended fan.

(v) Finally construct the desired sequence Sk(m) by merging the ν copies S′
j of S′

with the sequence S⋆. This is done by replacing, for each 1 ≤ j ≤ ν, the jth fan
of S⋆ by the corresponding copy S′

j of S′, as modified in (iv) above. Note that
the duplicated copy of the last element in each fan of S⋆ (formed in step (iii)
above) appears now after the copy S′

j that replaces this fan; see Figure 5 for an
illustration of this process.
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S∗

S′
1

S′
2

S′
ν

fan
µ

fan
µ

fan2fan1

fan1 fan2 fan
µ

fan1

fan
ν

fan2fan1

fan2

Figure 5. Lower bound construction: merging the subsequences.

It is easily checked that Sk(m) consists of

Nk(m) = ν(m− 1)µ+ µCk−1(µ) = mCk(m)

symbols, and it can also be shown that Sk(m) is a DS (Nk(m), 3)-sequence satisfying prop-
erties (P1) and (P2). If we let σk(m) denote the length of Sk(m), then

σ1(m) = m,

σ2(m) = 4m− 2,

σk(1) = σk−1(2),

σk(m) = νσk(m− 1) + σk−1(µ) + ν(µ+ 1).

The third term in the last equation is due to the duplication of the rightmost symbol of
each fan of S∗ and of each S′

j (see Steps 4 (iii)-(iv)). Using a double induction on k and m,
one can prove that

σk(m) > (km− 2)Ck(m) + 1.

Theorem 5.1 ([77, 149]) λ3(n) = Ω(nα(n)).

Proof: Choose mk = Ck+1(k − 3). Then

nk = Nk(mk) = Ck+1(k − 2) ≤ Ak+1(k + 1)

where the last inequality follows from (5.1). Therefore α(nk) ≤ k + 1, and hence

λ3(nk) ≥ σk(mk) ≥ knk − 2Ck(mk) ≥ (k − 2)nk ≥ nk(α(nk)− 3).
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As shown in [139], this bound can be extended to any integer n, to prove that λ3(n) =
Ω(nα(n)). ✷

Generalizing the above construction and using induction on s — basically replacing
each chain of the sequence Sk(m) by a DS (n, s−2)-sequence, which, in turn, is constructed
recursively — Sharir [135] proved that λ2s+1(n) = Ω(nα(n)s). Later Agarwal et al. [10]
proved that the upper bounds stated in Theorem 4.5 are almost optimal. In particular,
using a rather involved doubly-inductive scheme, they constructed a DS (n, 4)-sequence of
length Ω(n2α(n)). Then, by recursing on s, they generalized their construction of DS (n, 4)-
sequences to higher-order sequences. The following theorem summarizes their result.

Theorem 5.2 ([10]) (i) λ4(n) = Ω(n · 2α(n)).

(ii) For s > 1, there exists a polynomial Qs(q) of degree at most s− 1, such that

λ2s+2(n) ≥ n · 2
α
s(n)
s!

+Qs(α(n)).

Open Problem 1 Obtain tights bounds on λs(n) for s > 4, especially for odd values of s.

Wiernik and Sharir [149] proved that the DS (n, 3)-sequence Sk(m) constructed above
can be realized as the lower envelope sequence of a set of n segments, which leads to the
following fairly surprising result:

Theorem 5.3 ([149]) The lower envelope of n segments can have Ω(nα(n)) breakpoints
in the worst case.

Shor [142] gave a simpler example of n segments whose lower envelope also has Ω(nα(n))
breakpoints. These results also yield an Ω(nα(n)) lower bound on many other unrelated
problems, including searching in totally monotone matrices [91] and counting the number
of distint edges in the convex hull of a planar point set as the points are being updated
dynamically [148]. Shor has also shown that there exists a set of n degree-4 polynomials
whose lower envelope has Ω(nα(n)) breakpoints [143] (which is somewhat weak, because
the upper bound for this quantity is λ4(n) = O(n · 2α(n))). We conclude this section by
mentioning another open problem, which we believe is one of the most challenging and
interesting problems related to Davenport–Schinzel sequences.

Open Problem 2 Is there a natural geometric realization of higher order sequences? For
example, can the lower envelope of n conic sections have Ω(n2α(n)) breakpoints?
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6 Davenport–Schinzel Sequences and Arrangements

In this section we consider certain geometric and topological structrues induced by a family
of arcs in the plane, where Davenport–Schinzel sequences play a major role in their analysis.
Specifically, let Γ = {γ1, . . . , γn} be a collection of n Jordan arcs in the plane, each pair of
which intersect in at most s points, for some fixed constant s.1

Definition 6.1 The arrangement A(Γ) of Γ is the planar subdivision induced by the arcs
of Γ; that is, A(Γ) is a planar map whose vertices are the endpoints of the arcs of Γ and their
pairwise intersection points, whose edges are maximal (relatively open) connected portions
of the γi’s that do not contain a vertex, and whose faces are the connected components of
R
2 −

⋃

Γ. The combinatorial complexity of a face is the number of vertices (or edges) on
its boundary, and the combinatorial complexity of A(Γ) is the total complexity of all of its
faces.

The maximum combinatorial complexity of A(Γ) is clearly Θ(sn2) = Θ(n2), and A(Γ)
can be computed in time O(n2 logn), under an appropriate model of computation, using
the sweep-line algorithm of Bentley and Ottmann [28]. A slightly faster algorithm, with
running time O(nλs+2(n)), is mentioned in Section 6.3. Many applications, however, need
to compute only a small portion of the arrangement, such as a single face, a few faces, or
some other substructures that we will consider shortly. Using DS-sequences, one can show
that the combinatorial complexity of these substructures is substantially smaller than that
of the entire arrangement. This fact is then exploited in the design of efficient algorithms,
whose running time is close to the bound on the complexity of the substructures that these
algorithms aim to construct. In this section we review combinatorial and algorithmic results
related to these substructures, in which DS -sequences play a crucial role.

6.1 Complexity of a single face

It is well known that the complexity of a single face in an arrangement of n lines is at most
n [121], and a linear bound on the complexity of a face in an arrangement of rays is also
known (see Alevizos et al. [13, 14]). The result of Wiernik and Sharir [149] on the lower
envelopes of segments implies that the unbounded face in an arrangement of n line segments
has Ω(nα(n)) vertices in the worst case. A matching upper bound was proved by Pollack
et al. [120], which was later extended by Guibas et al. [72] to general Jordan arcs. The case
of closed or unbounded Jordan curves was treated in [132].

1A Jordan arc is an image of the closed unit interval under a continuous bijective mapping. Similarly, a
closed Jordan curve is an image of the unit circle under a similar mapping, and an unbounded Jordan curve

is an image of the open unit interval (or of the entire real line) that separates the plane.
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Theorem 6.2 ([72, 132]) Let Γ be a set of n Jordan arcs in the plane, each pair of which
intersect in at most s points, for some fixed constant s. Then the combinatorial complexity
of any single face in A(Γ) is O(λs+2(n)). If each arc in Γ is a Jordan curve (closed or
unbounded), then the complexity of a single face is at most λs(n).

Proof (Sketch): We only consider the first part of the theorem; the proof of the second
part is simpler, and can be found in [132, 139]. Let f be a given face in A(Γ), and let C
be a connected component of its boundary. We can assume that C is the only connected
component of ∂f . Otherwise, we repeat the following analysis for each connected component
and sum their complexities. Since each arc appears in at most one connected component,
the bound follows. For each arc γi, let ui and vi be its endpoints, and let γ+i (respectively,
γ−i ) be the directed arc γi oriented from ui to vi (respectively, from vi to ui).

γ−
1

γ4

γ6

γ7

γ5
γ3

γ+
1

γ2

S = 〈γ+
1 γ−

2 γ+
2 γ+

1 γ−
7 γ−

3 γ+
6 γ−

6 γ−
3 γ+

5 γ−
5 γ−

3 γ+
4 γ−

2 γ−
1 〉

Figure 6. A single face and its associated boundary sequence; all arcs are positively oriented from
left to right.

