
An Optimal-Time Algorithm for Shortest Paths on a Convex
Polytope in Three Dimensions ∗

Yevgeny Schreiber
School of Computer Science

Tel Aviv University
Tel Aviv 69978, Israel

syevgeny@tau.ac.il

Micha Sharir
School of Computer Science

Tel Aviv University, Tel Aviv 69978, Israel
and

Courant Institute of Mathematical Sciences
New York University, New York, NY 10012, USA

michas@tau.ac.il

ABSTRACT
We present an optimal-time algorithm for computing (an im-
plicit representation of) the shortest-path map from a fixed
source s on the surface of a convex polytope P in three
dimensions. Our algorithm runs in O(n log n) time and re-
quires O(n log n) space, where n is the number of edges of P .
The algorithm is based on the O(n log n) algorithm of Her-
shberger and Suri for shortest paths in the plane [11], and
similarly follows the continuous Dijkstra paradigm, which
propagates a “wavefront” from s along ∂P . This is effected
by generalizing the concept of conforming subdivision of the
free space used in [11], and adapting it for the case of a con-
vex polytope in R

3, allowing the algorithm to accomplish
the propagation in discrete steps, between the “transpar-
ent” edges of the subdivision. The algorithm constructs a
dynamic version of Mount’s data structure [16] that implic-
itly encodes the shortest paths from s to all other points of
the surface. This structure allows us to answer single-source
shortest-path queries, where the length of the path, as well
as its combinatorial type, can be reported in O(log n) time;
the actual path π can be reported in additional O(k) time,
where k is the number of polytope edges crossed by π.

The algorithm generalizes to the case of m source points
to yield an implicit representation of the geodesic Voronoi
diagram of m sites on the surface of P , in time O((n +
m) log(n + m)), so that the site closest to a query point can
be reported in time O(log(n + m)).

∗
Work on this paper was supported by NSF Grants CCR-00-

98246 and CCF-05-14079, by a grant from the U.S.-Israeli Bina-
tional Science Foundation, by grant 155/05 from the Israel Sci-
ence Fund, and by the Hermann Minkowski–MINERVA Center
for Geometry at Tel Aviv University. The paper is based on the
Ph.D. Thesis of the first author, supervised by the second author.
A full version of this paper is available at [21].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’06, June 5–7, 2006, Sedona, Arizona, USA.
Copyright 2006 ACM 1-59593-340-9/06/0006 ...$5.00.

Categories and Subject Descriptors: F.2.2 [Nonnumer-
ical Algorithms and Problems]: Geometrical problems and
computations

General Terms: Algorithms, Theory

Keywords: Shortest Path, Shortest Path Map, Polytope
Surface, Unfolding, Continuous Dijkstra, Euclidean Distance

1. INTRODUCTION
Background. The problem of determining the Euclidean
shortest path on the surface of a convex polytope P in R

3

between two points is a classical problem in geometric op-
timization, which is motivated by many applications. This
problem is a special case of the following basic general prob-
lem: Given a collection of obstacles (of known shapes and
locations), find a Euclidean shortest obstacle-avoiding path
between two given points, or, more generally, compute a
compact representation of all such paths that emanate from
a fixed source point. See the survey of Mitchell [13] for many
variants and extensions; here we mention only the results
that are most relevant to our specific problem.

Its first study in computational geometry is by Sharir and
Schorr [23]. Their algorithm runs in O(n3 log n) time, where
n is the number of vertices of P . The algorithm constructs a
planar layout of the shortest path map, and then the shortest
path from the fixed source point s to any given query point q
can be computed in O(k+log n) time, where k is the number
of edges of the polytope that are crossed by the shortest
path from s to q. Soon afterwards, Mount [15] gave an
improved algorithm for convex polytopes with running time
O(n2 log n). Moreover, in [16], Mount has shown that the
problem of storing shortest path information can be treated
separately from the problem of computing it, presenting a
data structure of O(n log n) space that supports O(log n)-
time shortest-path queries. However, the question whether
this data structure can be constructed in subquadratic time,
has been left open.

For a general, possibly nonconvex polyhedral surface, Mitchell
et al. [14] presented an O(n2 log n) algorithm for the single
source shortest path problem (improving an earlier solution
in [19]), extending the technique of Mount [15]. All algo-
rithms in [14, 15, 23] use the same general approach, called
“continuous Dijkstra”, first formalized in [14]. The tech-
nique keeps track of all the points on the surface whose

shortest path distance to the source s has the same value
t, and maintains this “wavefront” as t increases. The same
general approach is also used in our algorithm.

Chen and Han [4] use a rather different approach (for a
not necessarily convex polyhedral surface). Their algorithm
builds a shortest path sequence tree, using an observation
that they call “one angle one split” to bound the number
of branches, maintaining only O(n) nodes in the tree in
O(n2) total running time. The algorithm of [4] also con-
structs a planar layout of the shortest path map (which is
“dual” to the layout of [23]), which can be used similarly
for answering shortest path queries in O(k + log n) time.
(Their algorithm is somewhat simpler for the case of a con-
vex polytope, relying on the property, established by Aronov
and O‘Rourke [3], that this layout does not overlap itself.)
In [5], Chen and Han follow the general idea of Mount [16]
to solve the problem of storing shortest path information
separately, for a general, possibly nonconvex polyhedral sur-
face. They obtain a tradeoff between query time complex-
ity O(d log n/ log d) and space complexity O(n log n/ log d),
where d is an adjustable parameter. Again, the question
whether this data structure can be constructed in subquadratic
time, has been left open.

The problem has been more or less “stuck” after Chen and
Han’s paper, and the quadratic-time barrier seemed very dif-
ficult to break. For this and other reasons, several works [1,
2, 7, 8, 24] have presented approximate algorithms for the
3-dimensional shortest path problem. Nevertheless, the ma-
jor problem of obtaining a subquadratic, or even near-linear,
exact algorithm has remained open.

Seven years ago, in 1999, Kapoor [12] has announced such
an algorithm for the shortest path problem on an arbitrary
polyhedral surface P (see also a review in O’Rourke’s col-
umn [17]). The algorithm follows the continuous Dijkstra
paradigm, and claims to compute a shortest path from the
source s to a single target point t in O(n log2 n) time (so
it does not preprocess the surface for answering shortest
path queries). However, as far as we know, the details of
Kapoor’s algorithm have not yet been published, more than
seven years after its sketchy conference publication, which
makes it impossible to ascertain the correctness and the time
complexity of the algorithm. Moreover, as it is presented,
there seem to be quite a few difficulties that remain to be
solved in Kapoor’s approach. We list a few of these difficul-
ties in the full version of our paper [21]. As it is presented,
we feel that the algorithm of Kapoor [12] has many issues
to address and to fill in before it can be judged at all.

The algorithm of Hershberger and Suri for polygo-
nal domains. A dramatic breakthrough on a loosely re-
lated problem has taken place in 1995, when Hershberger
and Suri [10] (see also [9, 11]) have obtained an O(n log n)-
time algorithm for computing the shortest path map in the
plane in the presence of polygonal obstacles (where n is the
number of obstacle vertices). Shortest path queries can then
be processed in O(log n) time.

