
On the ICP Algorithm∗

Esther Ezra
School of Computer Science

Tel Aviv University
Tel Aviv 69978, Israel
estere@post.tau.ac.il

Micha Sharir
School of Computer Science

Tel Aviv University
Tel Aviv 69978, Israel

and
Courant Institute of

Mathematical Science
New York University

New York, NY 10012, USA
michas@post.tau.ac.il

Alon Efrat
School of Computer Science

University of Arizona
Tucson, Arizona 85721, USA

alon@CS.Arizona.EDU

ABSTRACT
We present upper and lower bounds for the number of it-
erations performed by the Iterative Closest Point (ICP) al-
gorithm. This algorithm has been proposed by Besl and
McKay [4] as a successful heuristics for pattern matching
under translation, where the input consists of two point sets
in d-space, for d ≥ 1, but so far it seems not to have been
rigorously analyzed. We consider two standard measures of
resemblance that the algorithm attempts to optimize: The
RMS (root mean squared distance) and the (one-directional)
Hausdorff distance. We show that in both cases the num-
ber of iterations performed by the algorithm is polynomial
in the number of input points. In particular, this bound
is quadratic in the one-dimensional problem, for which we
present a lower bound construction of Ω(n log n) iterations
under the RMS measure, where n is the overall size of the
input. Under the Hausdorff measure, this bound is only
O(n) for input point sets whose spread is polynomial in n,
and this is tight in the worst case.

We also present several structural geometric properties of
the algorithm under both measures. For the RMS measure,
we show that at each iteration of the algorithm the cost func-
tion monotonically and strictly decreases along the vector
∆t of the relative translation. As a result, we conclude that
the polygonal path π, obtained by concatenating all the rel-

∗Work on this paper by the first two authors has been sup-
ported by NSF Grants CCR-00-98246 and CCF-05-14079,
by a grant from the U.S.-Israeli Binational Science Foun-
dation, work by the second author was also supported by
Grant 155/05 from the Israel Science Fund, and by the Her-
mann Minkowski–MINERVA Center for Geometry at Tel
Aviv University. Work on this paper by the last author
has been partially supported by an NSF CAREER award
(CCR-03-48000) and an ITR/Collaborative Research grant
(03-12443).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’06, June 5–7, 2006, Sedona, Arizona, USA.
Copyright 2006 ACM 1-59593-340-9/06/0006 ...$5.00.

A

B
b1

a1 a2 a3

b2 b3 b4

Figure 1: A local minimum in R
1 of the ICP measures. The

global minimum is attained when a1, a2, a3 are aligned on top of

b2, b3, b4, respectively.

ative translations that are computed during the execution of
the algorithm, does not intersect itself. In particular, in the
one-dimensional problem all the relative translations of the
ICP algorithm are in the same (left or right) direction. For
the Hausdorff measure, some of these properties continue
to hold (such as monotonicity in one dimension), whereas
others do not.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: ANALYSIS OF ALGO-
RITHMS AND PROBLEM COMPLEXITY Nonnumerical
Algorithms and Problems [computations on discrete struc-
tures, geometrical problems and computations]

General Terms
Algorithms, Theory

Keywords
ICP, RMS, Hausdorff distance, Pattern matching, Voronoi
diagram

1. INTRODUCTION
The matching and analysis of geometric patterns and shapes

is an important problem that arises in various application
areas, in particular in computer vision and pattern recogni-
tion [3]. In a typical scenario, we are given two objects A and
B, and we wish to determine how much they resemble each
other. Usually one of the objects may undergo certain trans-
formations, like translation, rotation and/or scaling, in order
to be matched with the other object as well as possible. In
many cases, the objects are represented as finite sets of (sam-

pled) points in two or three dimensions (they are then re-
ferred to as “point patterns” or “shapes”). In order to mea-
sure “resemblance”, various cost functions have been used.
Two prominent ones among them are the (one-directional)
Hausdorff distance [3], and the sum of squared distances or
root mean square [4, 6]. Under the first measure, the cost
function is Φ∞(A,B) = maxa∈A ‖a−NB(a)‖, and under the
second measure, it is Φ2(A, B) = 1

m

P

a∈A ‖a − NB(a)‖2,

where ‖ · ‖ denotes the Euclidean norm1, NB(a) denotes the
nearest neighbor of a in B, and m = |A|. In what follows,
we also use the (slightly abused) notation