Without loss of generality, assume that C is the exterior boundary component of f .
Traverse C in counterclockwise direction (so that f lies to our left) and let S = 〈s1, s2, . . . , st〉
be the circular sequence of oriented arcs in Γ in the order in which they appear along C (if
C is unbounded, S is a linear, rather than circular, sequence). More precisely, if during our
traversal of C we encounter an arc γi and follow it in the direction from ui to vi (respectively,
from vi to ui) then we add γ+i (respectively, γ−i ) to S. See Figure 6 for an illustration. Note
that in this example both sides of an arc γi belong to the outer connected component.

Let ξ1, . . . , ξ2n denote the oriented arcs of Γ. For each ξi we denote by |ξi| the nonoriented
arc γj coinciding with ξi. For the purpose of the proof, we transform each arc γi into a very
thin closed Jordan curve γ⋆i by taking two nonintersecting copies of γi lying very close to
one another, and by joining them at their endpoints. This will perturb the face f slightly
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but can always be done in such a way that the combinatorial complexity of C does not
decrease. Note that this transformation allows a natural identification of one of the two
sides of γ⋆i with γ+i and the other side with γ−i .

It can be shown (see [72, 139]) that the portions of each arc ξi appear in S in a circular
order that is consistent with their order along the oriented ξi. In particular, there exists a
starting point in S (which depends on ξi) so that if we read S in circular order starting from
that point, we encounter these portions of ξi in their order along ξi. For each directed arc
ξi, consider the linear sequence Vi of all appearances of ξi in S, arranged in the order they
appear along ξi. Let µi and νi denote respectively the index in S of the first and of the last
element of Vi. Consider S = 〈s1, . . . , st〉 as a linear, rather than a circular, sequence (this
change is not needed if C is unbounded). For each arc ξi, if µi > νi we split the symbol ξi
into two distinct symbols ξi1, ξi2, and replace all appearances of ξi in S between the places
µi and t (respectively, between 1 and νi) by ξi1 (respectively, by ξi2). Note that the above
claim implies that we can actually split the arc ξi into two connected subarcs, so that all
appearances of ξi1 in the resulting sequence represent portions of the first subarc, whereas
all appearances of ξi2 represent portions of the second subarc. This splitting produces a
sequence S⋆, of the same length as S, composed of at most 4n symbols.

With all these modifications, one can then prove that S∗ is a DS (4n, s + 2)-sequence.
This is done by showing that each quadruple of the form 〈a · · · b · · · a · · · b〉 in S∗ corresponds,
in a unique manner, to an intersection point between the two arcs of Γ that a and b represent.
See [72, 139] for more details. This completes the proof of the first part of the theorem. ✷

Theorem 6.2 has the following interesting consequence. Let Γ = {γ1, . . . , γn} be a set of
n closed Jordan curves, each pair of which intersects in at most s points. Let K = conv(Γ)
be the convex hull of the curves in Γ. Divide the boundary of K into a minimum number of
subarcs, α1, α2, . . . , αm, such that the relative interior of each αi has a nonempty intersection
with exactly one of the curves γj . Then the number m of such arcs is at most λs(n); see
[132] for a proof.

Recently, Arkin et al. [19] showed that the complexity of a single face in an arrangement
of line segments with h distinct endpoints is only O(h log h) (even though the number of
segments can be Θ(h2)). A matching lower bound is proved is by Matoušek and Valtr [103].
The upper bound by Arkin et al. does not extend to general arcs. Har-Peled [75] has also
obtained improved bounds on the complexity of a single face in many special cases.

6.2 Computing a single face

Let Γ be a collection of n Jordan arcs, as above, and let x be a point that does not lie on
any arc of Γ. We wish to compute the face of A(Γ) that contains x. We assume that each
arc in Γ has at most a constant number of points of vertical tangency, so that we can break
it into O(1) x-monotone Jordan arcs.
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We assume a model of computation allowing infinite-precision real arithmetic, in which
certain primitive operations involving one or two arcs (e.g., computing the intersection
points of a pair of arcs, the points of vertical tangency of an arc, the intersections of an arc
with a vertical line, etc.) are assumed to take constant time.

If Γ is a set of n lines, or a set of n rays, then a single face can be computed in
time O(n logn). In the case of lines, this is done by dualizing the lines to points and
using any optimal convex hull algorithm [121]; the case of rays is somewhat more involved,
and is described in [13, 14]. However, these techniques do not extend to arrangements of
more general Jordan arcs. Pollack et al. [120] presented an O(nα(n) log2 n)-time algorithm
for computing the unbounded face in certain arrangements of line segments, but the first
algorithm that works for general arcs was given by Guibas et al. [72]. Later, several other
efficient algorithms—both randomized and deterministic—have been proposed. We first
present randomized (Las Vegas) algorithms2 for computing a single face, and then review
the deterministic solution of [72], and mention some other related results. Randomized
algorithms have recently been designed for many geometric problems; see, e.g., [44, 112, 133].
They are often much simpler than their deterministic counterparts, and are sometimes more
efficient, as the present case will demonstrate. The efficiency of a Las Vegas randomized
algorithm will be measured by its expected running time in the worst case, where the
expectation is taken with respect to the internal randomizations performed by the algorithm.

Randomized algorithms. The randomized algorithms that we will describe actually
compute the so-called vertical decomposition of f . This decomposition, which we denote
by f

||
, is obtained by drawing a vertical segment from each vertex and from each point

of vertical tangency of the boundary of f in both directions, and extend it until it meets
another edge of f , or else all the way to ±∞. The vertical decomposition partitions f into
‘pseudo-trapezoidal’ cells, each bounded by at most two arcs of Γ and at most two vertical
segments. To simplify the presentation, we will refer to these cells simply as trapezoids; see
Figure 7 for an illustration.

We first present a rather simple randomized divide-and-conquer algorithm due to Clark-
son [41] (see also [139]). The basic idea of the algorithm is as follows: Randomly choose a

subset Γ1 ⊆ Γ of ⌊n/2⌋ arcs. Recursively compute the vertical decompositions f
||

1 , f
||

2 of the

faces f1, f2 containing x in A(Γ1) and in A(Γ \ Γ1), respectively. Then merge f
||

1 and f
||

2

to compute the vertical decomposition of the face f of A(Γ) that contains x. The merge

step essentially performs a simultaneous depth-first search over the trapezoids of f
||

1 and of

f
||

2 , in which it computes the intersection cells △1 ∩ △2, for △1 ∈ f
||

1 , △2 ∈ f
||

2 , that lie

in f
||
. After having computed all such intersection cells, f

||
can be computed in additional

O(|f
||
|) time; see [139] for details. Although the merge step is quite naive, and can take

quadratic time in the worst case, one can nevertheless show that the randomization makes

2A Las Vegas algorithm always terminates with the correct output, but its running time is a random
variable (over the internal randomizations it performs).
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f

Figure 7. Vertical decomposition of a face in an arrangement of line segments; here each cell is
indeed a trapezoid or a triangle.

this step fast—its expected time is only O(λs+2(n)). Hence, the expected running time of
the algorithm is O(λs+2(n) log n).

The second randomized algorithm, due to Chazelle et al. [34], constructs the vertical

decomposition f
||
of the face containing x incrementally, by adding the arcs of Γ one by

one in a random order (the choice of the insertion order is the only randomized step in
the algorithm), where each permutation of Γ is chosen with equal probability. While the
worst-case running time of this algorithm is also quadratic, the expected running time is
only O(λs+2(n) log n), as for the preceding algorithm.

The basic idea of this algorithm is as follows. Let 〈γ1, γ2, . . . , γn〉 denote the insertion

sequence, let Γi = {γ1, . . . , γi}, and let f
||

i be the vertical decomposition of the face con-
taining x in A(Γi), for i = 1, . . . , n. When γi+1 is inserted, it may chop off a part of fi
by separating it from the point x, so some of the trapezoids of f

||

i may not appear in f
||

i+1,
and some of them, which are crossed by γi+1, will have to be replaced by new trapezoids
that have γi+1 on their boundary. Thus, adding γi+1 requires the following steps: Compute

the set of trapezoids in f
||

i that γi+1 intersects; determine the set of new cells that appear

in f
||

i+1, and find the portion of fi that is chopped off by γi+1, if any; finally, discard the

trapezoids of f
||

i that do not appear in f
||

i+1.