Since our algorithm uses (adapted variants of) many of the
ingredients of Hershberger and Suri’s algorithm, we provide
a brief overview of their technique. The algorithm of [11]
uses the continuous Dijkstra method — that is, propaga-
tion of the wavefront amid the obstacles, where each wave is
generated by an obstacle vertex already covered by the wave-
front. During the wavefront propagation, critical events that
change the wavefront topology are processed: wavefront-

wavefront collisions, wavefront-obstacle collisions, and wave
elimination in a single wavefront.

The key new ingredient in Hershberger and Suri’s algo-
rithm, which makes the wavefront propagation efficient, is a
quad-tree-style subdivision of the plane, of size O(n), on the
vertices of the obstacles (temporarily ignoring the obstacle
edges). Each cell of this conforming subdivision is bounded
by O(1) straight line edges (called transparent edges), con-
tains at most one obstacle vertex, and satisfies the following
crucial property: for any transparent edge e of the subdi-
vision, there are only O(1) cells within distance 2 |e| of e.
Then the obstacle edges are inserted into the subdivision,
while maintaining both the linear size of the subdivision
and its conforming property — except that now a transpar-
ent edge e has the property that there are O(1) cells within
shortest path distance 2 |e| of e. These transparent edges
form the elements on which the Dijkstra-style propagation
is performed: at each step, the wavefront is ascertained to
(completely) cover some transparent edge, and is then ad-
vanced into O(1) nearby cells and edges. Since each cell has
constant descriptive complexity, the wavefront propagation
inside a cell can be implemented efficiently. The conforming
nature of the subdivision guarantees the crucial property
that each transparent edge e needs to be processed only
once, in the sense that no path that reaches e after the time
at which it is processed can be a shortest path, so the Dijk-
stra style of propagation works correctly for the transparent
edges.

During the propagation, the algorithm collects the wave-
front collision data, from which the edges and vertices of
the final map can be constructed. Inside a cell, a wavefront-
obstacle collision event is relatively easy to handle; however,
a wavefront-wavefront collision is more complex, especially
when the colliding waves are not neighbors in the wave-
front. The collision of neighboring waves occurs when a wave
is eliminated by its two neighbors, which is easy to detect
and process. To process collisions between non-neighboring
waves another idea is introduced in [11] — the approximate
(or one-sided) wavefront.

Propagating the exact wavefront that reaches a transpar-
ent edge e appears to be inefficient; instead, the algorithm
maintains two separate “approximate” wavefronts approach-
ing e from opposite sides. Together, this pair of one-sided
wavefronts carry all the information needed to compute the
exact wavefront at e. A limited interaction between this pair
of wavefronts at e allows the algorithm to eliminate some of
the superfluous waves and (implicitly) detect all wavefront-
wavefront collisions (that constitute the vertices of the true
shortest path map) in a small neighborhood of their actual
location. In other words, a superfluous wave that should
have been eliminated in some cell may survive for a while,
but it will travel through only O(1) adjacent cells before
being “caught” and destroyed, so the damage that it may
have entailed till this point does not cause the asymptotic
performance of the algorithm to deteriorate.

To track all the changes of the wavefront during the prop-
agation, it is implemented as a persistent data structure
that requires O(log n) space for each update, resulting in an
algorithm with O(n log n) storage.

At the end of the propagation phase, all the collision in-
formation is collected, and then Voronoi diagram techniques
are used to compute exactly the vertices of the shortest path
map within each cell. The vertices in all the cells are then
combined into a single map using standard plane sweeping

and some additional tricks. Processing the resulting map
for point location completes the algorithm.
An overview of our algorithm. Our algorithm follows
the general outline of the technique of [11]: It constructs
a conforming subdivision of ∂P and applies the continuous
Dijkstra propagation technique to the resulting transparent
edges. However, extending the ideas of [11] to our case is
quite involved, and requires special constructs, careful im-
plementation, and finer analysis. In particular, many addi-
tional technical steps that address the 3-dimensional nature
of the problem are introduced. To aid readers familiar with
[11], the structure of our paper closely follows that of [11],
although almost every part, albeit reminiscent of the cor-
responding part of [11], is completely different in technical
details.

We begin with an overview of our algorithm. As in [11],
we construct a conforming subdivision of ∂P to control the
wavefront propagation. We first construct an oct-tree-like 3-
dimensional axis-parallel subdivision S3D, only on the ver-
tices of ∂P . Then we intersect S3D with ∂P , to obtain a
conforming surface subdivision S. In our case, a transpar-
ent edge e may traverse many facets and edges of P , but we
still want to treat it as a single simple entity. To this end, we
first replace each actual intersection of a facet of S3D with
∂P by the geodesic path on ∂P that connects its endpoints,
and make those paths our transparent edges. We associate
with each such edge its edge sequence (of the polytope edges
that it crosses), which is stored in compact form and used to
unfold it to a straight segment. To compute the unfolding
efficiently, we preprocess ∂P into a surface unfolding data
structure, that allows us to compute, in O(log n) time, the
image of any query point q ∈ ∂P in any unfolding formed
by a contiguous sequence of polytope edges crossed by an
axis-parallel plane that intersects the facet of q. This is a
nontrivial addition to the machinery of [11]. (In contrast,
in the planar case the transparent edges are simply straight
segments, which are trivial to represent and to manipulate.)

Similarly to [11], we maintain a simulation timer to con-
trol the propagation of the wavefront from one transparent
edge e of S to O(1) transparent edges of nearby cells. Be-
fore doing so, we first consolidate the wavefronts that have
already reached e, constructing a representation of the true
wavefront at e at a time when e is ascertained to have been
completely covered by the wavefront, but before the wave-
front covers other transparent edges further from the source
to which we want to propagate from e. The last transparent
edges from which the contributing wavefronts were propa-
gated to e bound the so-called well-covering region R(e) of
e, which has similar properties to those in [11]. A key dif-
ference is that in our case shortest paths “fold” over ∂P ,
and need to be unfolded onto some plane (on which they
look like straight segments). We cannot afford to perform
all these unfoldings explicitly — this would right away de-
grade the storage and running time to quadratic in the worst
case. Instead we maintain partial unfolding transformations
at the nodes of our structure, composing them on the fly (as
rigid transformations of 3-space) to perform the actual un-
foldings whenever needed (the same is done when unfolding
the transparent edges themselves).

In order to simplify the algorithm, we do not construct
the shortest-path map explicitly1 in the sense of [11], but
instead construct a collection of unfolded “quasi-shortest-
1The map, in its folded form, has quadratic complexity in the
worst case.

path maps”, so that the real shortest path to any point is
encoded by at least one of the maps, and so that any point
on ∂P is covered by only O(1) maps. This does not affect
the asymptotic complexity of the algorithm, and simplifies
it a lot because it allows us to skip several steps, analogous
versions of which are needed in [11].

We maintain two one-sided wavefronts instead of one ex-
act wavefront at each transparent edge e. We enforce the
invariant that, for any point p ∈ e, the true shortest path
distance from s to p is the smaller of the two distances to
p encoded in the two one-sided wavefronts. Unlike [11], we
do not apply any explicit interaction between the one-sided
wavefronts. We also ignore collision events between non-
neighboring waves.

