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ABSTRACT
We first describe a reduction from the problem of lower-bounding
the number of distinct distances determined by a setS of s points
in the plane to an incidence problem between points and a certain
class of helices (or parabolas) in three dimensions. We offer con-
jectures involving the new setup, but are still unable to fully resolve
them.

Instead, we adapt the recent new algebraic analysis technique
of Guth and Katz [9], as further developed by Elekes et al. [6], to
obtain sharp bounds on the number of incidences between these
helices or parabolas and points inR3. Applying these bounds,
we obtain, among several other results, the upper boundO(s3) on
the number of rotations (rigid motions) which map (at least)three
points ofS to three other points ofS. In fact, we show that the
number of such rotations which map at leastk ≥ 3 points ofS to
k other points ofS is close toO(s3/k12/7).

One of our unresolved conjectures is that this number isO(s3/k2),
for k ≥ 2. If true, it would imply the lower boundΩ(s/ log s) on
the number of distinct distances in the plane.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complexity]: Non-
numerical algorithms and problems—Geometrical problems and
computations; G.2.1 [Discrete mathematics]: Combinatorics—
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1. THE INFRASTRUCTURE
The motivation for the study reported in this paper comes from

the celebrated and long-standing problem, originally posed by Erd̋os
[8] in 1946, of obtaining a sharp lower bound for the number of
distinct distances guaranteed to exist in any setS of s points in
the plane. Erd̋os has shown that a section of the integer lattice de-
termines onlyO(s/

√
log s) distinct distances, and conjectured this

to be a lower bound for any planar point set. In spite of steady
progress on this problem, reviewed next, Erdős’s conjecture is still
open.

L. Moser [12], Chung [4], and Chunget al. [5] proved that the
number of distinct distances determined bys points in the plane is
Ω(s2/3), Ω(s5/7), andΩ(s4/5/polylog(s)), respectively. Székely
[19] managed to get rid of the polylogarithmic factor, whileSoly-
mosi and Tóth [17] improved this bound toΩ(s6/7). This was
a real breakthrough. Their analysis was subsequently refined by
Tardos [21] and then by Katz and Tardos [11], who obtained the
current record ofΩ(s(48−14e)/(55−16e)−ε), for anyε > 0, which
is Ω(s0.8641).

In this paper we transform the problem of distinct distancesin
the plane to an incidence problem between points and a certain
kind of curves (helices or parabolas) in three dimensions. As we
show, sharp upper bounds on the number of such incidences trans-
late back to sharp lower bounds on the number of distinct distances.
Incidence problems in three dimensions between points and curves
have been studied in several recent works [2, 6, 16], and a ma-
jor push in this direction has been made last year, with the break-
through result of Guth and Katz [9], who have introduced meth-
ods from algebraic geometry for studying problems of this kind.
This has been picked up by the authors [6], where worst-case tight
bounds on the number of incidences between points and lines in
three dimensions (under certain restrictions) have been obtained.

The present paper serves two purposes. First, it studies in detail
the connection between the distinct distances problem and the cor-
responding 3-dimensional incidence problem. As it turns out, there
is a lot of interesting geometric structure behind this reduction, and
the paper (or rather its full version) develops it in detail.We offer
several conjectures on the number of incidences, and show how, if
true, they yield the almost worst-case tight lower boundΩ(s/ log s)
on the number of distinct distances. Unfortunately, so far we have
not succeeded in proving these conjectures. Nevertheless,we have
made considerable progress on the incidence problem itself, which
is the second purpose of the study in this paper. We show how
to adapt the algebraic machinery of [6, 9, 10, 14] to derive sharp
bounds for the incidence problem. These bounds are very similar
to, and in fact even better than the bounds obtained in [6] forpoint-
line incidences, where they have been shown to be worst-casetight.
However, they are not (yet) good enough to yield significant lower



bounds for distinct distances. We believe that there is additional
geometric structure in the particular problem studied here, which
should enable one to further improve the bounds, but so far this
remains elusive.

The paper is organized as follows. We first describe the reduc-
tion from the planar distinct distances problem to the 3-dimensional
incidence problem mentioned above. In doing so, we note and
explore several additional geometric connections betweenthe two
problems (as manifested, e.g., in the analysis ofspecial surfaces
given below). We then present the tools from algebraic geometry
that are needed to tackle the incidence problem; they are variants
of the tools used in [6, 9], adapted to the specific curves thatwe
need to handle. We then go on to bound the number of incidences.
We first bound the number of rotations in terms of the number of
parabolas, and then bound the number of incidences themselves.
The latter task is achieved in two steps. We first use a “purelyal-
gebraic” analysis, akin to those in [6, 9], to obtain a weakerbound,
which we then refine in the second step, using more traditional
space decomposition techniques. The final bound is still notas
good as we would like it to be, but it shows that the case studied in
this paper “behaves better” than its counterpart involvinglines.

Due to severe lack of space, many details are omitted in this
version. They can be found in the full version [7].

Distinct distances and incidences with helices.We offer the fol-
lowing novel approach to the problem of distinct distances.
(H1) Notation. LetS be a set ofs points in the plane withx distinct
distances. LetK denote the set of all quadruples(a, b, a′, b′) ∈
S4, such that the pairs(a, b) and(a′, b′) are distinct (although the
points themselves need not be) and|ab| = |a′b′| > 0.

Let δ1, . . . , δx denote thex distinct distances inS, and letEi =
{(a, b) ∈ S2 | |ab| = δi}. We have

|K| = 2
x
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(H2) Rotations. We associate each(a, b, a′, b′) ∈ K with a (unique)
rotation(or, rather, a rigid, orientation-preserving transformation of
the plane)τ , which mapsa to a′ andb to b′. A rotationτ , in com-
plex notation, can be written as the transformationz 7→ pz + q,
wherep, q ∈ C and |p| = 1. Puttingp = eiθ, q = ξ + iη, we
can representτ by the point(ξ, η, θ) ∈ R

3. In the planar context,
θ is the counterclockwise angle of the rotation, and the center of
rotation isc = q/(1 − eiθ), which is defined forθ 6= 0; for θ = 0,
τ is a pure translation.

The multiplicity µ(τ ) of a rotationτ (with respect toS) is de-
fined as|τ (S) ∩ S| = the number of pairs(a, b) ∈ S2 such that
τ (a) = b. Clearly, one always hasµ(τ ) ≤ s, and we will mostly
consider only rotations satisfyingµ(τ ) ≥ 2. As a matter of fact,
the bulk of the paper will only consider rotations with multiplicity
at least3. Rotations with multiplicity2 are harder to analyze.

If µ(τ ) = k thenS contains two congruent and equally oriented
copiesA, B of somek-element set, such thatτ (A) = B. Thus,
studying multiplicities of rotations is closely related toanalyzing
repeated (congruent and equally oriented) patterns in a planar point
set; see [3] for a review of many problems of this kind.
(H3) Bounding |K|. If µ(τ ) = k thenτ contributes
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´
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ples toK. LetNk (resp.,N≥k) denote the number of rotations with

multiplicity exactlyk (resp., at leastk), for k ≥ 2. Then
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(H4) The main conjecture.

CONJECTURE 1. For any2 ≤ k ≤ s, we have

N≥k = O
`

s3/k2´ .

Suppose that the conjecture were true. Then we would have

[s(s − 1) − x]2

x
≤ |K| = O(s3) ·

2

41 +
X

k≥3

1

k

3

5 = O(s3 log s),

which would have implied thatx = Ω(s/ log s). This would have
almost settled the problem of obtaining a tight bound for themini-
mum number of distinct distances guaranteed to exist in any set of
s points in the plane, since, as mentioned above, the upper bound
for this quantity isO(s/

√
log s) [8].