To facilitate the execution of these steps, the algorithm stores f
||

i as a vertical adjacency
graph, whose edges connect pairs of trapezoids sharing a vertical edge (more precisely,

having overlapping vertical edges); for each trapezoid in f
||

i , we store the list of trapezoids
that are its neighbors in the vertical adjacency graph. The algorithm also maintains a
directed acyclic graph (dag) G, referred to as the history dag . The nodes of G, after the

ith insertion stage, correspond to the trapezoids that appeared in at least one f
||

j , for j ≤ i.
The root of the dag corresponds to the entire plane. There is a directed edge from a node v
to a node w if the corresponding trapezoids τv and τw intersect and if τv (resp. τw) appeared

in f
||

j (resp. f
||

k ) for some j < k. If τv is a trapezoid of f
||

i , then v is an active leaf (in the

Davenport Schinzel Sequences March 29, 2015



Davenport–Schinzel Sequences and Arrangements 24

version of G after the ith insertion), and if τv was a trapezoid of f
||

i+1 but is not in f
||

i , and
γi does not cross τv, then v is an inactive leaf, in the sense that no successor of τv will ever
be created. All other nodes of G are inner nodes, and represent trapezoids that existed in
some f

||

j , but were crossed by some arc γk, for j < k ≤ i. The purpose of the dag G is to
facilitate, through a top-down traversal of it, a simple and efficient technique for finding all
active trapezoids that the newly inserted arc intersects.

How exactly the above steps are executed and how the data structures are updated
is somewhat involved, and is described in detail in [34, 139]. As mentioned above, the
expected running time of the algorithm is O(λs+2(n) log n). Moreover, the expected size
and depth of G are O(λs+2(n)) and O(log n), respectively, so we also obtain a point-location
data structure that can determine, in O(logn) expected time, whether a query point lies in
f . A somewhat simpler variant of the randomized incremental algorithm is given in [49].

Theorem 6.3 ([34, 41, 49]) Given a collection Γ of n Jordan arcs, each pair of which
intersect in at most s points, and a point x not lying on any arc, the face of A(Γ) containing
x can be computed by a randomized algorithm in O(λs+2(n) log n) expected running time,
in an appropriate model of computation.

Deterministic algorithms. We now sketch a deterministic, divide-and-conquer algo-
rithm, due to Guibas et al. [72], for computing f . The high-level description of the algo-
rithm is quite simple, and is similar to the first randomized algorithm described above. We
partition Γ into two subsets Γ1, Γ2, of roughly n/2 arcs each, recursively compute the faces,
f1, f2, of A(Γ1), A(Γ2), respectively, that contain x, and then ‘merge’ these two faces to
obtain the desired face f . Note that f is the connected component of f1 ∩ f2 containing
x. However, as already noted, it is generally too expensive to compute this intersection
in its entirety, and then select the component containing x, because the boundaries of f1
and f2 might have Ω(n2) points of intersection. We therefore need a more careful way of
performing the merge.

The setup for the merge step is as follows. We are given two connected (but not nec-
essarily simply connected) regions in the plane, which we denote, respectively, as the red
region R and the blue region B. Both regions contain the point x in their interior, and our
task is to calculate the connected component f of R ∩ B that contains x. The boundaries
of R and B are composed of (maximal connected) portions of the given curves in Γ, each
of which will be denoted in what follows as an arc segment (or ‘subarc’).

For technical reasons, we extend this task as follows. Let P be the set of points containing
x and all endpoints of the arcs of Γ that lie on the boundary of either R or B. Clearly,
|P | ≤ 2n + 1. For each w ∈ P , let fw denote the connected component of R ∩ B that
contains w (these components are not necessarily distinct, and some may be empty). Our
task is now to calculate all these components (but produce each distinct component just
once, even if it contains several points of P ). We refer to this task as the red–blue merge.
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We call the resulting components fw purple regions, as each of them is covered by both the
red and the blue regions. An illustration of this merge is shown below in Figure 8.

x

fx

w
fw

Figure 8. The red–blue merge; the solid arcs are the blue arcs, and the dashed arcs are red.

The algorithm relies heavily on the following technical result, called the combination
lemma, which is interesting in its own right. We first introduce a few notation. Let
R1, . . . , Rm be a collection of distinct faces in an arrangement of a set Γr of ‘red’ Jor-
dan arcs, and let B1, . . . , Bn be a similar collection of faces in an arrangement of a set Γb

of ‘blue’ Jordan arcs (where, again, each pair of arcs from Γr ∪ Γb are assumed to intersect
in at most s points). Let P = {p1, . . . , pk} be a collection of points, so that each pi ∈ P
belongs to one red face Rmi

and to one blue face Bni
. Let Ei be the connected component of

Rmi
∩Bni

containing pi (i.e., Ei is the ‘purple’ face of the combined arrangement A(Γr∪Γb)
containing pi). Then we have the following result.

Lemma 6.4 (Combination Lemma, [72]) The total combinatorial complexity of all the
regions Ei is at most O(r + b + k), where r and b are the total number of arc segments
composing the boundaries of the red faces and of the blue faces, respectively.

Remark 6.5 A stronger combination lemma was obtained by Edelsbrunner et al. [56] for
the case of line segments. They proved that the total complexity of the purple regions Ei’s is
bounded by r+b+O(u+v+k), where u (resp. v) is the total number of connected components
of the boundaries of the red (resp. blue) faces. Recently, Har-Peled [75] generalized the
combination lemma to the overlay of more than two arrangements.

The combination lemma implies that the complexity of all the ‘purple’ regions in the
overlay of the faces f1 and f2 is O(r+b) = O(λs+2(n)). Exploiting this bound, Guibas et al.
[72] describe a somewhat involved sweep-line algorithm that sweeps over f1 and f2, and com-
putes the purple regions in time O(λs+2(n) log n). The main idea behind this sweep is that
it is performed separately, but simultaneously, over the red, blue, and purple arrangements,
in a manner that processes only a small number of red-blue intersections. See [72, 139] for
more details. Hence, the overall running time of the algorithm is O(λs+2(n) log

2 n).
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Recently, Amato et al. [17] have succeeded in derandomizing the algorithm by Chazelle
et al. [34], described above, for a set of segments. The worst-case running time of their
algorithm is O(nα2(n) log n). Hence, we can conclude the following.

Theorem 6.6 ([17, 72]) Given a collection Γ of n Jordan arcs, each pair of which inter-
sect in at most s points, and a point x not lying on any arc, the face of A(Γ) containing x
can be computed by a deterministic algorithm in time O(λs+2(n) log

2 n), in an appropriate
model of computation. The running time improves to O(λs(n) log

2 n) for collections of Jor-
dan curves (closed or unbounded), and to O(nα2(n) log n) for collections of line segments.

We conclude this subsection by mentioning two open problems.

Open Problem 3 (i) Given a set Γ of n segments and a point p, can the face in A(Γ)
containing p be computed in time O(n log h), where h is the number of edges in the
face?

(ii) Given a set Γ of n Jordan arcs, each pair of which intersects in at most s points, and
a point p, can the face in A(Γ) containing p be computed in time O(λs+2 logn)?

6.3 Zones

The zone of a curve γ0 in the arrangement A(Γ) of a collection Γ of n Jordan arcs is the
set of all faces of A(Γ) that γ0 intersects. The complexity of the zone is the sum of the
complexities of all the faces in the zone.

Zones were initially studied for arrangements of lines and hyperplanes [52, 58, 59],
but they are also easy to analyze in the context of general arcs. The following theorem
demonstrates a close relationship between zones and faces in an arrangement.

Theorem 6.7 ([54]) The complexity of the zone of a curve γ0 in an arrangement A(Γ) of
n Jordan arcs, each pair of which intersect in at most s points, is O(λs+2(n)), assuming
that γ0 intersects every arc of Γ in at most some constant number of points.