The need to unfold shortest paths onto a plane creates
additional difficulties. On top of the main problem that a
surface cell may intersect up to Ω(n) facets of P , it can
in general be unfolded in more than one way, and such an
unfolding may overlap itself (see [18, 26] for description of
this problem).

To overcome this difficulty, we introduce a Riemann struc-
ture, constructed by subdividing each surface cell into O(1)
simple building blocks, whose planar unfolding (a) is unique,
and (b) is a simply connected polygon bounded by O(1)
straight line segments (and does not overlap itself). A global
unfolding is a concatenation of unfolded images of a se-
quence, or more generally a tree, of certain blocks. It may
overlap itself, but we ignore these overlaps, treating them as
different layers of a Riemann surface. Each building block
appears a constant number of times in the Riemann struc-
ture, and the structure has the property that it contains the
shortest paths from the source to all the points of ∂P .

In summary, each step of the wavefront propagation phase
picks up a transparent edge e, constructs each of the one-
sided wavefronts at e by merging the wavefronts that have
already reached e from a fixed side, and propagates from e
each of its two one-sided wavefronts to O(1) nearby trans-
parent edges f , following the general scheme of [11]. Each
propagation that reaches f from e proceeds along a fixed
sequence of building blocks that connect e to f . Thus each
propagation traces paths from a fixed homotopy class: they
can be deformed into one another, while continuing to trace
the same edge and facet sequences of ∂P . We call such
a propagation topologically constrained, and denote the re-
sulting wavefront that reaches f as W (e, f), omitting for
convenience the corresponding block sequence (or homotopy
class). For a fixed edge e, there are only O(1) successor
transparent edges f and only O(1) block sequences for any
of those f ’s.

During each propagation, we keep track of combinatorial
changes that occur within the wavefront, as it is being prop-
agated from some predecessor edge g to e: At each of these
events, we either split a wave into two waves when it hits
a vertex, or eliminate a wave when it is “overtaken” by its
two neighbors. Following a modified variant of the analy-
sis of [11], we show that the algorithm encounters a total
of only O(n) “events”, and processes each event in O(log n)
time. To achieve the latter property, we represent each wave-
front by a tree structure, as in [11], which supports standard
tree operations (including split and concatenate), prior-
ity queue operations (to control the Dijkstra-style propa-
gation), and, a novelty of the structure, unfolding opera-
tions (that are constantly needed to trace and manipulate
shortest paths as unfolded straight segments). The collec-

tion of the “unfolding fields” in the resulting data struc-
ture is actually a dynamic version of the incidence data
structure of Mount [16] that stores the incidence informa-
tion between m non-intersecting geodesic paths and n poly-
tope edges, and supports O(log(n + m))-time shortest-path
queries, using O((n+m) log(n+m)) space. Our data struc-
ture has similar space requirements and query-time perfor-
mance; the main novelty is the optimal preprocessing time
of O((n + m) log(n + m)) (in Mount’s technique, it can be
Θ(nm)). In this sense, we combine the benefits of the data
structure of [11] with those of [16].

When all wavefronts have reached e, we merge them into
two one-sided wavefronts at e, similarly to the corresponding
procedure in [11]. This happens at some simulation time te,
which is an upper bound on the time at which e has been
completely covered by the true wavefront. The main rea-
son for maintaining one-sided wavefronts is that merging
them is easy: Two such (topologically constrained) wave-
fronts W (f, e), W (g, e) cannot interleave along e, and each
of them “claims” a contiguous portion of e (this property
is false when merging wavefronts that reach e from different
sides, or that are not topologically constrained). This allows
us to perform the mergings in a total of O(n log n) time.

After the wavefront propagation phase, we perform fur-
ther preprocessing to facilitate efficient processing of short-
est path queries. This phase is rather different from the
shortest path map construction in [11], since we do not pro-
vide, nor know how to construct, an explicit representation
of the shortest path map on P in o(n2) time. However,
our implicit representation of the map suffices for answering
any shortest path query in O(log n) time. The query “iden-
tifies” the path combinatorially. It can produce right away
the length of the path, and the direction at which it leaves
s to reach the query point. An explicit representation of the
path takes O(k) additional time, where k is the number of
polytope edges crossed by the path.

The algorithm, like its predecessor [11], is quite involved
and its presentation is long. The (severe) lack of space forces
us to provide only few of the details in this version, omitting
the proofs of all lemmas and theorems.

Preliminaries. We borrow some definitions from [14, 22,
23]. For two facets f , f ′ that share a common edge χ, the
unfolding of f ′ onto (the plane containing) f is the rigid
transformation that maps f ′ into the plane containing f ,
effected by an appropriate rotation about the line through
χ, so that f and the image of f ′ lie on opposite sides of
that line. An unfolding transformation can be represented
as a single 4×4 matrix in homogeneous coordinates [20]. An
unfolding of ∂P along an edge sequence E = (χ1, χ2, . . . , χk),
with an associated facet sequence F = (f0, f1, . . . , fk), where
each χi is the common edge of fi−1 and fi, is the composition
of the unfoldings along χ1, . . . , χk, which effectively aligns
f0, . . . , fk−1 on the plane of fk. We denote this unfolding as
UE(F), and use this notation to also denote all the partial
unfoldings that align the other facets with the plane of fk.

A geodesic path π is a simple path along ∂P whose un-
folding (i.e., the unfolding of the facet sequence that it tra-
verses) is a straight segment. For any a, b ∈ ∂P , a shortest
(geodesic) path between them is denoted by π(a, b). For a
fixed a, π(a, b) is unique, except for b in a 1-dimensional
polygonal ridge set [23]. We put dS(a, b) := |π(a, b)|.

We consider the problem of computing shortest paths
from a fixed source point s ∈ ∂P to all points of ∂P . A

point z ∈ ∂P is called a ridge point if there exist at least
two distinct shortest paths from s to z. The shortest path
map of s, denoted SPM(s), is a subdivision of ∂P into
at most n connected regions, called peels, whose interiors
are vertex-free, and contain neither ridge points nor points
belonging to shortest paths from s to vertices of P , and
such that for each such region Φ, there is only one short-
est path π(s, p) ∈ Π(s, p) to any p ∈ Φ, which also satisfies
π(s, p) ⊂ Φ. All these paths traverse the same (maximal)
edge sequence. When unfolded onto the plane of the facet
containing s, these peels form a star-shaped region with re-
spect to s. See [23], and Figure 1 for an illustration.

Figure 1: Peels are

bounded by the bisec-

tors (the set of all the

ridge points), drawn as

thick solid lines, and by

the shortest paths from

s to vertices of P , drawn

dashed.
s

2. CONFORMING SURFACE SUBDIVISION
We begin by constructing a special conforming subdivi-

sion S of ∂P , in the two following steps. First, we build in a
bottom-up fashion a rectilinear oct-tree-like subdivision S3D

of R
3, by considering only the set V of O(n) points: The ver-

tices of P and the source point s. We simulate a growth pro-
cess of a cube box around each point of V , until their union
becomes connected. The resulting S3D is composed of O(n)
3D-cells, each of which is either a whole axis-parallel cube or
an axis-parallel cube with a single axis-parallel cube-shaped
hole; the sizes of the cubes correspond to the L∞-distances
between the points of V . The boundary of each 3D-cell is
divided into O(1) square sub-faces with axis-parallel sides.
This step is very similar to the analogous 2D construction
in [11].