RMS(t) :=
1

m

X

a∈A

‖a + t − NB(a + t)‖2. (1)

A heuristic matching algorithm that is widely used, due to
its simplicity (and its good performance in practice), is the
Iterative Closest Point algorithm, or the ICP algorithm for
short, of Besl and McKay [4]. Given two point sets A and
B in R

d (also referred to as the data shape and the model
shape, respectively), we wish to minimize a cost function2

φ(A + t, B), over all translations t of A relative to B. The
algorithm starts with an arbitrary translation that aligns
A to B (suboptimally), and then repeatedly performs local
improvements that keep re-aligning A to B, while decreasing
the given cost function φ(A + t, B), until a convergence is
reached3. This is done as follows.

At the i-th iteration of the ICP algorithm, the set A has

already been translated by some vector ti−1, where t0 =
−→
0 .

We then apply the following two steps:
(i) We assign each (translated) point a + ti−1 ∈ A + ti−1

to its nearest neighbor b = NB(a + ti−1) ∈ B under the
Euclidean distance. (ii) We then compute the new relative
translation ∆ti that minimizes the cost function φ (with
respect to the above fixed assignment). Specifically, under
the one-directional Hausdorff distance, we find the ∆ti that
minimizes

φ∞(A + ti−1,∆ti, B) = max
a∈A

‖a + ti−1 + ∆ti − NB(a + ti−1)‖,

and under the sum of squared distances, we minimize

φ2(A+ti−1, ∆ti , B) =
1

m

X

a∈A

‖a + ti−1 + ∆ti − NB(a + ti−1)‖2.

We then align the points of A to B by translating them by
∆ti, so the new (overall) translation is ti = ti−1 + ∆ti.

The ICP algorithm performs these two steps repeatedly
and stops when the value of the cost function does not de-
crease with respect to the previous step (as a matter of fact,
the ICP algorithm in its original presentation stops when the
difference in the cost function falls below a given threshold
τ > 0; however, in our analysis, we assume that τ = 0). It is
shown by Besl and McKay [4] that, when φ(·, ·) measures the
sum of squared distances, this algorithm always converges
monotonically to a local minimum, and that the value of the

1Of course, other distances can also be considered, but this
paper treats only the Euclidean case.
2The only cost function used in the original version of the
ICP algorithm is the sum of squared distances (see [4, 5, 8,
9, 11]). In this paper we also consider the (one-directional)
Hausdorff distance cost function, as defined above.
3In the original version of the algorithm [4], the points of A
can also be rotated in order to be matched with the points
of B, though in this paper we analyze it only under trans-
lations.

cost function decreases at each iteration4. An easy variant of
their proof (noted below) establishes convergence also when
the cost function measures the (one-directional) Hausdorff
distance.

In other words, in stage (i) of each iteration of the ICP al-
gorithm we assign the points in (the current translated copy
of) A to their respective nearest neighbors in B, and in
stage (ii) we translate the points of A in order to minimize
the value of the cost function with respect to the assign-
ment computed in stage (i). This in turn may cause some
of the points in the new translated copy of A to acquire new
nearest neighbors in B, which causes the algorithm to per-
form further iterations. If no point of A changes its nearest
neighbor in B, the value of the cost function does not change
in the next iteration (in fact, the next relative translation

equals
−→
0) and, as a consequence, the algorithm terminates.

Note that the pattern matching performed by the algorithm
is one-directional, that is, it aims to find a translation of
A that places the points of A near points of B, but not
necessarily the other way around.

Since the value of the cost function is strictly reduced at
each iteration of the algorithm, it follows that no nearest-
neighbor assignment arises more than once during the course
of the algorithm, and thus it is sufficient to bound the over-
all number of nearest-neighbor assignments (or, NNA’s, for
short) that the algorithm reaches in order to bound the num-
ber of its iterations.