We note that Conjecture 1 is rather deep; even the simple in-
stancek = 2, asserting that there are onlyO(s3) rotations which
map (at least) two points ofS to two other points ofS (at the same
distance apart), seems quite difficult. In this paper we establish a
variety of upper bounds on the number of rotations and on the sum
of their multiplicities. In particular, these results provide a partial
positive answer, showing thatN≥3 = O(s3); that is, the num-
ber of rotations which map a (degenerate or non-degenerate)trian-
gle determined byS to another congruent (and equally oriented)
such triangle, isO(s3). BoundingN2 by O(s3) is still an open
problem. See Section 5 for a simple proof of the weaker bound
N≥2 = O(s10/3).
Lower bound. In the full version [7] we present a construction
(suggested by Haim Kaplan) which shows:

LEMMA 2. There exist setsS in the plane of arbitrarily large
cardinality, which determineΘ(|S|3) distinct rotations, each map-
ping a triple of points ofS to another triple of points ofS.

A “weakness” of this construction is that all these rotations map
a collinear triple of points ofS to another collinear triple. (In the
terminology to follow, these will be calledflat rotations.) We do not
know whether the number of rotations which map anon-collinear
triple of points ofS to another non-collinear triple can beΩ(|S|3).
We tend to conjecture that this is indeed the case.

We also do not know whether Conjecture 1 is worst-case tight (if
true). That is, do there exist setsS, with s = |S| arbitrarily large,
so that there areΩ(s3/k2) distinct rotations, each mapping at least
k points ofS to k other points ofS?
(H5) Helices.To estimateN≥k, we reduce the problem of analyz-
ing rotations and their interaction withS to an incidence problem
in three dimensions, as follows.

With each pair(a, b) ∈ S2, we associate the curveha,b, in a
3-dimensional space parametrized by(ξ, η, θ), which is the locus
of all rotations which mapa to b. That is, the equation ofha,b is
given by

ha,b = {(ξ, η, θ) | b = aeiθ + (ξ, η)}.
Puttinga = (a1, a2), b = (b1, b2), this becomes

ξ = b1 − (a1 cos θ − a2 sin θ), (1)

η = b2 − (a1 sin θ + a2 cos θ).



This is ahelix in R
3, having four degrees of freeedom, which we

parametrize by(a1, a2, b1, b2). It extends from the planeθ = 0 to
the planeθ = 2π; its two endpoints lie vertically above each other,
and it completes exactly one revolution between them.
(H6) Helices, rotations, and incidences.Let P be a set of rota-
tions, represented by points inR3, as above, and letH denote the
set of alls2 helicesha,b, for (a, b) ∈ S2 (note thata = b is per-
mitted). LetI(P, H) denote the number of incidences betweenP
andH . Then we have

I(P,H) =
X

τ∈P

µ(τ ).

Rotationsτ with µ(τ ) = 1 are not interesting, because each of
them only contributes1 to the countI(P, H), and we will mostly
ignore them. For the same reason, rotations withµ(τ ) = 2 are also
not interesting for estimatingI(P, H), but they need to be included
in the analysis ofN≥2. Unfortunately, as already noted, we do not
yet have a good upper bound (i.e., cubic ins) on the number of
such rotations.
(H7) Incidences and the second conjecture.

CONJECTURE 3. For anyP andH as above, we have

I(P,H) = O
“

|P |1/2|H |3/4 + |P | + |H |
”

.

Suppose that Conjecture 3 were true. LetP≥k denote the set of
all rotations with multiplicity at leastk (with respect toS). We then
have

kN≥k = k|P≥k| ≤ I(P≥k, H) = O
“

N
1/2
≥k |H |3/4 + N≥k + |H |

”

,

from which we obtain

N≥k = O

„

s3

k2
+

s2

k

«

= O

„

s3

k2

«

,

thus establishing Conjecture 1, and therefore also the lower bound
for x (the number of distinct distances) derived above from this
conjecture.
Remark. Conjecture 3 can also be formulated for anarbitrary
subsetH of all possible helices.

Note that two helicesha,b and hc,d intersect in at most one
point—this is the unique rotation which mapsa to b andc to d (if
it exists at all, namely if|ac| = |bd|). Hence, combining this fact
with a standard cutting-based decomposition technique, similar to
what has been noted in [16], say, yields the weaker bound

I(P,H) = O
“

|P |2/3|H |2/3 + |P | + |H |
”

, (2)

which, alas, only yields the much weaker boundN≥k = O
`

s4/k3
´

,
which is completely useless for deriving any lower bound onx.
(We will use this bound, though, in Section 6.)
(H8) From helices to parabolas.The helicesha,b are non-algebraic
curves, because of the use of the angleθ as a parameter. This can
be easily remedied, in the following standard manner. Assume
that θ ranges from−π to π, and substitute, in the equations (1),
Z = tan(θ/2), X = ξ(1 + Z2), andY = η(1 + Z2), to obtain

X = (a1 + b1)Z
2 + 2a2Z + (b1 − a1) (3)

Y = (a2 + b2)Z
2 − 2a1Z + (b2 − a2),

which are the equations of aplanar parabola in the (X, Y, Z)-
space. (The parabola degenerates to a line ifb = −a, a situation
that we will rule out by choosing an appropriate generic coordi-
nate frame in the originalxy-plane.) We denote the parabola corre-
sponding to the helixha,b ash∗

a,b, and refer to it as anh-parabola.

(H9) Joint and flat rotations. A rotationτ ∈ P is called ajoint of
H if τ is incident to at least three helices ofH whose tangent lines
at τ are non-coplanar. Otherwise, still assuming thatτ is incident
to at least three helices ofH , τ is calledflat.

Let τ = (ξ, η, θ) ∈ P be a rotation, incident to three distinct
helicesha,b, hc,d, he,f . From their equations, as given in (1), the
directions of the tangents to these helices atτ are

(a1 sin θ + a2 cos θ, −a1 cos θ + a2 sin θ, 1)

(c1 sin θ + c2 cos θ, −c1 cos θ + c2 sin θ, 1)

(e1 sin θ + e2 cos θ, −e1 cos θ + e2 sin θ, 1).

Putp = cos θ andq = sin θ. Then the three tangents are coplanar
if and only if

˛

˛

˛

˛

˛

˛

a1q + a2p −a1p + a2q 1
c1q + c2p −c1p + c2q 1
e1q + e2p −e1p + e2q 1

˛

˛

˛

˛

˛

˛

= 0.

Simplifying the determinant, and recalling thatp2 + q2 = 1, the
condition is equivalent to

˛

˛

˛

˛

˛

˛

a1 a2 1
c1 c2 1
e1 e2 1

˛

˛

˛

˛

˛

˛

= 0.

In other words, the three helicesha,b, hc,d, he,f form a joint at
τ if and only if the three pointsa, c, e (and thus alsob, d, f ) are
non-collinear.

CLAIM 4. A rotation τ is a joint of H if and only if τ maps
a non-degenerate triangle determined byS to another (congruent
and equally oriented) non-degenerate triangle determinedby S.
A rotation τ is a flat rotation if and only ifτ maps at least three
collinear points ofS to another collinear triple of points ofS, but
does not map any point ofS outside the line containing the triple
to another point ofS.

The preceding analysis also shows that, for any fixed rotation τ ,
the directions of the tangents atτ to the helices incident toτ are
all distinct. This will be important in the algebraic analysis given
below.
(H10) Special surfaces.In preparation for the forthcoming alge-
braic analysis, we need the following property of our helices.