Next, we intersect ∂P with the sub-faces of S3D. Each
intersection defines (albeit does not coincide with) a trans-
parent edge of S, thereby yielding an implicit representation
of S. Informally, for each face h of S3D, we “stretch” h∩∂P
along ∂P to obtain the corresponding transparent edge as
a geodesic path between its endpoints; see Figure 2. To do
the “stretching” efficiently, we preprocess ∂P into a surface
unfolding data structure, as follows.

Figure 2: The 3D-

cells c1 and c2 are

bounded by dotted

lines. The cuts of their

boundaries with ∂P

are drawn as thin solid

lines, and the dashed

lines denote polytope

edges. The geodesic

transparent edge ea,b is

a thick solid line.

ea,b

c2

c1

a b

The surface unfolding data structure. We sort the ver-
tices of P in ascending z-order, and sweep a horizontal plane

ζ upwards through P . At each height z of ζ, the cross section
P (z) = ζ ∩ P is a convex polygon, whose vertices are inter-
sections of some polytope edges with ζ. The cross-section
remains combinatorially unchanged as long as ζ does not
pass through a vertex of P . When ζ crosses a vertex v,
the polytope edges incident to v and pointing downwards
are deleted (as vertices) from P (z), and those that leave v
upwards are added to P (z).

We use a persistent search tree Tz to represent the cross-
sections. Since the total number of combinatorial changes in
P (z) is O(n), the total storage required by Tz is O(n log n),
and it can be constructed in O(n log n) time, using path
copying. We construct, in a completely symmetric fashion,
two additional persistent search trees Tx and Ty, by sweeping
P with planes orthogonal to the x-axis and to the y-axis,
respectively.

We can use the trees Tx, Ty, Tz to perform the following
type of queries: Given an axis-parallel sub-face h of S3D,
compute efficiently the convex polygon P ∩h, and represent
its boundary in compact form.

With each subtree τ of Tz at some fixed z (and similarly
for Tx, Ty), we precompute and store the unfolding UE of
the polytope edge sequence E that consists of the leaves of
τ . This allows us to compute, in O(log n) time, the image
of any query point q ∈ ∂P in any unfolding formed by a
contiguous sequence of polytope edges crossed by an axis-
parallel plane that intersects the facet of q.

Properties of S. We classify the properties of S as struc-
tural (S), conforming (C), and well covering (W):
(S1) Each cell of S is a connected region on ∂P bounded
by O(1) transparent edges.
(S2) Each (transparent) edge of S is a geodesic path on ∂P ,
whose unfolding is a straight segment.
(S3) No pair of transparent edges cross each other.
(C1) Each cell of S contains at most one vertex of P .
(C2) Each edge of S is well-covered (see below).
(C3) The well-covering region of each edge of S contains at
most one vertex of P .

An edge e is well-covered if the following properties hold:
(W1) There exists a set of O(1) cells C(e) ⊆ S such that e
lies in the interior of their connected union R(e) =

⋃
c∈C(e) c,

which is called the well-covering region of e.
(W2) The total complexity of all the cells in C(e) is O(1).
(W3) For each transparent edge f on ∂R(e), dS(e, f) ≥
2max{|e| , |f |}.

Theorem 2.1. Every convex polytope P with n vertices
in R

3 admits a conforming surface subdivision S of O(n)
size, which can be implicitly constructed in O(n log n) time,
and which satisfies all of the above properties.

3. RIEMANN STRUCTURES
We represent various unfolded portions of ∂P as Riemann

structures. Informally, this representation consists of planar
“flaps”, all lying in a common plane of unfolding, that are
locally glued together without overlapping, but may globally
have some overlaps, which however are ignored, since we
consider the corresponding flaps to lie at different “layers”
of the unfolding. The basic units of this structure are the
building blocks (the “flaps”). We define the following four
types of blocks in a cell c; see Figure 3.
(Type I) For each facet f of ∂P , any connected component

B of c∩ f that has an endpoint of some transparent edge of
∂c in its closure is a building block of type I of c.
(Type II) Let v be the (only) vertex in c and e a transparent
edge in ∂c. Then the union B, over all facets f in a maximal
sequence of adjacent facets, which are incident to v and e
but neither to endpoints of e nor to another transparent
edge e′ 6= e between e and v, of the portion of f between
e ∩ f and v, is a building block of type II of c.
(Type III) Let e, e′ be two distinct transparent edges in ∂c.
Then the union B, over all facets f in a maximal sequence of
adjacent facets, which are incident to e and e′ but neither to
their endpoints nor to another transparent edge e′′ between
e and e′, of the portion of f between e ∩ f and e′ ∩ f , is a
building block of type III of c.
(Type IV) Let f be a facet of ∂P . Any connected compo-
nent B of the region c∩f that does not contain endpoints of
any transparent edge, and whose boundary contains a por-
tion of each of the three edges of f , is a building block of type
IV of c.

Figure 3:
Building

blocks

(shaded) of

types: (a) I,

(b) II (un-

folded), (c)

III (unfolded),

(d,e) IV.
e2 e1

e3

e2
e1

v

e1

e2

(c)

e

(e)(d)

(a) (b)

v

It is easy to show that the boundary complexity of each
unfolded block is O(1), and that the unfolding of any block of
type II, III, along the polytope edge sequence that it spans,
is non-overlapping (this is trivial for blocks of type I, IV).

Since there is only a constant number of elements in each
surface cell that define various types of building blocks (i.e.
at most one vertex of P , O(1) transparent edges and their
endpoints), the following lemma holds (part (ii) requires
more work [21]).

Lemma 3.1. (i) Each surface cell c has only O(1) building
blocks, whose disjoint union covers c. (ii) All the building
blocks of all the surface cells of S can be computed in total
O(n log n) time.

Block trees. A contact interval of a building block B is
a maximal open straight segment of ∂B that lies on one
polytope edge χ ⊂ ∂B and is not intersected by transparent
edges. Contact intervals connect between building blocks
within the same cell c of S. A shortest path that crosses c
from one bounding transparent edge to another traverses a
sequence of blocks, where consecutive blocks are separated
by contact intervals that the path crosses. See Figure 4(a).

Let e be a transparent edge on the boundary of some
surface cell c, and let B be a building block of c so that e
appears on its boundary. The block tree TB(e) is a rooted
tree whose nodes are building blocks of c, whose root is B,
where block B′′ is a child of block B′ if they have a common
contact interval, and where no path in TB(e) from the root
contains the same block twice (except for the root B that
may appear as a leaf; this reflects special situations where a
shortest path may traverse the same block twice [21]). See
Figure 4(b). Note that TB(e) has only O(1) nodes.

B9

B9

B1

B6

B7

B

B4

B3

B2

B1

B

B8

B1 B7

B2

B3

B4

B5

B6

B5

B

B8

(b)

B3

B5

B6

B7

B8

B4

B2

B

(a)

B9

e

Figure 4: (a) A surface cell c containing a single vertex

of P and bounded by four transparent edges (solid lines) is

partitioned here into ten building blocks (whose shadings

alternate). Contact intervals are drawn dashed. (b) The

tree TB(e) of building blocks of c, where e is the (thick)

transparent edge that bounds the building block B.