Proof: Split every arc γ ∈ Γ into two subarcs at each intersection point of γ and γ0, and
leave sufficiently small gaps between these pieces. In this manner all faces in the zone of γ0
are merged into one face, at the cost of increasing the number of arcs from n to O(n). Now
we can apply Theorem 6.2 to conclude the proof. ✷

If Γ is a set of n lines and γ0 is also a line, then after splitting each line of Γ at their
intersection points with γ0 we obtain a collection of 2n rays, and therefore the complexity
of the unbounded face is O(n). In fact, in this case one can show that the edges of the zone
form a DS (4n, 2) sequence, thereby obtaining an upper bound of 8n− 1 on the complexity
of the zone. Applying a more careful analysis, Bern et al. [30] proved the following theorem.
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Theorem 6.8 ([30]) The complexity of the zone of a line in an arrangement of n lines is
at most 5.5n, and this bound is tight within an additive constant term, in the worst case.

See [13, 30, 36, 54] for other results and applications of zones of arcs.

An immediate consequence of Theorem 6.7 is an efficient algorithm for computing the
arrangement A(Γ). Suppose we add the arcs of Γ one by one and maintain the arrangement
of the arcs added so far. Let Γi be the set of arcs added in the first i stages, and let γi+1

be the next arc to be added. Then in the (i+1)st stage one has to update only those faces
of A(Γi) which lie in the zone of γi+1, and this can easily be done in time proportional to
the complexity of the zone; see Edelsbrunner et al. [54] for details. By Theorem 6.7, the
total running time of the algorithm is O(nλs+2(n)), and, by Theorem 6.8, the arrangement
of a set of n lines can be computed in O(n2) time. If the arcs of Γ are added in a random
order, then the expected running time of the above algorithm is O(n logn+ k), where k is
the number of vertices in A(Γ) [34, 45, 112], which is at most quadratic in n. The latter
time bound is worst-case optimal.

Theorem 6.7 can also be used to obtain an upper bound on the complexity of any m
faces of A(Γ). Specifically, let {f1, . . . , fm} be a subset of m distinct faces in A(Γ), and
let nf denote the number of vertices in a face f of A(Γ). Then, using the Cauchy-Schwarz
inequality,

m
∑

i=1

nfi ≤ m1/2

(

∑

i

n2
fi

)1/2

≤ m1/2

(

∑

f∈A(Γ)

n2
f

)1/2

= O



m1/2

(

∑

f∈A(Γ)

nfλs+2(kf )

)1/2




= O



m1/2

(

λs+2(n)

n

)1/2(
∑

f∈A(Γ)

nfkf

)1/2


 ,

where kf is the number of arcs in Γ that appear along the boundary of f . It is easily verified
that

∑

f∈A(Γ)

nfkf ≤
∑

γ∈Γ

∑

f∈zone(γ,Γ\{γ})
nf = O(nλs+2(n)) .

Hence, we obtain the following result.

Theorem 6.9 ([54, 75]) Let Γ be a set of n arcs satisfying the conditions stated earlier.
The maximum number of edges bounding any m distinct faces of A(Γ) is O(m1/2λs+2(n)).

It should be noted that Theorem 6.9 is weaker than the best bounds known for the
complexity of m distinct faces in arrangements of several special types of arcs, such as lines,
segments, and circles (see [20, 32, 42]), but it applies to arrangements of more general arcs.
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6.4 Levels in arrangements

Let Γ be a set of n x-monotone, unbounded Jordan curves, each pair of which intersects in at
most s points. The level of a point p ∈ R

2 in A(Γ) is the number of curves of Γ lying strictly
below p, and the level of an edge e ∈ A(Γ) is the common level of all the points lying in the
relative interior of e. For a nonnegative integer k < n, the k-level (respectively, (≤k)-level)
of A(Γ) is (the closure of) the union of all edges in A(Γ) whose level is k (respectively, at
most k). Note that the graph of the lower envelope EΓ is the 0-level, so the complexity of
the 0-level is at most λs(n). Very little is known about the complexity of an arbitrary level,
even for arrangements of lines, and there is a big gap between the known upper and lower
bounds. (The so-called k-set problem, of obtaining sharp bounds on the complexity of an
arbitrary level, is one of the most challenging open problems in combinatorial geometry; see
[50, 64, 101, 115, 147].) However, tight bounds are known for the complexity of (≤k)-levels
in arrangements of curves:

Theorem 6.10 ([45, 137]) Let Γ be a set of n x-monotone curves, each pair intersecting
in at most s points, and let 0 < k < n be an integer. The number of edges in A(Γ) of level
at most k is O(k2λs(⌊n/k⌋)), and this bound is tight in the worst case.

The proof of the theorem is based on an elegant probabilistic analysis technique, due to
Clarkson and Shor [45], which has been applied to a variety of other problems as well. An
immediate corollary of the above theorem is the following claim.

Corollary 6.11 ([15]) The number of edges in the (≤k)-level of an arrangement of n lines
in the plane is Θ(nk).

Corollary 6.11 can be extended to arrangements of hyperplanes in higher dimensions as
well, where the number of vertices in (≤k)-level is Θ(n⌊d/2⌋k⌈d/2⌉) [45]. Efficient algorithms
for computing (≤k)-levels in arrangements are given in [5, 65, 111].

Theorem 6.10 can be extended to a more general setting. Let K = {K1, . . . ,Kn} be a
collection of n regions in R

2 so that the boundaries of any two them intersect in at most s
points. Let f(r) denote the expected number of vertices on the boundary of the union of a
random subset of r regions of K. For example, if the boundary of each Ki is an x-monotone
curve, then f(r) = O(λs(r)) (see Corollary 2.3). Using the same probabilistic technique of
[45], the following theorem can be proved.

Theorem 6.12 ([137]) Let K = {K1, . . . ,Kn} be a collection of n regions in R
2 so that

the boundaries of any two them intersect in at most s points. For any integer 1 ≤ k ≤ n−2,
the number of intersection points of the boundaries of regions in K that lie in the interior
of at most k regions of K is O(k2f(⌊n/k⌋)). If each ∂Ki is an x-monotone curve, then the
number of such vertices is O(k2λs(⌊n/k⌋)).
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Open Problem 4 Obtain a tight bound on the complexity of a single level in an arrange-
ments of lines in the plane.

7 Miscellaneous Applications

In the previous section we presented applications of Davenport–Schinzel sequences to planar
arrangements, but the scope of geometric applications of these sequences is much wider.
It is beyond the scope of this survey chapter to present all these applications in detail,
as they are quite diverse and require rather sophisticated and problem-specific geometric
machinery. Instead, we briefly review here as many applications as space allows us, and
provide more details for a few of them. More details, and additional applications, can be
found in [139].

7.1 Applications of DS (n, 2)-sequences

Without having made it explicit, we have already encountered some combinatorial applica-
tions of DS (n, 2)-sequences in the previous sections (e.g., the analysis of the complexity of
the zone of a line in an arrangement of lines). Here we present a few additional applications.
See also Edelsbrunner and Guibas [55] and Ramos [122] for additional applications of this
kind.

Voronoi diagrams. Let S = {p1, . . . , pn} be a set of n points in the plane. The Voronoi
diagram of S, denoted as Vor(S), under the Euclidean metric ρ, is a subdivision of the plane
into cells V (pi), for pi ∈ S, where V (pi) = {x ∈ R

2 | ρ(x, pi) ≤ ρ(x, pj), for 1 ≤ j ≤ n}. See
[23, 99] for comprehensive surveys on Voronoi diagrams. Fortune [66] showed that Vor(S)
can be computed efficiently by sweeping the xy-plane from bottom to top with a horizontal
line ℓ(t) : y = t (i.e., by varying t from −∞ to +∞). The basic idea of his algorithm is as
follows.

For a point pi = (xi, yi) ∈ S, let

Ci = {(x, y, z) | (x− xi)
2 + (y − yi)

2 = z2; z ≥ 0};

this is a cone in 3-space. Let C = {Ci | 1 ≤ i ≤ n}. It is easily checked that, by
definition, Vor(S) is the minimization diagram of C (regarding C as a set of graphs of
bivariate functions). The algorithm actually sweeps a slanted plane h(t) : y + z = t
across 3-space, varying t from −∞ to +∞, and maintains the xy-projection M(t) of the
cross section h(t) ∩ EC , where EC is the lower envelope of C. The projection πi(t) of the
intersection of h(t) with the cone Ci is nonempty if and only if t ≥ yi, and is then a
parabola with directrix ℓ(t) and focus pi. Then M(t) is easily seen to be the lower envelope
of the parabolas πi in the xy-plane. Since any two such parabolas intersect in at most 2
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points, Theorem 3.1 implies that M(t) has at most 2n − 1 breakpoints. Fortune proved
that, as the value of t varies, the combinatorial structure of M(t) changes at O(n) critical
values of t, and that M(t) can be updated in O(logn) time at each critical value of t.
Putting all these observations together, he obtained an optimal O(n logn)-time algorithm
for computing Vor(S). See [66, 139] for further details.