Let τ be a flat rotation, with multiplicityk ≥ 3, and letℓ and
ℓ′ be the corresponding lines in the plane, such that there exist k
pointsa1, . . . , ak ∈ S ∩ ℓ andk pointsb1, . . . , bk ∈ S ∩ ℓ′, such
thatτ mapsai to bi for eachi (and in particular mapsℓ to ℓ′). By
definition,τ is incident to thek heliceshai,bi , for i = 1, . . . , k.

Let u andv denote unit vectors in the direction ofℓ andℓ′, re-
spectively. Clearly, there exist two reference pointsa ∈ ℓ and
b ∈ ℓ′, such that for eachi there is a real numberti such that
ai = a + tiu andbi = b + tiv. As a matter of fact, for each realt,
τ mapsa + tu to b + tv, so it is incident toha+tu,b+tv. Note that
a andb are not uniquely defined: we can takea to be any point on
ℓ, and shiftb accordingly alongℓ′.

Let H(a, b; u, v) denote the set of these helices. Since a pair of
helices can meet in at most one point, all the helices inH(a, b; u, v)
pass throughτ but are otherwise pairwise disjoint. Using the re-
parametrization(ξ, η, θ) 7→ (X, Y, Z), we denote byΣ = Σ(a, b; u, v)
the surface which is the union of all theh-parabolas that are the im-
ages of the helices inH(a, b; u, v). We refer to such a surfaceΣ as
a special surface.

An important comment is that most of the ongoing analysis also
applies when only two helices are incident toτ ; they suffice to
determine the four parametersa, b, u, v that define the surfaceΣ.



We also remark that, although we started the definition ofΣ(a, b; u, v)
with a flat rotationτ , the definition only depends on the parameters
a, b, u, andv. If τ is not flat it may determine many special sur-
faces, one for each line that contains two or more points ofS which
τ maps to other (also collinear) points ofS. Also, as we will shortly
see, the same surface can be obtained from a different set (infact,
many such sets) of parametersa′, b′, u′, andv′ (or, alternatively,
from different flat rotationsτ ′). An “intrinsic” definition of special
surfaces will be given shortly.

The surfaceΣ(a, b; u, v) is a cubic algebraic surface, whose equa-
tion, worked out in detail in the full version [7], is

E2(Z)X − E1(Z)Y + K(Z) = 0, where (4)

E1(Z) = (u1 + v1)Z + (u2 + v2) (5)

E2(Z) = (u2 + v2)Z − (u1 + v1),

andK(Z) is the cubic polynomial
„

(u1 + v1)Z + (u2 + v2)

«„

(a2 + b2)Z
2 − 2a1Z + (b2 − a2)

«

−
„

(u2 + v2)Z − (u1 + v1)

«„

(a1 + b1)Z
2 + 2a2Z + (b1 − a1)

«

.

We refer to the cubic polynomial in the left-hand side of (4) as
a special polynomial. Thus a special surface is the zero set of a
special polynomial.
(H11) The geometry of special surfaces.Special surfaces pose
a technical challenge to the analysis. Specifically, each special
surfaceΣ captures a certain underlying pattern in the ground set
S, which may result in many incidences between rotations andh-
parabolas, all contained inΣ. The next step of the analysis studies
this pattern in detail.

v′

u

v

u′

b0

ℓ1 ℓ2

ℓ
′
1

ℓ′2

a0

Figure 1: Left: The configuration of u, v, u′, v′. Right: The
structure of τ and τ ′ on a common special surfaceΣ.

Consider first a simple instance of this situation, in which two
special surfacesΣ, Σ′, generated by two distinct flat rotationsτ ,
τ ′, coincide. More precisely, there exist four parametersa, b, u, v
such thatτ maps the lineℓ1 = a + tu to the lineℓ2 = b + tv
(so that points with the same parametert are mapped to one an-
other), and four other parametersa′, b′, u′, v′ such thatτ ′ maps (in
a similar manner) the lineℓ′1 = a′ + tu′ to the lineℓ′2 = b′ + tv′,
andΣ(a, b; u, v) = Σ(a′, b′; u′, v′). Denote this common surface
by Σ. Since the surfaces coincide, simple algebraic calculations,
detailed in [7], show that the angle bisector betweenu andv must
coincide with that betweenu′ andv′, as depicted in Figure 1(left).
Moreover, as is easily checked, if we leta0 be the intersection point
of ℓ1 andℓ′1, and letb0 be the intersection point ofℓ2 andℓ′2, then
both τ andτ ′ mapa0 to b0, andh∗

a0,b0
is contained inΣ. (See

Figure 1(right) and [7] for details.)

Since the preceding analysis applies to any pair of distinctrota-
tions on a common special surfaceΣ, it follows that we can asso-
ciate withΣ a common directionw and a common shiftδ, so that
for eachτ ∈ Σ there exist two linesℓ, ℓ′, whereτ mapsℓ to ℓ′,
so that the angle bisector between these lines is in direction w, and
τ is the unique rigid motion, obtained by rotatingℓ to ℓ′ around
their intersection pointℓ ∩ ℓ′, and then shiftingℓ′ along itself by a
distance whose projection in directionw is δ. See Figure 1(right).

Let Σ be a special surface, generated byH(a, b; u, v); that is,Σ
is the union of all parabolas of the formh∗

a+tu,b+tv, for t ∈ R. Let
τ0 be the common rotation to all these parabolas, so it maps the line
ℓ0 = {a + tu | t ∈ R} to the lineℓ′0 = {b + tv | t ∈ R}, so that
every pointa + tu is mapped tob + tv.

Leth∗
c,d be a parabola contained inΣ but not passing throughτ0.

Take any pair of distinct rotationsτ1, τ2 on h∗
c,d. Then there exist

two respective real numberst1, t2, such thatτi ∈ h∗
a+tiu,b+tiv, for

i = 1, 2. Thusτi is the unique rotation which mapsc to d and
ai = a+ tiu to bi = b+ tiv. In particular, we have|a+ tiu−c| =
|b+tiv−d|. This in turn implies that the trianglesa1a2c andb1b2d
are congruent; see Figure 2.

a

a1

a2

b

b1

b2

ℓ0

ℓ
′
0

c

d

Figure 2: The geometric configuration corresponding to a
parabola h∗

c,d contained inΣ.

Givenc, this determinesd, up to a reflection aboutℓ′0. We claim
thatd has to be on the “other side” ofℓ′0, namely, be such that the
trianglesa1a2c andb1b2d are oppositely oriented. Indeed, if they
were equally oriented, thenτ0 would have mappedc to d, and then
h∗

c,d would have passed throughτ0, contrary to assumption.
Now form the two sets

A = {p ∈ S | there existsq ∈ S such thath∗
p,q ⊂ Σ} (6)

B = {q ∈ S | there existsp ∈ S such thath∗
p,q ⊂ Σ}.

The preceding discussion implies thatA andB are congruent and
oppositely oriented.

To recap, each rotationτ ∈ Σ, incident tok ≥ 2 parabolas
contained inΣ, corresponds to a pair of linesℓ, ℓ′ with the above
properties, so thatτ mapsk points ofS ∩ ℓ (rather, ofA ∩ ℓ) to k
points ofS∩ ℓ′ (that is, ofB∩ ℓ′). If τ is flat, its entire multiplicity
comes from points ofS on ℓ (these are the points ofA ∩ ℓ) which
are mapped byτ to points ofS on ℓ′ (these are points ofB ∩ ℓ′),
and all the corresponding parabolas are contained inΣ. If τ is a
joint then, for any other pointp ∈ S outsideℓ which is mapped by
τ to a pointq ∈ S outsideℓ′, the parabolah∗

p,q is not contained in
Σ, and crosses it transversally at the unique rotationτ .