We denote by T (e) the set of all block trees TB(e) of e
(constructed from the building blocks of all cells contain-
ing e on their boundaries), and call it the Riemann surface
structure of e; it will be used in Sections 4 and 5 for wave-
front propagation block-by-block from e in all directions.
This structure is indeed similar to standard Riemann sur-
faces (see, e.g., [25]); its main purpose is to handle effectively
(i) the possibility of overlap between distinct portions of ∂P
when unfolded onto some plane, and (ii) the possibility that
shortest paths may traverse a cell c in “homotopically in-
equivalent” ways (e.g., by going around a vertex or a hole
of c in two different ways). The use of the Riemann surface
is justified by the following.

Theorem 3.2. Let e be a transparent edge bounding a
surface cell c, and let q be a point in c, such that the short-
est path π(s, q) intersects e, and the portion π̃(s, q) of π(s, q)
between e and q is contained in c. Then π̃(s, q) is contained
in the union of building blocks that define a single path in
some tree of T (e).

4. THE SHORTEST PATH ALGORITHM
The algorithm uses the continuous Dijkstra paradigm, which

simulates a unit-speed wavefront expanding from the given
source point s, and spreading along ∂P . However, to ensure
efficiency, we do not simulate the true wavefront, but an
implicit representation thereof, using one-sided wavefronts
(cf. [14] and [11]). At simulation time t, the true wavefront
consists of points whose shortest path distance to s along
∂P is t. The wavefront is a set of closed cycles. Each cycle
is a sequence of circular arcs, called waves.

Each wave wi at time t (denoted also as wi(t)) is the
locus of endpoints of a collection Πi(t) of shortest paths of
length t from s, all traversing (prefixes of) the same maximal
polytope edge sequence Ei. Denote by Fi the corresponding
facet sequence of Ei (the facets delimited by these edges).
The wave wi is centered, in UEi

(Fi), at the source image
si = UEi

(s), called the generator of wi. When wi reaches,
at some simulation time t, a point p ∈ ∂P , so that no other
wave has reached p prior to time t, we say that si claims p,
and put claimer(p) := si. We say that Ei is the maximal
polytope edge sequence of si at t. For each p ∈ wi(t) there

exists a unique shortest path π(s, p) ∈ Πi(t) that intersects
all the edges in the corresponding prefix of Ei, and we denote
it as π(si, p).

The wave wi has (at most) two neighbors wi−1, wi+1 in the
wavefront, each of which shares a single common point with
wi. As t increases and the wavefront expands accordingly (as
well as the sequences Ei of its waves), the meeting point of
wi with wi+1 traces a bisector of (locus of points equidistant
from) the corresponding generators si, si+1, and is denoted
by b(si, si+1); its unfolded image is a straight ray in UEi

(Fi)
and in UEi+1

(Fi+1). See Figure 5 for an illustration of the
true wavefront.

(c)

s s s

(a) (b)

Figure 5: The wavefront W (drawn as a cycle of thick

circular arcs) generated by s at different times t: (a) After

the first four vertex events W consists of four (folded) waves.

(b) After four additional vertex events, W consists of eight

waves. (c) W splits into two independent cycles.

During the wavefront simulation, the combinatorial struc-
ture of the wavefront changes at certain critical events, which
may also change the topology of the wavefront. There are
two kinds of critical events:
(i) Bisector event, where an existing wave is eliminated by
other waves — the bisectors of all the involved generators
meet at the event point. See Figure 6(a). Our algorithm
detects and processes only some of the bisector events, as
detailed below.
(ii) Vertex event, where the wavefront reaches either a
vertex of P or some other boundary vertex of the Riemann
structure through which we propagate the wavefront — as
described in Section 5, the wave in the wavefront that reaches
a vertex event splits into two new waves after the event, as
depicted in Figure 6(b,c). These are the only events when a
new wave is generated. Our algorithm detects and processes
all vertex events.

si+1

si−1
f

f
sisisi

W

W

W1

W2

v

f ′

f ′

(c)

v

(b)

x

(a)

Figure 6: (a) The wavefront W before and after the bisector

event at the point x, at which the wave of the generator si is

eliminated from W . (b,c) Vertex event: splitting a wavefront

W at a vertex v into two new wavefronts W1, W2, which are

propagated separately beyond v through different unfoldings

of the facet sequence around v — note that the images of

the facets f, f ′ in (b) are different from those in (c).

At each vertex of SPM(s) either a vertex event, or some
bisector event (either detected by our algorithm or not) takes

place. Our algorithm might detect some “phony” events of
this kind, but this does not affect the correctness nor the
asymptotic efficiency of the algorithm.

We simulate a wavefront that may differ from the real
wavefront, in that it may contain spurious waves, which, in
the real wavefront, are eliminated by other waves, at bisector
events that we do not detect. Each spurious wave is the
locus of endpoints of geodesic paths that traverse the same
maximal edge sequence, but they need not be shortest paths.
The previous notions of bisectors, maximal polytope edge
sequences, and critical events, also apply to the wavefronts
propagated by our algorithm.

The propagation algorithm. The algorithm propagates
one-sided wavefronts between transparent edges. Each such
wavefront W (e) is associated with some transparent edge e,
and represents the true shortest paths that reach e from a
fixed side, if we ignore paths that reach e from the other side.
See Figure 7.

Figure 7: Some of the

waves of the two one-

sided wavefronts W (e)

and W ′(e) are absent

from the true wavefront,

since there is another

wave in the opposite

one-sided wavefront that

claims the same points of

e (before they do).

e

R(e)

s
W ′(e)

W (e)

Each of the one-sided wavefronts W (e) at a transparent
edge e is represented as a sequence of the generators (images
of s) of its waves, all unfolded to a common plane, in which
e becomes a straight segment, and lying on the same side
from which W (e) reaches e.

Following [11], the main step of our algorithm is a pro-
cedure that computes a one-sided wavefront at an edge e
based on the one-sided wavefronts of “nearby” edges in a
set input(e) of transparent edges that bound R(e), the well-
covering region of e. To compute a one-sided wavefront at
e, we propagate the one-sided wavefronts from each f ∈
input(e) which has already been processed by the algorithm,
to e inside R(e). Then we merge the results, separately
on each side of e, to get the two one-sided wavefronts that
reach e from each of its sides. The algorithm propagates
the wavefronts inside O(1) unfolded images of (portions of)
R(e), using the Riemann structure defined earlier. For each
such wavefront W (f), the algorithm propagates only those
portions of W (f) that reach e from f along straight (un-
folded) segments fully contained in R(e); that is, it takes
into account visibility constraints that arise due to the fact
that portion of R(e) through which we propagate need not
be convex (nor even simply connected). As mentioned, we
regard each of these propagations as forming a separate “ho-
motopy class” of paths, and refer to each such propagated
wavefront as topologically constrained.

We denote by output(e) the set of direct “successor” edges
to which the one-sided wavefronts of e should be passed;
specifically, output(e) = {f | e ∈ input(f)}. The size of
(number of edges in) input(e), for any edge e, is constant,
by construction, and the same holds for output(e).