Triangulation of convex polygons. A DS (n, 2)-sequence is called canonical if its length
is 2n− 1 and if its symbols are numbered so that the leftmost appearance of i precedes the
leftmost appearance of j whenever i < j. Roselle [127] has shown that there exists a close
relationship between triangulations of convex polygons and canonical DS (n, 2)-sequences.
A triangulation T of a convex (n + 1)-gon P , whose vertices are labeled 1, 2, . . . , n + 1
in counterclockwise order, can be represented by the set T ∗ consisting of all the diagonals
(i, j), with i < j, that form T , and of the sides (i, i + 1), for 1 ≤ i ≤ n, and (1, n + 1), of
P . For each vertex i of P , let ξ(i) be the sequence of all vertices 〈j1, . . . , jki〉, arranged in
decreasing (i.e., clockwise) order, such that jl < i and (jl, i) ∈ T ∗, for each 1 ≤ l ≤ ki. Let
ϕ(T ) denote the sequence

ϕ(T ) = ξ(2) ‖ ξ(3) ‖ · · · ‖ ξ(n+ 1).

Theorem 7.1 ([127]) Let T be a triangulation of a convex (n+1)-gon. Then the sequence
ϕ(T ) is a canonical DS(n, 2)-sequence. Conversely, every canonical DS (n, 2)-sequence is
the image ϕ(T ) of some triangulation T of a convex (n+ 1)-gon.

It is easily verified that a convex (n + 1)-gon can be triangulated in
(

2n−2
n−1

)

/n different
ways, so Theorem 7.1 implies that this is also the number of distinct canonical DS (n, 2)-
sequences; see also [109]. There are several other combinatorial structures that are equiva-
lent to canonical DS(n, 2)-sequences, including certain rooted plane trees and bracketing a
formal product [95]. See [69, 95] for other results on enumeration of DS (n, 2)-sequences.

7.2 Motion planning

In this subsection we describe several applications of Davenport–Schinzel sequences to algo-
rithmic motion planning in robotics. A typical motion-planning problem can be defined as
follows: we are given a robot system B with k degrees of freedom and an environment filled
with obstacles. The configuration space of B is a k-dimensional parametric space, each point
of which represents a possible placement of B by a k-tuple of real numbers that gives the
values of the parameters controlling the k degrees of freedom of B. As an example of such
a configuration space, consider the case where B is a rigid polygon moving (by translations
and rotations) in the plane. Here B has three degrees of freedom, and any placement of
B can be represented by the triple (x, y, θ), where (x, y) are the coordinates of some fixed
reference point attached to B, and θ is the orientation of B. If we allow B only to translate,
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it has only two degrees of freedom, and its placements can be represented by the pair (x, y)
of the coordinates of the reference point.

The presence of obstacles in the robot’s environment causes portions of the configura-
tion space of B to be ‘forbidden’ or non-free. A placement of B is called free if B does
not intersect any obstacle at that placement; otherwise it is called non-free. A non-free
placement π is called semi-free if B does not intersect the interior of any obstacle at π. Our
goal is to compute the free configuration space of B, which we denote by FP , consisting
of all free placements of B. The boundary of FP consists of semi-free placements of B.
The motion-planning problem that we consider is to determine, for any given pair of free
placements, Z1, Z2, of B, whether there exists a continuous obstacle-avoiding motion of B
from Z1 to Z2, and, if so, to plan such a motion.

This problem, under reasonable assumptions concerning the geometry of B and of the
obstacles, can be re-stated as the problem of computing the connected components of FP ,
and of representing them in an appropriate discrete combinatorial fashion. This follows
from the observation that a collision-free motion of B is a connected arc in FP , and such an
arc connects Z1 and Z2 if and only if they lie in the same (arcwise-) connected component
of FP .

The space FP can be defined in terms of an arrangement of surfaces within the config-
uration space, as follows. For each obstacle feature w (e.g., an obstacle corner, boundary
edge, face, etc.) and each robot feature s, let σw,s denote the locus of all placements of
B at which s makes contact with w. Under reasonable assumptions concerning the shape
of the robot and of the obstacles, the possible types of degrees of freedom of B, and an
appropriate choice of the features w, s, we can assume that each locus σw,s is a (portion of
some) (k − 1)-dimensional algebraic surface of bounded degree. Let Σ denote the resulting
collection of surface patches σw,s. We refer to these surfaces as contact surfaces, and let
n denote their number. Let Z ∈ FP be some initial free placement of B. As we move B
from Z, it will remain free as long as the corresponding path traced in the configuration
space does not reach any contact surface. The free configuration space of B is therefore a
collection of some of the cells of the arrangement A(Σ) of the contact surfaces. Moreover,
if we only want to compute the portion of FP that consists of all free placements reachable
from a fixed initial free placement Z of B, then this portion is the cell of A(Σ) that contains
Z.

Hence, the problem has been reduced to the problem of computing a single cell in an
arrangement of a collection Σ of n algebraic surface patches, of low bounded degree, in R

k.
In a companion chapter in this volume, we will return to this problem when we discuss
higher-dimensional arrangements. For the time being, let us consider only the case k = 2,
where we regard the configuration space of B as a planar region, and the problem becomes
that of computing a single face in a planar arrangement of n low-degree algebraic arcs. By
the results of Section 6 we immediately conclude:

Theorem 7.2 ([72]) With the above notation, the combinatorial complexity of the space
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C of all free placements of a general robot system B with two degrees of freedom, which are
reachable from Z by a collision-free motion, is O(λs+2(n)), where n is the number of contact
arcs and s is the maximum number of intersections between any pair of these arcs. More-
over, C can be constructed, in an appropriate model of computation, in O(λs+2(n) log

2 n)
deterministic time, or in O(λs+2(n) log n) randomized expected time.

Note that, once C is available, a path that connects Z to some desired target placement
(that also lies in C) can easily be computed in time O(λs+2(n)).

Let us also consider a special case of this result, in which B is an arbitrary rigid polygonal
object with p edges, translating (but not rotating) in a polygonal environment Q whose
boundary consists of q edges. As noted above, any placement of B can be represented by
the position (x, y) of some fixed reference point P attached to B. For each obstacle edge w
and each vertex v of B, let γw,v denote the locus of all placements of B at which v touches
w; clearly, this is a line segment obtained by an appropriate translation of w. Similarly, for
each obstacle corner c and each side e of B, let γc,e denote the locus of all placements of B
at which e touches c; this is also an appropriately translated copy of e. Hence, in this simple
instance, the contact loci are O(pq) straight segments in the plane, and the set of all free
placements reachable from a given initial free placement Z of B is the face containing Z in
the arrangement formed by these O(pq) contact segments. The analysis of Section 6 thus
immediately implies that the combinatorial complexity of the space C of all free placements
of B that are reachable from Z by a collision-free translational motion is O(pqα(pq)). This
bound was recently improved by Har-Peled et al. [76] to O(pqα(p)). Hence, we obtain the
following result.

Theorem 7.3 ([76]) With the above notations, the combinatorial complexity of the space
C of all free placements of the translating convex polygon B that are reachable from Z
by a collision-free translational motion is O(pqα(p)). Moreover, C can be constructed in
O(pqα2(p) log pq) deterministic time, or in O(pqα(p) log pq) randomized expected time.