Note also that any pair of parabolash∗
c1,d1

andh∗
c2,d2

which are
contained inΣ intersect, necessarily at the unique rotation which
mapsc1 to d1 andc2 to d2. This holds because|c1c2| = |d1d2|, as
follows from the preceding discussion.
Special surfaces are anti-rotations.Let Σ be a special surface,
and letA,B be the subsets ofS associated withΣ, as in (6). Then



there exists a singleanti-rotation (a rigid, orientation-reversiong
motion of the plane) which mapsA to B. Conversely, any anti-
rotation can be associated with a unique special surface in this man-
ner. However, the number of incidences within a special surface
may be larger than the incidence count of the anti-rotation with
the appropriate variants of theh-parabolas: the former counts in-
cidences between the points ofA (or of B) and the lines that they
determine, while the latter only counts the size ofA (or of B).
Parabolas on special surfaces.

LEMMA 5. A special surface can contain at mosts h-parabolas.

Proof: Let Ξ be the given special surface. We claim that for each
a ∈ S there can be at most one pointb ∈ S such thath∗

a,b ⊂ Ξ.
Indeed, suppose that there exist two such pointsb1, b2 ∈ S. Since
any pair ofh-parabolas onΞ intersect,h∗

a,b1
andh∗

a,b2
meet at a

rotationτ , which mapsa to bothb1 andb2, an impossibility which
completes the proof.2

2. TOOLS FROM ALGEBRAIC GEOMETRY
We review in this section (without proofs) the basic tools from

algebraic geometry that have been used in [6, 9]. We state here the
variants that arise in the context of incidences between points and
our h-parabolas. The proofs can be found in the full version of the
paper [7].

So letC be a set ofn ≤ s2 h-parabolas inR3. Recalling the
definitions in (H9), we say that a point (rotation)a is a joint of
C if it is incident to three parabolas ofC whose tangents ata are
non-coplanar. LetJ = JC denote the set of joints ofC. We will
also consider pointsa that are incident to three or more parabolas
of C, so that the tangents to all these parabolas are coplanar, and
refer to such points asflat points ofC. We recall (see (H9)) that
any pair of distincth-parabolas which meet at a point have there
distinct tangents.

First, we note that, using a trivial application of Bézout’stheo-
rem [15], a trivariate polynomialp of degreed which vanishes at
2d+1 points that lie on a commonh-parabolah∗ ∈ C must vanish
identically onh∗.
Critical points and parabolas. A point a is critical (or singular)
for a trivariate polynomialp if p(a) = 0 and∇p(a) = 0; any
other pointa in the zero set ofp is calledregular. A parabolah∗ is
critical if all its points are critical.

Another application of Bézout’s theorem implies the following.

PROPOSITION 6. LetC be as above. Then any trivariate square-
free polynomialp of degreed can have at mostd(d − 1) critical
parabolas inC.

For regular points ofp, we have the following easy observation.

PROPOSITION 7. Let a be a regular point ofp, so thatp ≡ 0
on three parabolas ofC passing througha. Then these parabolas
must have coplanar tangents ata.

Hence, a pointa incident to three parabolas ofC whose tangent
lines ata are non-coplanar, so thatp ≡ 0 on each of these parabo-
las, must be a critical point ofp.

The main ingredient in the algebraic approach to incidence prob-
lems is the following, fairly easy (and rather well-known) result.

PROPOSITION 8. Given a setS of m points in 3-space, there
exists a nontrivial trivariate polynomialp(x, y, z) which vanishes
at all the points ofS, of degreed, for anyd satisfying

`

d+3
3

´

> m.

Proof: (See [6, 7, 9].) A trivariate polynomial of degreed has
`

d+3
3

´

monomials, and requiring it to vanish atm points yields

these many homogeneous equations in the coefficients of these mono-
mials. Such an underdetermined system always has a nontrivial
solution.2
Flat points and parabolas. Call a regular pointτ of a trivari-
ate polynomialp geometrically flatif it is incident to three distinct
parabolas ofC (with necessarily coplanar tangent lines atτ , no pair
of which are collinear) on whichp vanishes identically.

Handling geometrically flat points in our analysis is somewhat
trickier than handling critical points, and involves the second-order
partial derivatives ofp. The analysis, detailed in [7] (and similar to
those in [6, 9]) leads to the following properties.

PROPOSITION 9. Letp be a trivariate polynomial, and define

Π(p) = p2
Y pXX − 2pXpY pXY + p2

XpY Y .

Then, ifτ is a regular geometrically flat point ofp (with respect to
three parabolas ofC) thenΠ(p)(τ ) = 0.

Remarks. (1)Π(p) is one of the polynomials that form thesecond
fundamental formof p; see [6, 7, 9, 13] for details.
(2) Although most details are suppressed, it is important to note that
for Proposition 9 to hold it is crucial thatτ be incident to (at least)
three parabolas ofC. This is why we can only handle rotations of
multiplicity at least3.

In particular, if the degree ofp is d then the degree ofΠ(p) is at
most(d − 1) + (d − 1) + (d − 2) = 3d − 4.

In what follows, we call a pointτ flat for p if Π(p)(τ ) = 0. Call
anh-parabolah∗ ∈ C flat for p if all the points ofh∗ are flat points
of p (with the possible exception of a discrete subset). Arguingas
in the case of critical points, ifh∗ contains more than2(3d−4) flat
points thenh∗ is a flat parabola.

The next proposition shows that, in general, trivariate polyno-
mials do not have too many flat parabolas. The proof is based on
Bézout’s theorem, as does the proof of Proposition 6.

PROPOSITION 10. Let p be any trivariate square-free polyno-
mial of degreed with no special polynomial factors. Thenp can
have at mostd(3d − 4) flat h-parabolas inC.

3. THE NUMBER OF ROTATIONS
In this section we extend the recent algebraic machinery of Guth

and Katz [9], as further developed by Elekes et al. [6], usingthe
algebraic tools set forth in the preceding section, to establish the
boundO(n3/2) = O(s3) on the number of rotations with multi-
plicity at least3 in a collection ofn h-parabolas.

THEOREM 11. Let C be a set of at mostn h-parabolas inR
3,

and letP be a set ofm rotations, each of which is incident to at
least three parabolas ofC. Suppose further that no special surface
contains more thanq parabolas ofC. Thenm = O(n3/2 + nq).

Remarks. (1)The recent results of [10, 14] imply that the number
of joints in a set ofn h-parabolas isO(n3/2). The proofs in [10, 14]
are much simpler than the proof given below, but they do not apply
to flat points (rotations) as does Theorem 11. Since flat rotations
are an integral part of the setup considered in this paper, weneed
to count them too, using the stronger Theorem 11. Moreover, even
if we were to consider only joint rotations, the analysis of their
incidences with theh-parabolas will turn some of them into flat
rotations (by pruning some of the parabolas), so we will needto
face flat rotations, no matter what.
(2) By Lemma 5, we always haveq ≤ s, and we also haven1/2 ≤
s, so the “worst-case” bound onm is O(ns).



(3) Note that the parametern in the statement of the theorem is arbi-
trary, not necessarily the maximum numbers2. Whenn attains its
maximum possible values2, the bound becomesm = O(n3/2) =
O(s3).