The convergence of the algorithm to either local or global
minimum heavily relies on the initial position of the input
points (see [4] for details and for a heuristics that “helps” the
algorithm to converge in practice to the global minimum).
There are simple constructions, such as the one depicted in
Figure 1, that show that the algorithm may terminate at
a local minimum that is quite different (and far) from the
global one, under either of the resemblance measures that
we use. (Nevertheless, as reported by many practical ex-
perimentations, the convergence to the (possibly local) min-
imum is rather fast in practice [4, 5, 8, 9].) Still, this is
a disadvantage of the algorithm from a theoretical “worst-
case” point of view, and the potential convergence to a local
minimum raises several interesting questions. The most ob-
vious question is to obtain sharp upper and lower bounds
on the maximum possible number of local minima that the
function can attain. Another is to analyze the decomposi-
tion of space into “influence regions” of the local minima,
where each such region consists of all the translations from
which the algorithm converges to a fixed local minimum.

Our results. In the next section we first note a (probably
weak) upper bound of O

`

mdnd
´

on the number of itera-

tions of the algorithm in R
d under any of the two measures,

for any d ≥ 1. We then present several structural geometric
properties of the algorithm under the RMS measure. Specif-
ically, we show that at each iteration of the algorithm the
(real) cost function monotonically and strictly decreases, in
a continuous manner, along the vector ∆t of the relative
translation5. As a result, we conclude that the polygonal

4We definitely decrease it with respect to the present
nearest-neighbor assignment, and the revised nearest-
neighbor assignment at the new placement can only decrease
it further.
5This is a much stronger property than the originally noted
one, that the value at the end of the translation is smaller

path π obtained by concatenating all the relative transla-
tions that are computed during the execution of the algo-
rithm, does not intersect itself. In particular, for d = 1, the
ICP algorithm is monotone — all its translations are in the
same (left or right) direction. Next, in Section 3 we present
a lower bound construction of Ω(n log n) iterations for the
one-dimensional problem under the RMS measure (assum-
ing m ≈ n). The upper bound is quadratic, and closing
the substantial gap between the bounds remains a major
open problem. In Section 4 we discuss the problem under
the (one-directional) Hausdorff distance measure. In partic-
ular, we present for the one-dimensional problem the upper
bound O ((m + n) log δB/ log n) on the number of iterations
of the algorithm, where δB is the spread of the input point
set B (i.e., the ratio between the diameter of the set and
the distance between its closest pair of points). We then
present a tight lower bound construction with Θ(n) moves,
for the case where the spread of B is polynomial in n. We
also study the problem under the Hausdorff measure in two
and higher dimensions, and show that some of the structural
properties of the algorithm that hold for the RMS measure
do not hold in this case. We give concluding remarks and
present open problems in Section 5.

Why study the ICP algorithm. The pattern matching
problem is a central and important problem that arises in
many applications, ranging from surveillance to structural
bioinformatics, and the ICP algorithm has been identified
and used as a practical heuristic solution over the past fif-
teen years. Many experimental reports on its performance,
including additional heuristic enhancements of it (e.g., in
finding a good initial translation and using various tech-
niques for sampling points from the input model) have been
published [4, 5, 9, 11]. Still, to the best of our knowledge,
this technique has never before been subject to a serious and
rigorous analysis of its worst-case behavior, which it defi-
nitely deserves. Another motivation, which has unfolded as
work on the paper progressed, is that the problem possesses
a beautiful geometric structure, and has many surprising
and subtle features.

The present work, though revealing many of these fea-
tures, is only an initial step towards a fully comprehensive
understanding of the algorithm. We hope that it will trigger
additional work that will successfully tackle the remaining
open problems.

2. GENERAL STRUCTURAL PROPERTIES
OF THE ICP ALGORITHM UNDER THE
RMS MEASURE

Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two point
sets in d-space, for d ≥ 1, and, as above, suppose that the
ICP algorithm aligns A to B; that is, B is fixed and A is
translated to best fit B.

Theorem 2.1. The maximum possible overall number of
nearest-neighbor assignments, over all translated copies of
A, is Θ

`

mdnd
´

.

Sketch of proof: Let V(B) denote the Voronoi diagram of
B, that is, the partition of R

d into d-dimensional cells V(bi),

than that at the beginning.

for i = 1, . . . , n, such that each point p ∈ V(bi) satisfies
‖p − bi‖ ≤ ‖p − bj‖, for each j 6= i.