Note that the above analysis holds for any arbitrary polygonal region B. In fact, B does
not even have to be connected, and may consist of several disjoint pieces, all translating
rigidly together. However, if B is a single convex polygon, better results can be obtained,
which we mention here, for the sake of completeness. Suppose that in this case the obstacles
consist of m convex polygons with pairwise-disjoint interiors (non-convex obstacles are
assumed to be cut into convex pieces). For each convex obstacle O, let γO denote the locus
of all placements of B at which it touches O (but their interiors remain disjoint). As is
well known (see, e.g., [87]), γO is (the boundary of) a closed convex polygon, which is the
Minkowski sum O⊕ (−B0) = {x− y | x ∈ O, y ∈ B0}, where B0 is a standard placement of
B at which the reference point lies at the origin. As is also well known, the number of edges
of γO is at most k + nO, where nO is the number of edges bounding O. It has been shown
in [87] that, for any pair of distinct obstacles O, O′ (with pairwise-disjoint interiors), the
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polygons γO, γO′ intersect in at most two points, assuming general position of B and of the
obstacles. Hence, applying Theorem 3.1 we conclude that the space C of free placements of
B reachable from Z has complexity at most λ2(m) = 2m− 1. Note, however, that here we
measure complexity only in terms of the number of intersections of the loci γO that appear
along ∂C; to this we have to add the total number of vertices of the individual polygons
γO, which is at most

∑

O(k + nO) = km + n. Hence, we conclude that the boundary of
the desired free component C contains at most km + n reflex corners and at most 2m − 1
non-reflex (convex) corners. Moreover, as shown in [87], the entire free configuration space
of B (which is simply the complement of the union of the polygons γO) has at most 6m−12
non-reflex corners (for m > 2) and at most km+ n reflex corners (see also Section 7.8).

For systems with more than two degrees of freedom, the situation is more involved
(and will be mostly delegated to the companion paper). However, there are certain special
motion-planning problems which admit a more direct analysis of their combinatorial and
algorithmic properties, in which Davenport–Schinzel sequences are explicitly used.

One such problem is that of planning the motion of a convex polygonal robot B translat-
ing and rotating in a planar polygonal environment Q, as above. Since B has three degrees
of freedom, any vertex of FP is a ‘semi-free’ placement of B at which it makes three simulta-
neous contacts with obstacles, while otherwise remaining free. We refer to such placements
as critical placements of B. Leven and Sharir [100] proved that the number of critical
placements of B is O(pqλ6(pq)). This is done by reducing the problem to the interaction of
O(pq) upper and lower envelopes of collections of univariate partially defined functions of
the orientation θ, so that each collection consists of O(pq) functions, and each pair of func-
tions intersect in at most four points; see [88, 100] for more details. This implies that the
combinatorial complexity of the entire free configuration space of B is also O(pqλ6(pq)). (To
appreciate this bound, we note that if B is non-convex, its entire free configuration space
can be shown to have Ω((pq)3) complexity [139].) This combinatorial bound has led to an
efficient algorithm for constructing FP [88, 89], whose running time is O(pqλ6(pq) log pq).
Chew and Kedem [39] gave an O(p4qλ3(q) log q)-time algorithm for finding a largest similar
copy of B that can be placed inside Q without intersecting the interior of any obstacle, and
also to plan a high-clearance motion of B inside Q. Later Sharir and Toledo [141] gave an
O(p2qλ6(pq) log

3 pq log log pq)-time algorithm for the largest placement problem, using the
result of [100] and the so called parametric searching technique.

Some other results on motion-planning and related problems, which exploit the theory
of Davenport–Schinzel sequences, can be found in [3, 6, 9, 83].

7.3 Shortest paths

Computing a collision-free shortest path between two points amidst a collection O of poly-
hedral obstacles in R

3 is a fundamental problem in robotics (it is a special case of optimal
motion planning). Canny and Reif [33] showed that the problem is NP-Hard, which has mo-
tivated the study of efficient construction of approximate shortest paths and of developing
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polynomial-time algorithms for special cases of the problem.

Clarkson [43] presented a polynomial-time algorithm for constructing approximate short-
est paths in 3-space (see [40, 116] for other such algorithms). For a given ε > 0, his algorithm
constructs a graph Gε, whose nodes are points in R

3, and whose edges connect some pairs
of these points by straight segments. The size of Gε is O

(

n2 log(nρ) + n2λs(n)/ε
4
)

, where s
is a fixed constant and ρ is the ratio of the length of the longest edge in O to the (straight)
distance between p and q. He then reduces the problem to that of constructing a short-
est path in Gε (where the weight of an edge is its Euclidean length), and shows that the
ratio between the length of the path obtained in this manner and the actual collision-free
shortest path between p and q is at most 1 + ε. The running time of his algorithm is
O
(

(n2λs(n)/ε
4) log(n/ε) + n2 log(nρ) log(n log ρ)

)

.

A special case of shortest paths in 3-space, which has been widely studied, is when
O consists of a single convex polytope and p, q lie on its surface (see, for example, [37,
106, 140]). A shortest path on the surface of a convex polytope can be represented by the
sequence of edges that it crosses, and we refer to such a sequence of edges as a shortest-path
edge sequence. It is known that there are Θ(n4) shortest path edge-sequences [108, 130].
Agarwal et al. [4] have shown that the exact set of all shortest-path edge sequences can be
computed in time O(n5λs(n) log n), for some constant s > 0, improving a previous algorithm
by Schevon and O’Rourke [131].

Baltsan and Sharir [27] considered the special case where O consists of two disjoint
convex polytopes (and p and q lie anywhere in the free space). Using Davenport–Schinzel
sequences to bound the number of candidate paths that one has to consider, they presented
an algorithm with running time O(n2λ10(n) log n) to find an exact collision-free shortest
path between p and q.

If the moving object is not a point and the object is allowed to rotate, the problem
of computing a shortest path becomes significantly more difficult, even in the planar case.
(In fact, even the notion of shortest path becomes much vaguer now.) Suppose we want
to compute an optimal path for moving a line segment γ = pq (allowing both translations
and rotations) amid polygonal obstacles with a total of n edges. Assume that the cost of
a path is defined as the total distance traveled by one of its endpoints, say, p, and restrict
the problem further by requiring that p moves along polygonal paths that can bend only at
obstacle vertices. This rather restricted version of the problem was studied by Papadimitriou
and Silverberg [117], who gave an O(n4 log n)-time algorithm for computing a shortest path
in the above setting. Sharir [136] improved the running time to O(n3α(n) log2 n), using
Davenport–Schinzel sequences and planar arrangements.

7.4 Transversals of planar objects

Let S = {S1, S2, . . . , Sn } be a collection of n compact convex sets in the plane. A line that
intersects all sets of S is called a transversal (or a stabber) of S. Note that a line intersects
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a set if and only if it intersects its convex hull, so convexity is usually not a real restriction.
For each set Si ∈ S, let S∗

i denote the set of points dual to the lines that intersect Si, using
a standard duality transform [52]. S∗

i is bounded from above by a convex x-monotone curve
Ai and from below by a concave x-monotone curve Bi; see Figure 9. The stabbing region
of S (or the space of all transversals) is the intersection S∗ =

⋂n
i=1 S

∗
i . By definition, S∗ is

the set of points dual to all nonvertical transversals of S [22, 57].

ℓ2

p
R∗ ℓ∗2

p∗
R

ℓ1
ℓ∗1

Figure 9. A convex set R and its stabbing region R∗.

The complexity of S∗ can be measured by the number of its vertices, where a vertex is
an intersection point between the boundaries of two regions S∗

i and S∗
j that lies on ∂S∗.

Since S∗ is the region lying between the lower envelope of the set A = {Ai | 1 ≤ i ≤ n}
and the upper envelope of the set B = {Bi | 1 ≤ i ≤ n}, Corollary 2.3 implies that the
complexity of S∗ is O(λs(n)), and that it can be computed in time O(λs(n) log n), where s
is the maximum number of common upper tangents or of common lower tangents between
any two objects of S [22]. If S is a set of n convex polygons with a total of m vertices, then
A and B are sets of n piecewise-linear curves, with a total of m segments, so Corollary 3.4
implies that the complexity of S∗ is O(mα(n)), and one can also show that S∗ can be
computed in time O(m log n).

For any 0 ≤ k < n, a line ℓ is called a k-transversal if it intersects at least n − k
objects of S. If we define K2i−1 to be the region lying above Ai and K2i to be the region
lying below Bi, then the point dual to ℓ lies in the interior of at most k Kj ’s. Using
Theorem 6.12, Sharir showed that the complexity of the space of all k-transversals of S is
O((k + 1)2λs(⌊n/(k + 1)⌋)) [137, 139].