The simulation clock. The simulation maintains a time
parameter t, called simulation clock, which the algorithm
strictly increases during execution and processes each edge
e when t reaches the value covertime(e), a conservative
upper bound of the real time max{dS(s, q) | q ∈ e} at
which e is completely run over by the true wavefront, com-
puted on the fly for each edge e. At each step, the al-
gorithm picks up the unprocessed edge e with minimum
covertime(e), and sets t := covertime(e). It then com-
putes the two one-sided wavefronts W1(e), W2(e) at e, by
merging the wavefronts that have already been propagated
to e. Next, for each edge g ∈ output(e), it computes the
time te,g at which one of W1(e), W2(e) first reaches an
endpoint of g, by propagating this wavefront from e to g,
along each of the O(1) possible “topologically constrained”
sequences of building blocks that connect e to g. It then up-
dates covertime(g) := min{covertime(g), te,g + |g|}. Each
transparent edge e is processed just once, at simulation time
at which e has already been fully covered by the true wave-
front, but, because of the well-covering property, before the
time at which any yet unprocessed g ∈ output(e) is reached
at all by the wavefront (see [21]).

Merging wavefronts. A crucial property of one-sided
wavefronts, from which the efficiency of the algorithm is
derived, is (cf. also [11], and note that it may fail for the
true “two-sided” wavefront):

Lemma 4.1. Let e be a transparent edge, and let W (f, e)
be a (topologically constrained) contributor to one of the one-
sided wavefronts W (e). Then the claim of W (f, e) on e
is connected—no other wavefront that reaches e from the
same side can claim any point between two points claimed
by W (f, e).

Assume for now that each such contributor W (f, e) has
already been correctly computed. That is, the correct order
of the generators in each W (f, e) at time te = covertime(e)
is known, each surviving wave does claim some points on e,
and the outermost points of e that W (f, e) reaches are also
known.

Since the claim of each contributing wavefront W (f, e) on
e is connected, the merge can proceed in a linear fashion
along e, eliminating waves of W (f, e) that “lose” to waves
from other wavefronts, processing them one by one, in the
order they appear in W (f, e); see Figure 8. We show:

Figure 8: Merging

W (f, e) and W (g, e) at

e: s2 is eliminated from

W (e), because its con-

tribution to W (e) must

be to the left of p2 and

to the right of x, and

therefore does not exist.

f

x

g

W (g, e)

a e

b(s1, s2)

W (f, e)

b

s2

s1

p1 p2

Lemma 4.2. For each transparent edge e and for each of
its two sides, we can compute the one-sided wavefront W (e)
that reaches e from that side at simulation clock te, from
the collection of O(1) contributing wavefronts W (f, e), over
all previously processed f ∈ input(e) and connecting block
sequences in R(e), in O((1 + k) log n) time, where k is the
overall number of generators in all these wavefronts W (f, e)
that are absent from W (e).

The following lemma is the crucial ingredient for the cor-
rectness of the propagation algorithm, and is proved by in-
duction on its steps.

Lemma 4.3. Any generator deleted during the construc-
tion of a one-sided wavefront at the transparent edge e does
not contribute to the true wavefront at e. Every generator
that contributes to the true wavefront at e belongs to one of
the one-sided wavefronts at e.

Bisector events of the first kind are detected when we
simulate the advance of the wavefront W (e) from e to g
through some connecting sequence of building blocks, to
compute the topologically constrained wavefront portion W (e, g),
for some g ∈ output(e). In any such event, two non-adjacent
generators si, sj become adjacent due to the elimination of
the intermediate wave(s); see Figure 6(a). This event is the
starting point of b(si, sj), which reaches g in W (e, g) if both
waves survive the trip. Storing and maintaining these events
by their “priorities” (distances from s), the algorithm pro-
cesses all such events that occur before time covertime(g).
From the properties of a topologically constrained wavefront
follows that only triplets of its neighbor waves collide in such
events.
Bisector events of the second kind occur when waves
from different topologically constrained wavefronts collide.
Our algorithm does not compute these events (although it
implicitly “senses” that some of them have taken place,
when waves are eliminated during the merging step along
a transparent edge), and we ignore them in what follows.

Lemma 4.4. The total number of processed bisector events,
over all the well-covering regions, is O(n).

5. IMPLEMENTATION DETAILS
The data structure. A one-sided wavefront is an ordered
list of generators (source images), which is stored in an ap-
propriate balanced binary tree structure, which supports:
(i) List operations: concatenate, split, insert, and delete.
(ii) Priority queue operations, maintaining priorities assigned
to generators, each equal to the time in which the generator
is eliminated by its two neighbors.
(iii) Source unfolding operations, which (a) Compute explic-
itly any source image si in the wavefront at time t, or the bi-
sector between two adjacent source images, by unfolding the
appropriate maximal polytope edge sequences at t. We up-
date the unfoldings as the wavefront advances. (b) Search
in the generator list for a claimer of a given query point (ig-
noring other wavefronts or possible visibility constraints).

The first two types of operations are similar to those
in [11], and their implementation is fairly standard, using
a persistent2 red-black tree with an embedded heap struc-
ture.

The source unfolding queries are supported by adding an
unfolding transformation field U [v] to each node v of the
binary tree, in such a way that, for any queried generator
si, the unfolding of si is equal to the product (composi-
tion) U [v1]U [v2] · · ·U [vk] of the transformations stored in
the nodes v1 = root, v2, . . . , vk = leaf storing si, of the path
from the leaf vk storing si to the root.
2We require the data structure to be confluently persistent [6],
since we need the ability to operate on and modify past versions
of any list (wavefront), and we need the ability to merge existing
distinct versions into a new version.

To perform the search operation efficiently, we precom-
pute and store in each internal node v of the tree the bisector
image b[v], which is the bisector between the source image
stored in the rightmost leaf of the left subtree of v and the
one stored in the leftmost leaf of the right subtree of v, un-
folded into the destination plane of U [v]. Given a query
point q in the destination plane of U [root], we determine on
which side of b[root] q lies, in constant time, and proceed to
the left or to the right child of the root, accordingly. When
we proceed from a node v to its child, we maintain the com-
position U∗[v] of all unfolding transformations on the path
from the root to v (by initializing U∗[root] := U [root] and
updating U∗[w] := U∗[u]U [w] when processing a child w of a
node u on the path). Thus, denoting by b the bisector whose
corresponding image b[v] is stored at v, we can determine on
which side of b q lies, by computing the image U∗[v]b[v], in
O(1) time. It thus takes O(log n) time to search for the
claimer of q.

In a typical step of updating some wavefront W , we have a
contiguous subsequence W ′ of W , which we want to advance
through a new polytope edge sequence E . We perform two
split operations that split T into three subtrees T−, T ′, T+,
where T ′ stores W ′, and T− (resp., T+) stores the portion
of W that precedes (resp., succeeds) W ′ (either of these
subtrees can be empty). Then we take the root r′ of T ′, and
replace U [r′] by UEU [r′] and b[r′] by UEb[r′]. Finally, we
concatenate T−, the new T ′, and T+, into a common new
tree T . See [21].