The global NNA changes at critical values of the trans-
lation t, in which the nearest-neighbor assignment of some
point a + t of the translated copy of A is changed; that is, a
crosses into a new Voronoi cell of V(B). For each a ∈ A (this
denotes the initial location of this point) consider the shifted
copy V(B)−a = V(B−a) of V(B); i.e., the Voronoi diagram
of B − a = {b − a | b ∈ B}. Then a critical event that in-
volves the point ai occurs when the translation t lies on the
boundary of some Voronoi cell of V(B−ai), for i = 1, . . . , m.
Hence we need to consider the overlay M(A, B) of the m
shifted diagrams V(B−a1), . . . ,V(B−am). Each cell of the
overlay consists of translations with a common NNA, and
the number of assignments is in fact equal to the number
of cells in the overlay M(A, B). A recent result of Koltun
and Sharir [7] implies that the complexity of the overlay is
O(mdnd). It is straightforward to give constructions that
show that this bound is tight in the worst case, for any
d ≥ 1. 2

Corollary 2.2. For any cost function that guarantees
convergence (in the sense that the algorithm does not reach
the same NNA more than once), the ICP algorithm termi-
nates after O(mdnd) iterations.

Remark: A major open problem is to determine whether
this bound is tight in the worst case. So far we have been
unable to settle this question (under the RMS measure) even
for d = 1; see below for details. In other words, while there
can be many NNA’s, we suspect that the ICP algorithm
cannot step through many of them in a single execution.

We next present a simple but crucial property of the rel-
ative translations that the algorithm generates.

Lemma 2.3. At each iteration i ≥ 2 of the algorithm, the
relative translation vector ∆ti satisfies

∆ti =
1

m

X

a∈A

„

NB(a + ti−1) − NB(a + ti−2)

«

, (2)

where tj =
Pj

k=1 ∆tk.

Proof: Follows using easy algebraic manipulations, based
on the obvious equality that follows by construction

∆ti =
1

m

X

a∈A

„

NB(a + ti−1) − (a + ti−1)

«

. (3)

(See [6, Lemma 5.2] for similar considerations.) 2

Remark: The expression in (2) only involves differences
between points of B. More precisely, the next relative trans-
lation is the average of the differences between the new B-
nearest neighbor and the old B-nearest neighbor of each
point of (the current and preceding translations of) A. This
property does not hold for the first relative translation of
the algorithm.

Theorem 2.4. Let ∆t be a move of the ICP algorithm
from translation t0 to t0 + ∆t. Then RMS(t0 + ξ∆t) is a
strictly decreasing function of ξ ∈ [0, 1].

First Proof: We present two (related) proofs. In the first
proof, put

RMS0(ξ) :=
1

m

X

a∈A

‖a + t0 + ξ∆t − NB(a + t0)‖2.

b
′

∆t

b

a

Figure 2: The new nearest neighbor lies ahead of the old one in

the direction ∆t.

Note that, by the definition of the ICP algorithm, the graph
of RMS0(ξ) is a parabola that attains its minimum at ξ = 1.
Hence, its derivative is negative for ξ ∈ [0, 1). That is,

1

2
RMS′

0(ξ) =
1

m

X

a∈A

„

a + t0 + ξ∆t−NB(a + t0)

«

·∆t < 0,

or

1

2
RMS′

0(ξ) = ξ‖∆t‖2+
1

m

X

a∈A

„

a+t0−NB(a+t0)

«

·∆t < 0,

where the last term is the sum of the inner products of
the respective pairs of vectors. On the other hand, for any
ξ ∈ [0, 1], the function

RMS1(ξ) := RMS(t0 + ξ∆t) =

1

m

X

a∈A

‖a + t0 + ξ∆t − NB(a + t0 + ξ∆t)‖2

is the real RMS-distance from A to B at the translation
t0 + ξ∆t. Our goal is to show that RMS′

1(ξ) < 0, for any
ξ ∈ [0, 1], in which the function RMS1(ξ) is smooth (note
that RMS1(ξ) is non-smooth exactly at points where some
a changes its nearest neighbor in B). As above, we have, at
points ξ where RMS1(ξ) is smooth,

1

2
RMS′

1(ξ) = ξ‖∆t‖2+
1

m

X

a∈A

„

a+t0−NB(a+t0+ξ∆t)

«

·∆t.