Next, suppose that S is a set of pairwise disjoint convex objects. We say that a directed
transversal ~ℓ induces a geometric permutation 〈i1, i2, . . . , in〉 of S if ~ℓ intersects the objects
of S in the order 〈Si1 , . . . , Sin〉. A directed transversal ~ℓ is called extremal if it is tangent
to two objects Si1 , Si2 and these objects are contained in the closed halfplane that lies to
the left of ~ℓ. Edelsbrunner and Sharir [60] proved that, there is an extremal transversal
inducing each geometric permutation. Let U = 〈θ1, . . . , θm〉 be the (circular) sequence of
all orientations, sorted in clockwise order, of the extremal directed transversals of S. It is
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shown in [60] that U can be mapped to a DS(n, 2)-cycle, which implies that the number of
geometric permutations of S is at most 2n−2. This bound is known to be tight in the worst
case; see [25, 84]. Other results on geometric permutations can be found in [24, 26, 63], and
see [70] for a comprehensive survey on geometric transversal theory.

7.5 Dynamic geometry

In this section we consider various problems related to a set of points in the plane, each
moving along some predefined trajectory. As mentioned in the introduction, Atallah’s paper
[21] on dynamic geometry problems was the first paper in computational geometry to apply
Davenport–Schinzel sequences.

We assume that we are given a collection S = {p1, . . . , pn} of n points in the plane
such that the coordinates of each pi are functions of time. Let pi(t) = (xi(t), yi(t)) denote
the position of the point pi at time t, and let S(t) denote the configuration of S at time t.
We assume that xi(t), yi(t), for 1 ≤ i ≤ n, are polynomials of maximum degree s, for some
constant s, or similarly well-behaved functions. We want to study how various geometric
structures defined by S change with time.

We first bound the number of times the nearest neighbor of some point pi of S changes.
For every j 6= i, let

gij(t) = d2(pi(t), pj(t)) = (xi(t)− xj(t))
2 + (yi(t)− yj(t))

2,

and let Gi(t) = minj 6=i gij(t). By definition, the nearest neighbor of pi(t) changes only at
breakpoints of Gi. Since each gij is a polynomial of degree at most 2s, Gi has at most
λ2s(n) breakpoints. This bound is almost tight, because the nearest neighbor of a point can
change Ω(n) times, in the worst case. The same technique can also be used to bound the
number of times at which the closest pair of points in S(t) changes. For this, consider the
function G(t) = mini<j gij(t). Again, by definition, the closest pair in S(t) changes only at
breakpoints of G(t), and G(t) has at most λ2s(

(

n
2

)

) ≤ nλ2s(n) breakpoints. This bound can
also be shown to be close to optimal in the worst case. Using a more involved argument,
Atallah [21] showed that the number of combinatorial changes in the convex hull of S is
O(nλ2s+2(n)). An Ω(n2) lower bound on the number of combinatorial changes is proved in
[7].

A more interesting and harder problem in this area is to bound the number of changes in
the Delaunay triangulation of S (the dual of the Voronoi diagram of S; see [52]), which was
left as an open problem in [21]. The best known upper bound is O(n2λs(n)) [67, 71, 83], and
the best known lower bound is Ω(n2). If each point of S is moving with unit speed along a
line, then the upper bound on the number of changes in the Delaunay triangulation can be
improved to O(n3); see, e.g., Guibas et al. [71]. It is conjectured that the actual bound is
O(nλr(n)), for some r depending on s, even when the points are moving at different speeds.
Chew [38] showed that if the underlying metric for the Delaunay triangulation is L1 or
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L∞, instead of the Euclidean metric, the number of combinatorial changes in the Delaunay
triangulation of a set of n points moving in the plane, each with a constant velocity (along
some line), is only O(n2α(n)), thus establishing the conjecture in this special case. Aonuma
et al. [18] have shown that, given k sets of points in the plane, each consisting of n points and
moving rigidly according to some continuous function of time, the number of combinatorial
changes in the Voronoi diagram of these kn points is O(k4nλs(n)), for an appropriate
constant s. The bound was improved by Huttenlocher et al. [80] to O(n2k2λs(k)). See
[12, 124, 125, 126] for bounds on dynamic Voronoi diagrams in higher dimensions, and
[73, 82, 85, 104, 107, 113, 147] for other results in dynamic geometry.

Open Problem 5 Obtain a tight bound on the number of changes in the Delaunay trian-
gulation of a set of moving points, each of which is moving with a fixed velocity.

7.6 Hausdorff distance and Voronoi surfaces

Let S be a set of points in R
2. The Voronoi surface of S is defined as the bivariate function

π(x) = minq∈S ρ(q, x), for x ∈ R
2, where ρ(·, ·) is the distance function in R

2, which we will
assume to be some fixed Lp metric. By definition, the orthogonal projection of the graph
of π onto the xy-plane is the Voronoi diagram of S under the metric ρ.

Let S1, . . . , Sm be a family of pairwise-disjoint point sets in the plane, with |Si| = ni

and
∑m

i=1 ni = n, and let πi(x) denote the Voronoi surface of Si. The upper envelope of
these surfaces is the (graph of the) function Π(x) = max1≤i≤m πi(x). Thus Π(x) gives the
largest distance from x to its m nearest neighbors, one from each set Si. For a point q ∈ S,
let V (q) ⊆ R

2 be the set of points at which the function ρ(q, x) attains Π. If q ∈ Si then, by
definition, V (q) is contained in the Voronoi cell Vi(q) of q in Vor(Si). Moreover, if we denote
by Vij(q) the Voronoi cell of q in Vor(Si∪Sj), for any j 6= i, then V (q) = Vi(q)\

⋃

j 6=i Vij(q).
Since each Voronoi cell Vij(q) is star-shaped with respect to q [98], we can interpret the
boundary of

⋃

j 6=i Vij(q) as the upper envelope of the boundaries of the cells Vij(q), each
represented as a univariate function r = fij(θ), where (r, θ) are polar coordinates about q.
Using these observations, Huttenlocher et al. [81] showed that the total number of vertices
of the regions V (q), summed over all points q ∈ S, is O(mnα(mn)). For the L1 and L∞-
metrics, the number of vertices is only O(mn). Moreover, Π can be computed in time
O(mn logmn) under any Lp metric.

The study of the upper envelope of Voronoi surfaces is motivated by the following
application. Let A and B be two sets of points in the plane. The Hausdorff distance
between A and B is defined as

H(A,B) = max {h(A,B), h(B,A)},

where h(A,B) = maxa∈A minb∈B ρ(a, b), and ρ(·, ·) is, say, some Lp-metric. Suppose we fix
the set A and allow B to translate; then D(A,B), the minimum Hausdorff distance under
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translation between A and B is defined as

D(A,B) = min
x

H(A,B ⊕ x),

where B⊕x = {b+x | x ∈ B}. The function D(A,B) is used as a measure of the degree to
which the two sets resemble each other. Huttenlocher et al. [81] showed that D(A,B) can
be computed by constructing the upper envelope of a family of Voronoi surfaces of 2n point
sets, each consisting of n points. Hence, D(A,B) can be computed in time O(n3 logn). See
also [79, 80] for some related results.

The algorithm of [81] can be extended to compute the minimum Hausdorff distance
D(A,B) for sets A,B of nonintersecting segments under the L1 or L∞-metric. Alt et al. [16]
presented an O(n7 log n)-time algorithm for computing D(A,B) for sets of nonintersecting
segments under the L2 metric, which has been improved by Agarwal et al. [11]. If we allow
both translations and rotations, the problem of computing a placement that minimizes the
Hausdorff distance becomes considerably more difficult. See [11, 61] for efficient approximate
solutions.

7.7 Visibility problems

Let Σ be a polyhedral terrain (i.e., the graph of a continuous piecewise-linear, totally defined
function z = Σ(x, y)) having n edges, and let ξ be a fixed point lying above Σ. Without loss
of generality, we can assume that ξ lies on the z-axis. We wish to preprocess Σ into a data
structure for answering ray-shooting queries from ξ, i.e., for a query ray ρ emanating from
ξ, we wish to find efficiently the first intersection point of ρ with Σ. Cole and Sharir [46]
presented a data structure of size O(nα(n) log n) that can answer a query in time O(logn).
We give a brief description of their data structure.