Wavefront propagation. Let e be a transparent edge,
and let c be a surface cell so that e ⊂ ∂c. We describe next
a procedure for computing W (e, g) for any transparent edge
g ⊂ ∂c. Because the edges of output(e) belong to O(1) cells
in the vicinity of e, we can use this primitive repeatedly to
compute W (e, g) for all g ∈ output(e), including the edges
that do not belong to ∂c.

Choose a block tree TB(e) in T (e). Let W = W (t) denote
the kinetic wavefront within the blocks of TB(e) at any time
t during the propagation; initially, t = covertime(e) and
W = W (e). Denote by C the boundary chain of TB(e), which
contains all the boundary segments of each block B′ of TB(e)
that do not connect B′ to another block of TB(e) (these are
either transparent edges or “dead-end” contact intervals).
There are only O(1) segments in C, and each instance of a
transparent edge or a contact interval in C can be reached
only by a single topologically constrained sub-wavefront of
W . We propagate W through the block sequences of TB(e)
towards C, updating W at the critical events that change its
topology. The purpose of the propagation of W in TB(e) is
the computation of the wavefront W (e, f), for each trans-
parent edge f in C that W reaches, which will be valid at
the time when f is known to be fully covered by W .

However, it is difficult to determine in advance the exact
set of those critical events that are true events with respect to
the propagation of W in TB(e). Instead, we determine on the
fly a larger set of candidate critical events, which might also
contain false events, either because they lie outside TB(e), or
are computed based on an incomplete information of earlier
true events (at least one of which has not been detected and
processed in time). A careful implementation ensures that
not too many of these false events are collected.

Specifically, let x be such a candidate bisector event that
takes place at simulation time tx. If all the true events of W

that have taken place before tx were processed before tx, then
x can be foreseen at the last critical event at which one of the
bisectors involved in x was updated before time tx, using pri-
orities assigned to the source images in W . The priority of a
source image si is the distance from si to the point at which
the two (unfolded) bisectors defined by si and its neighbors
intersect beyond eB , either in B or beyond it. (In the latter
case we cannot yet locate the intersection point, because it
may depend on polytope edge sequences that “continue the
unfolding”, which are not immediately available; we over-
come this problem by “tracing” the involved paths to the
location of x beyond B block-by-block through TB(e) up to
C.) The priority is +∞ if the bisectors do not intersect be-
yond eB . If x is a true candidate event, in the sense of the
paths from the involved generators is blocked by C before x,
we delete si from W , and recompute the priorities of its
neighbors in W .

False bisector events generally occur because we failed to
detect an earlier vertex event, which eliminates or separates
the generators involved in the bisector event. The algorithm
eventually detects these vertex events, backtracks to them,
and “restarts” the propagation from them. After O(1) such
restarts, all false bisector events will be eliminated.

In more detail, a candidate vertex event may not be fore-
seen, because the time tv at which it occurs is not known in
advance, nor does it appear among the priorities stored at
the structure. Searching for the claimer of v ahead of time
may fail, because some contenders, which would be elimi-
nated at some in-between bisector event. Instead, we detect
the vertex event at v only post factum, either when pro-
cessing some later false candidate event, or when the prop-
agation of W in TB(e) is stopped at a later simulation time
tstop(W), when a segment f of C incident to v is ascertained
to be fully covered by W (then we try to split out from W
the sub-wavefront W ′ that claims f , since W ′ should not be
propagated further). See Figure 9.

(b)

C

si

(a)

si−1

Cx

v si+1

fv′

v1

v2

Figure 9: A vertex event is detected: (a) At vertex v, while

processing a later false candidate bisector event x. (b) At

v1, while processing a later false vertex event at v′ or v2,

when the segment f is ascertained to be fully covered by W .

To detect a vertex event at v while we process a later
candidate critical event x, we search in W for the claimer
of each vertex u of C that “blocks” a path of W that is
involved in x; we choose v at that vertex u that minimizes
d(claimer(u), u), and set tv := d(claimer(v), v). All the ver-
sions of the (persistent) data structure that encode W after
time tv become invalid, since they do not reflect the update
that should have occurred at tv. To correct this situation, we
discard all the invalid versions of W , and restart the simu-
lation of the propagation of the last valid version of W from
time tv. This time, however, we split W at claimer(v) (at
time tv) into two new sub-wavefronts, making the ray from
claimer(v) to v the new extreme bisector of both. Since
there are only O(1) vertices in C, these restarts do not affect

the asymptotic time complexity of the propagation of W .
Most importantly, we need to know when to stop the prop-

agation, so as not to process too many events. Some events
that we encounter may occur outside the blocks in TB(e);
e.g., when we reach a segment f of C, we have to keep prop-
agating until we can ascertain (at most 2|f | simulation time
units later than the time when f was first reached by W)
that f is fully covered by W , which may force us to process
events that lie beyond f . See Figure 10. However, we only
need to handle events that lie at distance at most 2|f | from
f : If f is a transparent edge, the well-covering of f ensures
that this happens at most O(1) cells away from f ; if f is a
dead-end contact interval, the wave that reaches f does not
leave the cell c (since it crosses a cycle of building blocks).
This in turn implies that the total number of these events
remains linear.

Figure 10: The

union of all the

blocks (whose

shadings alter-

nate) in TB(e)

is bounded by

e ∩ B and by C.

For each segment

f of C, we stop

propagating the

portion of W that

has covered f af-

ter it crosses the

dotted line which

lies at distance

2 |f | from f .

B7

g

B6

B2

B3

B5

B1

B7

B8

B8
B4

B6

v

(portion of)
h

g

B

e

h

f

(portion of)

C

W

We maintain a time tstop(W) that tells us when to stop the
propagation of W . For each segment f in C, we maintain
an individual time tstop(f), which is a conservative upper
estimate of the time when f is completely covered by W ;
we update tstop(f), whenever we trace a path that reaches
f , to the minimal length of any such path, plus |f |. The
time tstop(W) is the minimum of all such times tstop(f) in
the range of W (the current portion of C that the current
W is trying to reach; initially it is the whole C). When W
reaches a vertex of C, it splits there into two sub-wavefronts
W1, W2 (the range of W is split accordingly); we regard W
as being terminated at this event, and replace it by W1, W2,
each now maintaining its own tstop(·) value.

The structure of the conforming subdivision, combined
with the careful implementation sketched above, imply that
the algorithm processes a total of only O(n) candidate events,
including false ones, each in O(log n) time, so the overall cost
of the wavefront propagation phase is O(n log n).

Shortest path queries. Finally, we consider the stage of
preprocessing the implicitly constructed shortest-path map
for shortest path queries. Consider a building block B that
was covered by a wavefront W (and by the wavefronts into
which W has been split during its propagation in B). We
partition B into active and inactive regions, and denote this
partition of B by W and its descendants by local(W, B).
The active regions are those portions of B that are claimed
by waves of W that have a (vertex or bisector) event in

B, and each inactive region is a band of waves of W that
cross B in an “uneventful” manner, delimited by a sequence
of pairwise disjoint bisectors; see Figure 11. The edges of
local(W, B) are those bisectors of generators of W , at least
one of which is active in B. The first and the last bisectors of
W are also defined to be edges of local(W, B). The partition
can actually be computed “on the fly” during the propaga-
tion of W in B, in a number of operations proportional to
the number of detected critical events of W in B.