The proof of Theorem 11 uses the proof technique of [6], prop-
erly adapted to the present, somewhat more involved contextof
h-parabolas and rotations.
Proof. We first prove the theorem under the additional assumption
thatq = n1/2. The proof proceeds by induction onn, and shows
that m ≤ An3/2, whereA is a sufficiently large constant whose
choice will be dictated by the forthcoming analysis. The statement
holds for alln ≤ n0, for some constantn0, if we chooseA to be
sufficiently large. Fixn > n0, and suppose that the claim holds
for all n′ < n. Let C andP be as in the statement of the theorem,
with |C| = n, and suppose to the contrary that|P | > An3/2.

We first apply the following iterative pruning process toC. As
long as there exists a parabolah∗ ∈ C incident to fewer thancn1/2

rotations ofP , for some constant1 ≤ c ≪ A that we will fix later,
we removeh∗ from C, remove its incident rotations fromP , and
repeat this step with respect to the reduced set of rotations. In this
process we delete at mostcn3/2 rotations. We are thus left with a
subset of at least(A − c)n3/2 of the original parabolas, each inci-
dent to at leastcn1/2 surviving rotations, and each surviving rota-
tion is incident to at least three surviving parabolas. For simplicity,
continue to denote these sets asC andP .

Choose a random sampleCs of parabolas fromC, by picking
each parabola independently with probabilityt, wheret is a small
constant that we will fix later.

The expected number of parabolas that we choose istn1 ≤ tn,
wheren1 is the number of parabolas remaining after the pruning.
We haven1 = Ω(n1/2), because each surviving parabola is inci-
dent to at leastcn1/2 surviving rotations, each incident to at least
two other surviving parabolas; since all these parabolas are distinct
(recall that a pair of parabolas can meet in at most one rotation
point), we haven1 ≥ 2cn1/2. Hence, using Chernoff’s bound, as
in [6] (see, e.g., [1]), we obtain that, with positive probability, (a)
|Cs| ≤ 2tn. (b) Each parabolah∗ ∈ C contains at least1

2
ctn1/2

rotations that lie on parabolas ofCs. (To see (b), take a parabola
h∗ ∈ C and a rotationτ ∈ P ∩ h∗. Note thatτ will be incident to
a parabola ofCs with probability at leastt, so the expected num-
ber of rotations inP ∩ h∗ which lie on parabolas ofCs is at least
ctn1/2. This, combined with Chernoff’s bound, implies (b).)

We assume thatCs does indeed satisfy (a) and (b), and then (re-
calling thatc ≥ 1) choosen1/2 arbitrary rotations on each parabola
in Cs, to obtain a setS of at most2tn3/2 rotations.

Applying Proposition 8, we obtain a nontrivial trivariate poly-
nomialp(X, Y, Z) which vanishes at all the rotations ofS, whose
degree is at most the smallest integerd satisfying

`

d+3
3

´

≥ |S|+1,
so

d ≤ ⌈(6|S|)1/3⌉ ≤ (12t)1/3n1/2 + 1 ≤ 2(12t)1/3n1/2,

for n (i.e., n0) sufficiently large. Without loss of generality, we
may assume thatp is square-free—by removing repeated factors,
we get a square-free polynomial which vanishes on the same set as
the originalp, with the same upper bound on its degree.

The polynomialp vanishes onn1/2 points on each parabola in
Cs. This number is larger than2d, if we chooset sufficiently small
so as to satisfy4(12t)1/3 < 1. Hencep vanishes identically on all
these parabolas. Any other parabola ofC meets at least1

2
ctn1/2

parabolas ofCs, at distinct points, and we can make this number
also larger than2d, with an appropriate choice oft andc (we need
to ensure thatct > 8(12t)1/3). Hence,p vanishes identically on
each parabola ofC.

We will also later need the property that each parabola ofC con-
tains at least9d points ofP ; that is, we require thatcn1/2 > 9d,
which will hold if c > 18(12t)1/3.

To recap, the preceding paragraphs impose several inequalities
on c andt, and a couple of additional similar inequalities will be
imposed later on. All these inequalities are easy to satisfyby choos-
ing t < 1 to be a sufficiently small positive constant, andc a suffi-
ciently large constant. (These choices will also affect thechoice of
A—see below.)

We note thatp can have at mostd/3 special polynomial factors
(since each of them is a cubic polynomial); i.e.,p can vanish iden-
tically on at mostd/3 respective special surfacesΞ1, . . . , Ξk, for
k ≤ d/3. We factor out all these special polynomial factors from
p, and letp̃ denote the resulting polynomial, which is a square-free
polynomial without any special polynomial factors, of degree at
mostd.

Consider one of the special surfacesΞi, and letti denote the
number of parabolas contained inΞi. Then any rotation onΞi is
either an intersection point of (at least) two of these parabolas, or
it lies on at most one of them. The number of rotations of the
first kind is O(t2i ). Any rotation τ of the second kind is inci-
dent to at least one parabola ofC which crossesΞi transversally
atτ . We note that eachh-parabolah∗ can crossΞi in at most three
points. Indeed, substituting the equations ofh∗ into the equation
E2(Z)X − E1(Z)Y + K(Z) = 0 of Ξi (see (4)) yields a cu-
bic equation inZ, with at most three roots. Hence, the number of
rotations of the second kind isO(n), and the overall number of ro-
tations onΞi is O(t2i + n) = O(n), since we have assumed in the
present version of the proof thatti ≤ n1/2.

Summing the bounds over all surfacesΞi, we conclude that al-
together they containO(nd) rotations, which we bound bybn3/2,
for some absolute constantb.

We remove all these vanishing special surfaces, together with the
rotations and the parabolas which are fully contained in them, and
let C1 ⊆ C and P1 ⊆ P denote, respectively, the set of those
parabolas ofC (rotations ofP ) which are not contained in any of
the vanishing surfacesΞi.

Note that there are still at least three parabolas ofC1 incident to
any remaining rotation inP1, since none of the rotations ofP1 lie
in any surfaceΞi, so all parabolas incident to such a rotation are
still in C1.

Clearly, p̃ vanishes identically on everyh∗ ∈ C1. Furthermore,
everyh∗ ∈ C1 contains at mostd points in the surfacesΞi, be-
cause, as just argued, it crosses each surfaceΞi in at most three
points.

Hence, eachh∗ ∈ C1 contains at least8d rotations ofP1. Since
each of these rotations is incident to at least three parabolas inC1,
each of these rotations is either critical or geometricallyflat for p̃.

Consider a parabolah∗ ∈ C1. If h∗ contains more than2d
critical rotations thenh∗ is a critical parabola for̃p. By Proposi-
tion 6, the number of such parabolas is at mostd(d−1). Any other
parabolah∗ ∈ C1 contains more than6d geometrically flat points
and henceh∗ must be a flat parabola for̃p. By Proposition 10, the
number of such parabolas is at mostd(3d − 4). Summing up we
obtain

|C1| ≤ d(d − 1) + d(3d − 4) < 4d2.

We require that4d2 < n/2; that is,32(12t)2/3 < 1, which can be
guaranteed by choosingt sufficiently small.

We next want to apply the induction hypothesis toC1, with the
parameter4d2 (which dominates the size ofC1). For this, we first
need to argue that each special surface contains at most(4d2)1/2 =
2d parabolas ofC1. Indeed, letΞ be a special surface. Using (4),



eliminate, say,Y from the equation ofΞ and substitute the resulting
expression into the equation ofp̃, to obtain a bivariate polynomial
p̃0(X, Z). Let h∗ be a parabola ofC1 contained inΞ. We repre-
senth∗ by itsX-equation of the formX = Q(Z), and observe that
p̃0(X, Z) vanishes on the zero set ofX−Q(Z). Hencep̃0 must be
divisible byX −Q(Z). Note that, in a generic coordinate frame in
thexy-plane, two different parabolas cannot have the same equa-
tion X = Q(Z), because this equation uniquely determinesa1, b1,
anda2, and then, in a generic frame,b2 is also uniquely determined.
Note also that the degree ofp̃0 is at most3d, and that the degree
of each factorX −Q(Z) is 2, implying thatΣ can contain at most
3d/2 parabolas ofC1.