It follows that

RMS′

0(ξ) − RMS′

1(ξ) =

2

m

X

a∈A

„

NB(a + t0 + ξ∆t) − NB(a + t0)

«

· ∆t.

We claim that each of the terms in the latter sum is non-
negative. Indeed, consider a fixed point a. When a changes
its nearest neighbor from some b to another b′, it has to cross
the bisector of b and b′ from the side of b to the side of b′.
This is easily seen to imply that (see also Figure 2)

(b′ − b) · ∆t ≥ 0.

Adding up all these inequalities that arise at bisector cross-
ings during the motion of a, we obtain the claimed inequal-
ity. Hence RMS′

0(ξ) − RMS′

1(ξ) is non-negative through-
out the motion, and since RMS′

0(ξ) is negative, so must be
RMS′

1(ξ).
Second Proof: (This can be regarded as a geometric in-
terpretation of the first proof.) The function

RMS(t) =
1

m

X

a∈A

‖a + t − NB(a + t)‖2 =

f(t)

h(t)
t0

∆tQ(t)

Figure 3: Illustrating the proof that RMS(t0 + ξ∆t) is a strictly

decreasing function of ξ ∈ [0, 1].

1

m

X

a∈A

„

‖t‖2 + 2t · (a − NB(a + t)) + ‖a − NB(a + t)‖2

«

is the average of m Voronoi surfaces SB−a(t), whose respec-
tive minimization diagrams are V(B − a), for each a ∈ A.
That is,

SB−a(t) = min
b∈B

‖a+t−b‖2 = min
b∈B

„

‖t‖2+2t·(a−b)+‖a−b‖2

«

,

for each a ∈ A. Subtracting the term ‖t‖2, we obtain that
each resulting Voronoi surface SB−a(t) − ‖t‖2 is the lower
envelope of n hyperplanes, and is thus the boundary of a
concave polyhedron. Hence Q(t) := RMS(t)−‖t‖2 is equal
to the average of these concave polyhedral functions, and is
thus itself the boundary of a concave polyhedron (see also
the proof of Theorem 2.1).

Consider the NNA that corresponds to the translation
t0. It defines a facet f(t) of Q(t), which contains the point
(t0, Q(t0)). We now replace f(t) by the hyperplane h(t)
containing it, and note that h(t) is tangent to the polyhe-
dron Q(t) at t0; see Figure 3 for an illustration. The graph
of RMS0(ξ), as defined above, is the image of the relative
translation vector ∆t on the paraboloid ‖t‖2 + h(t). Since
Q(t) ≤ h(t), for any t ∈ R

d, the concavity of Q(t) implies
that for any 0 ≤ ξ1 < ξ2 ≤ 1, Q(t0 + ξ1∆t)−Q(t0+ ξ2∆t) ≥
h(t0 + ξ1∆t) − h(t0 + ξ2∆t). Since ‖t‖2 + h(t) is (strictly)
monotone decreasing6 along ∆t, we obtain

RMS(t0 + ξ1∆t) − RMS(t0 + ξ2∆t) =

‖t0 + ξ1∆t‖2 +Q(t0 + ξ1∆t)−‖t0 + ξ2∆t‖2−Q(t0 + ξ2∆t) ≥

‖t0+ξ1∆t‖2−‖t0+ξ2∆t‖2+h(t0+ξ1∆t)−h(t0+ξ2∆t) > 0,

which implies that RMS(t0 + ξ∆t) is a strictly decreasing
function of ξ ∈ [0, 1]. 2

Let π be the connected polygonal path obtained by con-
catenating the ICP relative translations ∆tj . That is, π
starts at the origin and its j-th edge is the vector ∆tj . The-
orem 2.4 implies:

Theorem 2.5. The ICP path π does not intersect itself.

In particular, Theorem 2.5 implies that, on the line, the
points of A are always translated in the same direction at
each iteration of the algorithm. We thus obtain:

Corollary 2.6 (Monotonicity). In the one dimen-
sional case, the ICP algorithm moves the points of A always
in the same (left or right) direction. That is, either ∆ti ≥ 0
for each i ≥ 0, or ∆ti ≤ 0 for each i ≥ 0.
6By definition, ∆t moves from t0 to the minimum of the
fixed paraboloid ‖t‖2 + h(t), whence the claim.