Figure 11: The edges

of local(W, B) are thick

dashed lines; thin dashed

lines are the remaining

bisectors of W . The re-

gions of local(W, B) are

numbered from 1 to 12

(active regions are lightly

shaded); the portions of

B that were not traversed

by W because of visibil-

ity constraints are darkly

shaded.

11

8

5

3

12

9

7

6

4

2

1

10

W B

v W1

W2

We preprocess each such local(W, B) for point location,
so that, given a query point p ∈ B, we can determine which
region of local(W, B) contains the unfolded image q of p; if
this region is traversed by a single wave of W (which will
always be the case for active regions, and may sometimes
also hold for inactive regions), it uniquely defines the gener-
ator of W that claims p (in the absence of other wavefronts).
This can be done in O(log n) time, after we have found, in
O(log n) time, the building block B that contains p. If q is
in an inactive region of local(W, B), this region is traversed
by a portion of W that was propagated through B without
events; hence we can search in W for the claimer of p in
O(log n) time. We repeat this procedure for each of the O(1)
wavefronts that traverse B, and pick up the generator that
yields the shortest distance to p. We thus obtain:

Theorem 5.1 (Main Result). Let P be a convex poly-
tope with n vertices. Given a source point s ∈ ∂P , we can
construct an implicit representation of the shortest path map
from s on ∂P in O(n log n) time and space. Using this struc-
ture, we can compute the length and initial direction of the
shortest path from s to any point t ∈ ∂P in O(log n) time.
A shortest path π(s, t) can be computed in additional time
O(k), where k is the number of straight edges in the path.

6. EXTENSIONS AND REMARKS
As in the planar case of [11], our algorithm can also be

easily extended to a more general instance of the shortest
path problem on a convex polytope surface that involves
multiple sources. See the abstract and [21].

Finally, we conclude with two open problems:
(i) Can the space complexity of our algorithm be reduced to
linear? Can an efficient tradeoff between the query time and
the space complexity be achieved, using, say, the SPM(s)-
representations of Chen and Han [4, 5]?
(ii) Does the wavefront propagation method extend to the
shortest path problem on the surface of a nonconvex poly-
hedral surface? Say, on a polyhedral terrain?

Acknowledgment. We are grateful to Haim Kaplan for his
help in designing the data structures, to Joe O’Rourke for
valuable comments and material on surface unfolding and
overlapping, as well as for remarks on Kapoor’s paper, and
to Joe Mitchell for his comments of Kapoor’s paper.

7. REFERENCES
[1] P. K. Agarwal, S. Har-Peled, M. Sharir, and K. R.

Varadarajan, Approximate shortest paths on a convex
polytope in three dimensions, J. ACM 44:567–584, 1997.

[2] L. Aleksandrov, A. Maheshwari, and J.-R. Sack, An improved
approximation algorithm for computing geometric shortest
paths, 14th FCT, Lecture Notes Comput. Sci. 2751:246–257,
2003.

[3] B. Aronov and J. O’Rourke, Nonoverlap of the star unfolding,
Discrete Comput. Geom., 8:219–250, 1992.

[4] J. Chen and Y. Han, Shortest paths on a polyhedron, Part I:
Computing shortest paths, Internat. J. Comput. Geom. Appl.
6:127–144, 1996.

[5] J. Chen and Y. Han, Shortest paths on a polyhedron, Part II:
Storing shortest paths, Tech. Rept. 161-90, Comput. Sci.
Dept., Univ. Kentucky, Lexington, KY, February 1990.

[6] J. R. Driscoll, D. D. Sleator, and R. E. Tarjan, Fully persistent
lists with catenation, J. ACM 41(5):943–949, 1994.

[7] S. Har-Peled, Approximate shortest paths and geodesic
diameters on convex polytopes in three dimensions, Discrete
Comput. Geom., 21:216–231, 1999.

[8] S. Har-Peled, Constructing approximate shortest path maps in
three dimensions, SIAM J. Comput., 28(4):1182–1197, 1999.

[9] J. Hershberger and S. Suri, An optimal algorithm for
Euclidean shortest paths in the plane, in Proc. 34th IEEE
Sympos. Found. Comput. Sci., 508–517, 1993.

[10] J. Hershberger and S. Suri, An optimal algorithm for
Euclidean shortest paths in the plane, Manuscript, Washington
University, 1995.

[11] J. Hershberger and S. Suri, An optimal algorithm for
Euclidean shortest paths in the plane, SIAM J. Comput.
28(6):2215–2256, 1999.

[12] S. Kapoor, Efficient computation of geodesic shortest paths, in
Proc. 32nd Annu. ACM Sympos. Theory Comput., New
York, NY, USA: ACM Press, 770–779, 1999.

[13] J. S. B. Mitchell, Shortest paths and networks, in J. E.
Goodman and J. ORourke, editors, Handbook of Discrete and
Computational Geometry (2nd Edition), chapter 27, 607–641,
North-Holland, Chapman & Hall/CRC, Boca Raton, FL, 2004.

[14] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou, The
discrete geodesic problem, SIAM J. Comput. 16:647–668, 1987.

[15] D. M. Mount, On finding shortest paths on convex polyhedra,
Tech. Rept., Computer Sience Dept., Univ. Maryland, College
Park, October 1984.

[16] D. M. Mount, Storing the subdivision of a polyhedral surface,
Discrete Comput. Geom., 2:153–174, 1987.

[17] J. O’Rourke, Computational geometry column 35, Internat. J.
Comput. Geom. Appl., 9:513–515, 1999; also in SIGACT
News, 30(2):31–32, (1999) Issue 111.

[18] J. O’Rourke, Folding and unfolding in computational
geometry, in Lecture Notes Comput. Sci., Vol. 1763, J.
Akiyama, M. Kano, M. Urabe, editors, Springer-Verlag, Berlin,
2000, pp. 258–266.

[19] J. O’Rourke, S. Suri, and H. Booth, Shortest path on
polyhedral surfaces, Manuscript, The Johns Hopkins Univ.,
Baltimore, MD,1984.

[20] R. P. Paul, Robot Manipulators: Mathematics, Programming,
and Control, MIT Press, Cambridge, Massachusetts, 1981.

[21] Y. Schreiber and M. Sharir, An optimal-time algorithm for
shortest paths on a convex polytope in three dimensions,
http://www.tau.ac.il/~syevgeny/ShortestPath.ps.

[22] M. Sharir, On shortest paths amidst convex polyhedra, SIAM
J. Comput. 16:561–572, 1987.

[23] M. Sharir and A. Schorr, On shortest paths in polyhedral
spaces, SIAM J. Comput. 15:193–215, 1986.

[24] K. R. Varadarajan and P.K. Agarwal, Approximating shortest
paths on a nonconvex polyhedron, in Proc. 38th Annu. IEEE
Sympos. Found. Comput. Sci., 182–191, 1997.

[25] E. W. Weisstein, Riemann Surface, MathWorld — A Wolfram
Web Resource,
http://mathworld.wolfram.com/RiemannSurface.html.

[26] E. W. Weisstein, Unfolding, MathWorld — A Wolfram Web
Resource, http://mathworld.wolfram.com/Unfolding.html.