Hence, the maximum number of parabolas ofC1 contained in a
special surface is at most3d/2 ≤ (4d2)1/2, so, by the induction
hypothesis, the number of points inP1 is at most

A(4d2)3/2 ≤ A

23/2
n3/2.

Adding up the bounds on the number of points on parabolas re-
moved during the pruning process and on the special surfacesΞi

(which correspond to the special polynomial factors ofp), we ob-
tain

|P | ≤ A

23/2
n3/2 + (b + c)n3/2 ≤ An3/2 ,

with an appropriate, final choice oft, c, andA. This contradicts the
assumption that|P | > An3/2, and thus establishes the induction
step forn, and, consequently, completes the proof of the restricted
version of the theorem.
Proof of the general version:The proof proceeds almost exactly
as the proof of the restricted version, except for the analysis of the
number of rotations on the special surfacesΞi, which, using the
preceding notations, is bounded by

O

 

X

i

(t2i + n)

!

= O

 

q ·
X

i

ti + nd

!

= O(n3/2 + nq).

See [7].2
We summarize the remarks following Theorem 11, combined

with Lemma 2, in the following corollary.

COROLLARY 12. Let S be a set ofs points in the plane. Then
there are at mostO(s3) rotations which map some (degenerate or
non-degenerate) triangle spanned byS to another (congruent and
equally oriented) such triangle. This bound is tight in the worst
case.

4. INCIDENCES BETWEEN PARABOLAS
AND ROTATIONS

In this section we further adapt the machinery of [6] to derive
an upper bound on the number of incidences betweenm rotations
andn h-parabolas inR3, where each rotation is incident to at least
three parabolas.

THEOREM 13. For an underlying ground setS of s points in
the plane, letC be a set of at mostn ≤ s2 h-parabolas defined
on S, and letP be a set ofm rotations with multiplicity at least3
(with respect toS). Then

I(P, C) = O
“

m1/3n + m2/3n1/3s1/3
”

.

Remark. As easily checked, the first term dominates the sec-
ond term whenm ≤ n2/s, and the second term dominates when

n2/s < m ≤ ns. In particular, the first term dominates when
n = s2, because we havem = O(s3) = O(n2/s)
Proof: The proof of Theorem 13 proceeds in two steps. We first
establish a bound which is independent ofm, and then apply it to
obtain them-dependent bound asserted in the theorem. Due to lack
of space, we only sketch the proof for the first step, given in

THEOREM 14. Let C be a set of at mostn ≤ s2 h-parabolas
defined onS, and letP be a set of rotations with multiplicity at
least 3 with respect toS, such that no special surface contains
more thann1/2 parabolas ofC. Then the number of incidences
betweenP andC is O(n3/2).

Proof. Write I = I(P, C) for short, and putm = |P |. We will
establish the upper boundI ≤ Bn3/2, for some sufficiently large
absolute constantB, whose specific choice will be dictated by the
various steps of the proof. Suppose then to the contrary thatI >
Bn3/2 for the givenC andP .

For h∗ ∈ C, let ν(h∗), themultiplicity of h∗, denote the num-
ber of rotations incident toh∗. We have

P

h∗∈C ν(h∗) = I ; the
average multiplicity of a parabolah∗ is I/n.

We begin by applying the following pruning process. Putν =
I/(6n). As long as there exists a parabolah∗ ∈ C whose multi-
plicity is smaller thanν, we removeh∗ from C, but do not remove
any rotation incident toh∗. We keep repeating this step (without
changingν), until each of the surviving parabolas has multiplicity
at leastν. Moreover, if, during the pruning process, some rotation
τ loses⌊µ(τ )/2⌋ incident parabolas, we removeτ from P . This
decreases the multiplicity of some parabolas, and we use thenew
multiplicities in the test for pruning further parabolas, but we keep
using the original thresholdν.

When we delete a parabolah∗, we lose at mostν incidences with
surviving rotations. When a rotationτ is removed, the number of
current incidences withτ is smaller than or equal to twice the num-
ber of incidences withτ that have already been removed. Hence,
the total number of incidences that were lost during the pruning
process is a most3nν = I/2. Thus, we are left with a subsetP1

of the rotations and with a subsetC1 of the parabolas, so that each
h∗ ∈ C1 is incident to at leastν = I/(6n) rotations ofP1, and
each rotationτ ∈ P1 is incident to at least three parabolas ofC1

(the latter is an immediate consequence of the rule for pruning a ro-
tation). Moreover, we haveI(P1, C1) ≥ I/2. It therefore suffices
to boundI(P1, C1).

Let n1 = |C1|. Since at least three parabolas inC1 are incident
to each rotation inP1, it follows that each parabola inC1 is incident
to at mostn1/2 rotations ofP1, and thereforeI(P1, C1) ≤ n2

1/2.
Combining this with the fact thatI(P1, C1) ≥ I/2, we get that
n1 ≥ B1/2n3/4.

We fix the following parameters

x =
n1

n1/2
and t = δ

n1

n
,

for an appropriate absolute constantδ < 1, whose value will be
fixed shortly. Clearly,t < 1, and we can also ensure thatx < ν,
i.e., thatI > 6n1n

1/2, by choosingB > 6. Furthermore, since
n1 ≥ B1/2n3/4 we havex ≥ B1/2n1/4.

We construct a random sampleCs
1 of parabolas ofC1 by choos-

ing each parabola independently at random with probabilityt; the
expected size ofCs

1 is tn1. Now takex (arbitrary) rotations ofP1

on each parabola ofCs
1 (which can always be done sincex < ν), to

form a sampleS of rotations inP1, of expected size at mosttxn1.
For any parabolah∗ ∈ C1, the expected number of rotations

of P1 ∩ h∗ which lie on parabolas ofCs
1 is at leasttν (each of

the at leastν rotationsa ∈ P1 ∩ h∗ is incident to at least one



other parabola ofC1, and the probability of this parabola to be
chosen inCs

1 is t). We assume thatB is large enough so that

tν = δ
n1

n

I

6n
≥ δB

6

n1

n1/2
is larger than2x (it suffices to choose

B > 12/δ). Sincetν > 2x = Ω(n1/4), and the expected size

of Cs
1 is tn1 =

δn2
1

n
≥ Bδn1/2, we can use Chernoff’s bound, to

show that there exists a sampleCs
1 such that (i)|Cs

1 | ≤ 2tn1, and
(ii) each parabolah∗ ∈ C1 contains at least1

2
tν > x rotations of

P1 which lie on parabolas ofCs
1 . In what follows, we assume that

Cs
1 satisfies these properties. In this case, we have|S| ≤ 2txn1.
Now construct, using Proposition 8, a nontrivial suqare-free trivari-

ate polynomialp which vanishes onS, of smallest degreed satis-
fying

`

d+3
3

´

≥ |S| + 1, so

d ≤ ⌈(6|S|)1/3⌉ ≤ (12txn1)
1/3 + 1 = (12δ)1/3 n1

n1/2
+ 1

≤ 2(12δ)1/3 n1

n1/2

for n sufficiently large (for small values ofn we ensure the bound
by choosingB sufficiently large, as before).