Corollary 2.7. In any dimension d ≥ 1, the angle be-
tween any two consecutive edges of π is obtuse.

Proof: Consider two consecutive edges ∆tk, ∆tk+1 of π.

Using Lemma 2.3 we have ∆tk+1 = 1
m

P

a∈A

„

NB(a+ tk)−

NB(a + tk−1)

«

. As follows from the first proof of Theo-

rem 2.4,
„

NB(a + tk) − NB(a + tk−1)

«

· ∆tk ≥ 0,

for each k ≥ 1, where equally holds if and only if a does not
change its B-nearest neighbor. Hence ∆tk+1 · ∆tk ≥ 0. It
is easily checked that equality is possible only after the last
step (where ∆tk+1 = 0). 2

Lemma 2.8. At each iteration i ≥ 1 of the algorithm
RMS(ti−1) − RMS(ti) ≥ ‖∆ti‖2.

Proof: By (3), we have ∆ti = 1
m

P

a∈A(NB(a + ti−1)− a−
ti−1). Hence

RMS(ti−1) − RMS(ti) = RMS(ti−1) − RMS(ti−1 + ∆ti) =

1

m

X

a∈A

‖a + ti−1 − NB(a + ti−1)‖2−

1

m

X

a∈A

‖a + ti−1 + ∆ti − NB(a + ti−1 + ∆ti)‖
2 =

1

m

X

a∈A

„

‖a+ti−1−NB(a+ti−1)‖2−‖a+ti−1+∆ti−NB(a+ti−1)‖2

«

+

1

m

X

a∈A

„

‖a + ti−1 + ∆ti − NB(a + ti−1)‖2−

‖a + ti−1 + ∆ti − NB(a + ti−1 + ∆ti)‖
2

«

≥

1

m

X

a∈A

−

„

(2(a + ti−1) + ∆ti − 2NB(a + ti−1)) · ∆ti

«

,

because each term in the second sum is non-negative, by
definition of nearest neighbors. The latter expression is
1
m

P

a∈A 2(NB(a + ti−1) − a − ti−1) · ∆ti − ‖∆ti‖2, which,

by definition of ∆ti, is equal to ‖∆ti‖2. 2

Corollary 2.9. If the relative translations computed by
the algorithm are ∆t1, . . . , ∆tk, then

1

k

k
X

i=1

∆ti

!2

≤
k
X

i=1

‖∆ti‖2 ≤ RMS(0) − RMS(tk). (4)

Proof: Use the Cauchy-Schwarz inequality. 2

Lemma 2.10. At each iteration i ≥ 1 of the algorithm

RMS(0) − RMS(ti) ≤ ‖ti+1‖2 − ‖∆ti+1‖2. (5)

Proof: We have

RMS(ti)−RMS(0) =
1

m

X

a∈A

„

‖NB(a+ti)−a−ti‖
2−‖NB(a)−a‖2

«

=

1

m

X

a∈A

„

‖NB(a + ti) − a − ti‖
2 − ‖NB(a + ti) − a‖2

«

+

1

m

X

a∈A

„

‖NB(a + ti) − a‖2 − ‖NB(a) − a‖2

«

.

b1 = 0 b2 = 1

an = 1
2

−
1
n

+ δa2 = −
1
2

+ 1
n

+ δa1 = −n − δ(n − 1)

1
2

Figure 4: The lower bound construction. Only the two leftmost

cells of V(B) are depicted.

As in the proof of Lemma 2.8, the second sum is non-
negative, and the first sum is

1

m

X

a∈A

„

−ti·(2(NB(a+ti)−a−ti)+ti)

«

= −‖ti‖2−2ti·∆ti+1,

by definition of ∆ti+1. That is, we have

RMS(ti) − RMS(0) ≥ −‖ti‖2 − 2ti · ∆ti+1 =

−‖ti + ∆ti+1‖2 + ‖∆ti+1‖2 = −‖ti+1‖2 + ‖∆ti+1‖2,

as asserted. 2

Remarks: (1) Combining inequalities (4) and (5), we ob-
tain, for any k ≥ 1,

k
X

i=1

‖∆ti‖2 ≤ RMS(0) − RMS(tk) ≤ ‖tk+1‖2 − ‖∆tk+1‖2.