For any object w in 3-space, let w⋆ denote its projection onto the xy-plane. For technical
reasons, we consider only those rays emerging from ξ into the halfspace y > 0, and so we
consider only the portion of Σ lying in that half-space. The edges of (this portion of) Σ can
be partially ordered so that u < v for two edges u, v if there exists a horizontal ray from
ξ⋆ intersecting both u⋆, v⋆ such that its intersection with u⋆ is nearer to ξ⋆. This order is
extended to a total order E = 〈e1 < e2 < ... < en〉. Next, for each edge ei, we define a
partial function hi : S → [0, 2π), where S is the unit circle of orientations, as follows. For
each θ ∈ S, if the ray r⋆θ in the xy-plane emanating from ξ⋆ in direction θ does not intersect
e⋆i , then hi(θ) is undefined. Otherwise, let p⋆ be the intersection point of r⋆θ and e⋆i . We
define hi(θ) to be the polar angle (i.e., the angle with the z-axis) of the ray emanating from
ξ and passing through p, where p ∈ ei is the point whose projection is p⋆. For each subset
E ⊆ E , we define

hE(θ) = min
ei∈E

hi(θ)

to be the lower envelope of the hi’s. We call the graph of hE the upper rim of E. Intuitively,
the upper rim of E corresponds to the ‘skyline’ of E seen from ξ. Using DS (n, 3)-sequences,
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it is easily seen that hE has O(|E|α(|E|)) breakpoints.

We construct a balanced binary tree T that stores a collection of upper rims of subsets
of edges of Σ. Let E1 = {e1, . . . , en/2} and let E2 = {en/2+1, . . . , en}. The root of T
stores the upper rim hE1 and the two subtrees of the root represent recursively the search
structures for the “nearer” half E1 and for the “farther” half E2 of the edges of Σ. It is easily
seen that the total storage (and preprocessing time) that T requires is O(nα(n) log n). We
can now process each ray-shooting query as follows. Let ρ be a given ray emerging from ξ
in direction (θ, ϕ), where θ is the horizontal orientation of the ray and ϕ is its azimuth. We
perform a binary search through T by first comparing ρ with the topmost upper rim hE1 ,
stored at the root u of T . We compute, in O(log n) time, the value of hE1(θ). If ϕ < hE1(θ)
then ρ lies above all the edges of E1, and we continue the search through T at the right
child of u; otherwise ρ must hit some face of Σ bounded on its far side by an edge of E1,
and we continue the search through T at the left child of u. When this search is completed,
we will have found two edges ei < ej , necessarily bounding the same face f of Σ, such that
ρ passes above ei and below ej , from which the first intersection point of ρ and Σ (which
lies on f) can be calculated in constant time. The whole search takes O(log2 n) time, which
can be improved to O(logn) using fractional cascading [35].

Theorem 7.4 ([46]) Given Σ and ξ as above, we can preprocess them in time O(nα(n) log n)
into a data structure of size O(nα(n) log n) that supports O(logn)-time ray-shooting queries
from ξ.

Cole and Sharir also showed, using DS(n, 4)-sequences, that the total number of com-
binatorially different views of Σ, as the view point ξ moves along the z-axis, is O(nλ4(n))
(and can be Ω(nλ3(n)) in the worst case); see also Mulmuley [110]. Bern et al. [29] proposed
a data structure of size O(nλ4(n)) that can answer a ray-shooting query, for rays emanating
from any point on the z-axis, in O(logn) time per query. The problem can also be extended
to situations where the view point is allowed to vary in more general regions, but then the
solutions require techniques that are related to higher-dimensional arrangements. This will
be picked up in the companion chapter in this volume.

7.8 Union of Jordan regions

Let Γ = {γ1, . . . , γn} be a set of n closed or unbounded Jordan curves in the plane, and
let Ki denote any one of the two regions bounded by γi. Let K =

⋃n
i=1Ki. We want to

bound the combinatorial complexity of K, that is, the number of intersection points of arcs
of Γ that appear on the boundary ∂K of K. As already mentioned in Section 7.2, Kedem
et al. [87] have proved that if any two curves in Γ intersect in at most two points, then ∂K
contains at most 6n− 12 intersection points (provided n ≥ 3), and that this bound is tight
in the worst case. On the other hand, if pairs of curves in Γ can intersect in four or more
points, then ∂K may contain Ω(n2) intersection points in the worst case. This raises the
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question of what happens if any two curves in Γ intersect in at most three points. Using
DS(n, 3)-sequences, Edelsbrunner et al. [53] have shown that the maximum combinatorial
complexity of the union K is Θ(nα(n)) (here we need to assume that the curves in Γ are
unbounded, because two closed Jordan curves, in general position, cannot intersect in three
points). The lower bound follows from Theorem 5.3, and the upper bound requires a rather
sophisticated analysis of the topological structure of K.

Figure 10. “Almost homothetic” right-angle triangles.

Consider next the case where Γ is the set of boundaries of n ‘almost homothetic’ right-
angle triangles that satisfy the following conditions (see Figure 10): Each of the corre-
sponding regions Ki is a triangle whose orthogonal sides are parallel to the x- and y-axes,
whose right-angle vertex is the lowest-leftmost point of the triangle, whose top vertex lies
on the x-axis, and whose hypotenuse has orientation in the range [3π4 − ε, 3π4 + ε], for some
small constant ε > 0, Matoušek at al. [102] proved, using DS(n, 4)-sequences, that the
complexity of the union K is O(λ4(n)). This bound for the above fairly restricted problem
implies the main result of [102], that the complexity of the union of n ‘fat’ triangles, namely,
triangles satisfying the property that each of their angles is at least some fixed constant
angle, is O(n log log n). Note that the union of n arbitrary triangles can have Ω(n2) ver-
tices in the worst case. See also [8, 86] for other results involving fat triangles that exploit
Davenport–Schinzel sequences.

7.9 Extremal {0, 1}-matrices.

Let M = {Mij} be an m×n matrix such that Mij ∈ {0, 1} for all 1 ≤ i ≤ m and 1 ≤ j ≤ n;
we call M a {0, 1}-matrix . A configuration

C = {Cij | 1 ≤ i ≤ u, 1 ≤ j ≤ v}

is a u × v matrix with 1’s and blanks as its entries. We say that M does not contain C if
there is no submatrix A of M that contains the 1-entries of C, that is, there are no u rows
i1 < i2 < · · · < iu and v columns j1 < j2 < · · · < jv such that Misjt = 1 for all (s, t) for
which Cst is 1. An upper bound on the number of 1’s in M for various C is useful in solving
certain combinatorial problems in geometry, and also in bounding the time and storage
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complexity of certain geometric algorithms; see, for example, Bienstock and Győri [31],
Efrat and Sharir [62], and Pach and Sharir [114].

Let C0 be the 2× 4 configuration
(

1 1
1 1

)

.

By definition, a matrix M does not contain C0 if there are no two rows i1 < i2 and four
distinct columns j1 < j2 < j3 < j4 such that

Mi1j1 = Mi2j2 = Mi1j3 = Mi2j4 = 1. (7.1)

Füredi and Hajnal [68] have shown that the number of 1’s in a {0, 1}-matrix M that
does not contain C0 is Θ(mα(m) + n). They prove the upper bound by transforming M to
a DS (n, 3)-sequence, and they construct an m× n matrix, using a recursive scheme similar
to the one used in Section 5, to prove the lower bound.

8 Concluding Remarks

In this chapter we surveyed the basic results on the Davenport–Schinzel sequences and
some of their immediate applications to a variety of geometric problems. It is impossible
to include all the results and all the applications in a survey paper. We refer the interested
readers to [139] for details and for many other applications of Davenport–Schnizel sequences.

Finally, A natural question to ask is whether the theory of Davenport–Schinzel sequences
can be extended to higher dimensions. Lower envelopes and minimization diagrams have
a natural extension to higher dimensions, and they are discussed in a companion chapter
in this volume. However, no purely combinatorial generalization of Davenport–Schinzel
sequences to higher dimensions has been proposed so far.
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