We will chooseδ < 1/6144, sox > 4d.
As above, and without loss of generality, we may assume thatp

is square-free: factoring out repeated factors only lowersthe degree
of p and does not change its zero set.

The following properties hold: (a) Sincex > 2d, p vanishes at
more than2d rotations on each parabola ofCs

1 , and therefore, as al-
ready argued, it vanishes identically on each of these parabolas. (b)
Each parabolah∗ ∈ C1 contains at least1

2
tν > x > 2d rotations

which lie on parabolas ofCs
1 . Since, as just argued,p vanishes at

these rotations, it must vanish identically onh∗. Thus,p ≡ 0 on
every parabola ofC1.

Before proceeding, we enforce the inequalityd2 < 1
8
n1 which

will hold if we chooseδ so that(12δ)2/3 < 1/32. Similarly, an
appropriate choice ofδ (or B) also ensures thatν > 9d.

We next consider all the special polynomial factors ofp, and
factor them out, to obtain a square-free polynomialp̃, of degree
at mostd, with no special polynomial factors. As in the previous
analysis,p can have at mostd/3 special polynomial factors, so it
can vanish identically on at mostd/3 special surfacesΞ1, . . . , Ξk,
for k ≤ d/3. Let C2 ⊆ C1 denote the set of those parabolas of
C1 which are not contained in any of the vanishing surfacesΞi.
For each parabolah∗ ∈ C2, p̃ vanishes identically onh∗, and (as
argued above) at mostd rotations inP1 ∩ h∗ lie in the surfacesΞi.
Hence,h∗ contains at least8d remaining rotations, each of which
is either critical or flat for̃p, because each such point is incident to
at least three parabolas (necessarily ofC2) on whichp̃ ≡ 0.

Hence, either at least2d of these rotations are critical, and then
h∗ is a critical parabola for̃p, or at least6d of these rotations are
flat, and thenh∗ is a flat parabola for̃p. Applying Propositions 6
and 10, the overall number of parabolas inC2 is therefore at most

d(d − 1) + d(3d − 4) < 4d2 <
1

2
n1.

On the other hand, by assumption, each vanishing special surface
Ξi contains at mostn1/2 parabolas ofC, so the number of parabo-
las contained in the special vanishing surfaces is at mostn1/2d <
1
4
n1/2x ≤ 1

4
n1, with our choice ofδ.

Hence, the overall number of parabolas inC1 is smaller than
1
2
n1 + 1

4
n1 < n1, a contradiction that completes the proof of The-

orem 14.2
Proof of Theorem 13. Write I = I(P, C) for short. Setν =

cm1/3 and µ = cn/m2/3, for some sufficiently large constant
c whose value will be determined later, and apply the following

pruning process. As long as there exists a parabolah∗ ∈ C whose
multiplicity is smaller thanν, we removeh∗ from C, but do not re-
move any rotation incident toh∗. Similarly, as long as there exists
a rotationτ ∈ P whose multiplicity is smaller thanµ, we remove
τ from P . Of course, these removals may reduce the multiplicity
of some surviving rotations or parabolas, making additional rota-
tions and parabolas eligible for removal. We keep repeatingthis
step (without changing the initial thresholdsν andµ), until each of
the surviving parabolas has multiplicity at leastν and each of the
surviving rotations has multiplicity at leastµ. We may assume that
µ ≥ 3, by choosingc suficiently large and using Theorem 11(i).

When we delete a parabolah∗, we lose at mostν incidences with
surviving rotations. When a rotationτ is removed, we lose at most
µ incidences with surviving parabolas. All in all, we lose at most
nν+mµ = 2cm1/3n incidences, and are left with a subsetP1 of P
and with a subsetC1 of C, so that each parabola ofC1 is incident
to at leastν rotations ofP1, and each rotation ofP1 is incident
to at leastµ parabolas ofC1 (these subsets might be empty). Put
n1 = |C1| andm1 = |P1|. We haveI ≤ I(P1, C1) + 2cm1/3n,
so it remains to boundI(P1, C1), which we do as follows.

We fix some sufficiently small positive parametert < 1, and
construct a random sampleP s

1 ⊂ P1 by choosing each rotation of
P1 independently with probabilityt. The expected size ofP s

1 is
m1t, and the expected number of points ofP s

1 on any parabola of
C1 is at leastνt = ctm1/3. Chernoff’s bound implies that, with
positive probability,|P s

1 | ≤ 2m1t, and |P s
1 ∩ h∗| ≥ 1

2
ctm1/3

for everyh∗ ∈ C1, and we assume thatP s
1 does satisfy all these

inequalities. (For the bound to apply,m1 (andm) must be at least
some sufficiently large constant; if this is not the case, we turn the
trivial bound m1n (or mn) on I into the boundO(m

1/3
1 n) (or

O(m1/3n)) by choosing the constant of proportionality sufficiently
large.)

Construct, using Proposition 8, a nontrivial square-free trivariate
polynomialp which vanishes onP s

1 , whose degree is at most the
smallest integerd satisfying

`

d+3
3

´

≥ 2tm1 + 1, so

d ≤ ⌈(12tm1)
1/3⌉ ≤ 3t1/3m

1/3
1 ,

assuming (as above) thatm1 is sufficiently large.
Choosingc to be large enough, we may assume thatνt > 18d.

(This will hold if we ensure thatct > 54t1/3.) This implies that
p vanishes at more than9d points on each parabolah∗ ∈ C1, and
therefore it vanishes identically on each of these parabolas.

As in the previous analysis, we factor out the special polynomial
factors ofp, obtaining a square-free polynomialp̃, of degree at most
d, with no special polynomial factors. LetΞ1, . . . , Ξk denote the
special surfaces on whichp vanishes identically (the zero sets of
the special polynomial factors ofp), for somek ≤ d/3.

Let C2 ⊆ C1 (resp.,P2 ⊆ P1) denote the set of those parabolas
of C1 (resp., rotations ofP1) which are not contained in any of the
vanishing surfacesΞi. PutC′

2 = C1 \ C2 andP ′
2 = P1 \ P2.

For each parabolah∗ ∈ C2, p̃ vanishes identically onh∗, and, as
argued in the proof of Theorem 11, at mostd rotations ofP1 ∩ h∗

lie in the surfacesΞi. Hence,h∗ contains more than8d rotations of
P2, and, arguing as in the preceding proof, each of these rotations
is either critical or flat forp̃. Hence, either more than2d of these
rotations are critical, and thenh∗ is a critical parabola for̃p, or more
than6d of these rotations are flat, and thenh∗ is a flat parabola for
p̃. Applying Propositions 6 and 10, the overall number of parabolas
in C2 is therefore at most

d(d − 1) + d(3d − 4) < 4d2.

We now apply Theorem 14 toC2 andP2, with the bound4d2 on
the size ofC2. Arguing as before, the conditions of this theorem



are easily seen to hold for these sets. Theorem 14 then implies that
the number of incidences betweenP2 andC2, which is also equal
to the number of incidences betweenP2 andC1, is

I(P2, C1) = I(P2, C2) = O((4d2)3/2) = O(d3) = O(m) .

Moreover, since each parabola ofC2 contains at least eight times
more rotations ofP2 than ofP ′

2, this bound also applies to the num-
ber of incidences betweenP ′

2 andC2.
It therefore remains to bound the number of incidences between

P ′
2 andC′

2, namely, between the rotations and parabolas contained
in the vanishing special surfacesΞi. To do so, we iterate over the
surfaces, say, in the orderΞ1, . . . , Ξk. For each surfaceΞi in turn,
we process the rotations and parabolas contained inΞi and then
remove them from further processing on subsequent surfaces.