In particular, we have, replacing k + 1 by k for simplicity,
Pk

i=1 ‖∆ti‖2 ≤ ‖tk‖2. Note that, for d = 1, this inequality
is trivial (and weak), due to the monotonicity of the ICP
translations. For d ≥ 2, the inequality means, informally,
that as the ICP is rambling around, the path π that it traces
does not get too close to itself. In particular, if each ∆ti is
of length at least δ then, after k steps, the distance between
the initial and final endpoints of the ICP path is at least
δ
√

k.
(2) Specializing Remark (1) to the case k = 1, we obtain
‖∆t1‖2 ≤ RMS(0) − RMS(t1) ≤ ‖t2‖2 − ‖∆t2‖2. This
provides an alternative proof that the angle between ∆t1
and ∆t2 is non-acute. Moreover, the closer this angle is to
π/2 the sharper is the estimate on the decrease in the RMS
function.

3. THE ICP ALGORITHM ON THE LINE
UNDER THE RMS MEASURE

In this section we consider the special case d = 1, and ana-
lyze the performance of the ICP algorithm on the line under
the RMS measure. Theorem 2.1 implies that in this case the
number of NNA’s, and thus the number of iterations of the
algorithm, is O(mn). In general, we do not know whether
this bound is sharp in the worst case (we strongly believe
that it is not). However, in the worst case, the number of
iterations can be superlinear:

Theorem 3.1. There exist point sets A, B on the real
line of arbitrarily large common size n, for which the number
of iterations of the ICP algorithm (under the RMS measure)
is Θ(n log n).

Proof: We construct two point sets A, B on the real line,
where |A| = |B| = n. The set A consists of the points

a1 < · · · < an, where a1 = −n− δ(n− 1), ai = 2(i−1)−n
2n

+ δ,

for i = 2, . . . , n, and δ = o
`

1
n

´

is some sufficiently small
parameter. The set B consists of the points bi = i − 1, for
i = 1, . . . , n. See Figure 4.

Initially, all the points of A are assigned to b1. As the
algorithm progresses, it keeps translating A to the right.
The first translation satisfies

∆t1 =
1

n

n
X

i=1

(b1 − ai) =
1

n
(b1 − a1) − n − 1

n
δ = 1,

which implies that after the first iteration of the algorithm
all the points of A, except for its leftmost point, are assigned
to b2. Using (2), we have ∆t2 = 1

n

Pn−1
i=1 (b2 − b1) = n−1

n
,

which implies that the n − 1 rightmost points of A move
to the next Voronoi cell V(b3) after the second iteration, so
that the distance between the new position of an from the
right boundary of V(b3) is 2

n
− δ, and the distance between

the new position of a2 and the left boundary of V(b3) is δ,
as is easily verified.

In the next iteration ∆t3 = n−1
n

(arguing as above). How-
ever, due to the current position of the points of A in V(b3),
only the n− 2 rightmost points of A cross the right Voronoi
boundary of V(b3) (into V(b4)), the nearest neighbor of a2

remains unchanged (equal to b3).
We next show, using induction on the number of Voronoi

cells the points of A have crossed so far, the following prop-
erty. Assume that the points of A, except for the leftmost
one, are assigned to bn−j+1 and bn−j+2, for some 1 ≤ j ≤ n
(clearly, these assignments can involve only two consecutive
Voronoi cells), and consider all iterations of the algorithm, in
which some points of A cross the common Voronoi boundary
βn−j+1 of the cells V(bn−j+1), V(bn−j+2). Then, (i) at each
such iteration the relative translation is j

n
, (ii) at each iter-

ation, other than the last one, the overall number of points
of A that cross βn−j+1 is exactly j, and no point crosses any
other boundary, and (iii) at the last iteration of the round,
the overall number of points of A that cross either βn−j+1

or βn−j+2 is exactly j − 1. In fact, in the induction step
we assume that properties (i), (ii) hold, and then show that
property (iii) follows, for j, and that (i) and (ii) hold for
j − 1.