Let us then consider a special surfaceΞi. Let mi andni denote
respectively the number of rotations and parabolas contained inΞi,
which were not yet removed when processing previous surfaces.
The number of incidences between these rotations and parabolas
can be bounded by the classical Szemerédi-Trotter incidence bound
[20] (see also (2)), which isO(m

2/3
i n

2/3
i + mi + ni). Summing

these bounds over all the special surfacesΞi, and using Hölder’s
inequality and the fact, established in Lemma 5, thatni ≤ s, we
get an overall bound of

O

 

s1/3
X

i

m
2/3
i n

1/3
i +

X

i

(mi + ni)

!

=

O
“

m2/3n1/3s1/3 + m + n
”

,

where we use the facts that
P

i mi ≤ m and
P

i ni ≤ n, which
follow since in this analysis each parabola and rotation is processed
at most once. The two linear terms satisfyn = O(m1/3n) (the
bound obtained in the pruning process), andm = O(m2/3n1/3s1/3)
sincem = O(ns); see Remark (2) following Theorem 11.

We are not done yet, because each rotation ofP ′
2 is processed

only once, within the first surfaceΞi containing it. This, however,
can be handled as in [6]. That is, letτ be a rotation which was pro-
cessed within the first surfaceΞi containing it. Suppose thatτ also
lies on some later surfaceΞj , with j > i, and leth∗ be a parabola
contained inΞj , which has not been removed yet; in particular,h∗

is not contained inΞi, and thus meets it transversally, so the inci-
dence betweenh∗ andτ can be regarded as one of the transversal
incidences inΞi, which we have been ignoring so far. To count
them, we simply recall that each parabola, whether ofC′

2 or of C2,
has at most three transversal intersections with a surfaceΞi, for a
total of at mostd crossings with all the vanishing surfaces. Since
each of these parabolas contains at least9d rotations ofP1, those
“transversal incidences” are only a fraction of the total number of
incidences, and we simply ignore them altogether.

To recap, we obtain the following bound on the number of inci-
dences betweenP1 andC1:

I(P1, C1) = O
“

m1/3n + m2/3n1/3s1/3
”

.

Adding the bound2cm1/3n on the incidences lost during the prun-
ing process, we get the asserted bound.2

5. FURTHER IMPROVEMENTS
In this section we further improve the bound in Theorem 13 us-

ing more standard space decomposition techniques. We show:

THEOREM 15. The number of incidences betweenm arbitrary
rotations andn h-parabolas, defined for a planar ground set with

s points, is

O∗
“

m5/12n5/6s1/12 + m2/3n1/3s1/3 + n
”

,

where theO∗(·) notation hides polylogarithmic factors. In partic-
ular, when alln = s2 h-parabolas are considered, the bound is

O∗
“

m5/12s7/4 + s2
”

.

Brief sketch of the proof: We dualize the problem, mapping each
h-parabola into a point in parametric 4-space, so that each rota-
tion becomes a 2-plane. We project the dual points and planes
onto some generic 3-space, and bound the number of incidences
between thesen points andm planes. We do this using a(1/r)-
cutting of the arrangement of these planes, for an appropriate pa-
rameterr, and use the bound of Theorem 13 within each cell of
the cutting. We need to pay special attention to situations where
many points lie on a line which is contained in many planes (which
is always a problematic issue in analyzing point-plane incidences).
Fortunately, the special geometric structure in our setup allows us
to control this situation, and get the bound asserted in the theorem.
See [7] for full details.2

COROLLARY 16. LetC be a set ofn h-parabolas andP a set
of rotations, with respect to a planar ground setS of s points. Then,
for any k ≥ 3, the numberM≥k of rotations ofP incident to at
leastk parabolas ofC satisfies

M≥k = O∗

„

n10/7s1/7

k12/7
+

ns

k3
+

n

k

«

.

For n = s2, the bound becomes

M≥k = O∗

„

s3

k12/7

«

.

Proof: We haveI(P,C) ≥ kM≥k. Comparing this bound with
the upper bounds in Theorem 15 yields the asserted bounds.2

6. CONCLUSION
In this paper we have reduced the problem of obtaining a near-

linear lower bound for the number of distinct distances in the plane
to a problem involving incidences between points and a special
class of parabolas (or helices) in three dimensions. We havemade
significant progress in obtaining upper bounds for the number of
such incidences, but we are still short of tightening these bounds to
meet the conjectures on these bounds made in the introduction.

To see how far we still have to go, consider the bound in Corol-
lary 16, for the casen = s2, which then becomesO∗(s3/k12/7).
(HereM≥k coincides withN≥k as defined in (H3).) Moreover, we
also have the Szemerédi-Trotter boundO(s4/k3), which is smaller
than the previous bound fork ≥ s7/9. Substituting these bounds in
the analysis of (H3) and (H4), we get

[s(s − 1) − x]2

x
≤ |K| =

N≥2 +
X

k≥3

(k − 1)N≥k =

N≥2 + O(s3) ·

2

41 +
s7/9

X

k=3

1

k5/7
+

X

k>s7/9

s

k2

3

5 =

N≥2 + O(s29/9).



It is fairly easy to show thatN≥2 is O(s10/3), by noting thatN≥2

can be upper bounded byO
`

P

i |Ei|2
´

, whereEi is as defined in
(H1). Using the upper bound|Ei| = O(s4/3) [18], we get

N≥2 = O

 

X

i

|Ei|2
!

= O(s4/3) · O
 

X

i

|Ei|
!

= O(s10/3).

Thus, at the moment,N≥2 is the bottleneck in the above bound,
and we only get the (weak) lower boundΩ(s2/3) on the number of
distinct distances. Showing thatN≥2 = O(s29/9) too (hopefully,
a rather modest goal) would improve the lower bound toΩ(s7/9),
still a rather weak lower bound.

Nevertheless, we feel that the reduction to incidences in three
dimensions is fruitful, because
(i) It sheds new light on the geometry of planar point sets, related
to the distinct distances problem.
(ii) It gave us a new, and considerably more involved setup inwhich
the new algebraic technique of Guth and Katz could be applied. As
such, the analysis in this paper might prove useful for obtaining
improved incidence bounds for points and other classes of curves
in three dimensions. The case of points and circles is an immediate
next challenge.

Another comment is in order. Our work can be regarded as a spe-
cial variant of the complex version of the Szemerédi-Trotter theo-
rem on point-line incidences [20]. In the complex plane, theequa-
tion of a line (in complex notation) isw = pz + q. Interpreting this
equation as a transformation of the real plane, we get ahomothetic
map, i.e., a rigid motion followed by a scaling. We can therefore
rephrase the complex version of the Szemerédi-Trotter theorem as
follows. We are given a setP of m pairs of points in the (real)
plane, and a setM of n homothetic maps, and we seek an upper
bound on the number of times a mapτ ∈ M and a pair(a, b) ∈ P
“coincide”, in the sense thatτ (a) = b. In our work we only con-
sider “complex lines” whose “slope”p has absolute value1 (these
are our rotations), and the setP is simplyS × S.

The main open problems raised by this work are:
(a) Obtain a cubic upper bound for the number of rotations which
map only two points of the given ground planar setS to another pair
of points ofS. Any upper bound smaller thanO(s3.1358) would
already be a significant step towards improving the current lower
bound ofΩ(s0.8641) on distinct distances [11].
(b) Improve further the upper bound on the number of incidences
between rotations andh-parabolas. Ideally, establish Conjectures 1
and 2.
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