To prove this property, we first note, using (2), that the
relative translation at each iteration of the algorithm is k

n
,

for some integer 1 ≤ k ≤ n. The preceding discussion shows
vacuously that the induction hypothesis holds for j = n and
j = n − 1. Suppose that it holds for all j′ ≥ j, for some
2 ≤ j ≤ n − 1, and consider round (j − 1) of the algo-
rithm, during which points of A cross βn−j+2 (that is, we
consider all iterations with that property). Thus, at each
iteration of round j (except for the last one), in which there
are points of A that remain in the cell V(bn−j+1), the j
rightmost points of A (among those contained in V(bn−j+1))
cross βn−j+1. Let us now consider the last such iteration.
In this case, all the points of A, except l of them, for some
0 ≤ l < j (and the leftmost point, which we ignore), have
crossed βn−j+1 (in previous iterations). The key observa-
tion is that the distance from the current position of an to
the next Voronoi boundary βn−j+2 is l+2

n
− δ (this follows

since we shift in total n − 1 points of A that are equally
spaced apart 1

n
), and since the next translation ∆t satisfies

∆t = j
n

(using the induction hypothesis and (2)), it follows
that only j − 1 points of A cross a Voronoi boundary in the
next iteration. Moreover, the points a2, . . . , al+1 cross the
boundary βn−j+1, and the points an−(j−l−2), . . . , an cross

bn−j+3
βn−j+1 βn−j+2

bn−j+2bn−j+1

anan−(j−l−1)a2 al+2

l+2
n

Figure 5: At the last iteration of round j, after shifting the points

of A by ∆t = j
n

to the right, the points al+2, . . . , an−(j−l−1)

(represented in the figure as black bullets) still remain in V(bn−j+2).

a3

a4

b4

b3
b2

a2

a1

b1

a4 − b4

a1 − b1

a2 − b2

a3 − b3

o ∆t

(a) (b)

Figure 6: Proof of Lemma 4.2.

.

the boundary βn−j+2 (this is the first move in which this
boundary is crossed at all); see Figure 5 for an illustration.

Thus, at the next iteration, since only j − 1 points have
just crossed between Voronoi cells, (2) implies that the next
translation is j−1

n
, and, as is easily verified, at each further

iteration, as long as there are at least j − 1 points of A to
the left of βn−j+2, this property must continue to hold, and
thus j − 1 points will cross βn−j+2. This establishes the
induction step.

It now follows, using the above properties, that the num-
ber of iterations required for all the points of A to cross
βn−j+1 is ⌈n

j
⌉, where in the first (last) such iteration some

of the points may cross βn−j (βn−j+2) as well. This implies
that the number of such iterations, in which the points of A
cross only βn−j+1 (and none of the two neighboring Voronoi

boundaries), is at least
l

n
j

m

− 2 (but not more than
l

n
j

m

).

Thus the overall number of iterations of the algorithm is

Θ
“

Pn
j=1

l

n
j

m”

= Θ(n log n). 2

4. THE PROBLEM UNDER THE HAUSDORFF
MEASURE

4.1 General Structural Properties of the ICP
Algorithm

Lemma 4.1. The ICP algorithm converges under the (one-
directional) Hausdorff measure, in at most O(mdnd) steps.

Proof: At each iteration i, we compute ∆ti that minimizes
maxa∈A ‖a + ti−1 + ∆ti − NB(a + ti−1)‖. Since ‖a + ti −
NB(a + ti)‖ ≤ ‖a + ti − NB(a + ti−1)‖, for each a ∈ A,
the cost function decreases after each iteration. The lemma
then follows from Corollary 2.2. 2

The following lemma provides a simple tool to compute
the relative translations that the algorithm executes.

ci−1

o

a∗

0

a∗

1

a∗

2

λ

Figure 7: The angle ∡a∗

0ci−1o is obtuse.

Lemma 4.2. Let Di−1 be the smallest enclosing ball of
the points {a + ti−1 − NB(a + ti−1) | a ∈ A}. Then the
next relative translation ∆ti of the ICP algorithm moves the
center of Di−1 to the origin.

Proof: The proof follows from the (easy) observation that
since Di−1 is a minimum enclosing ball, all points appearing
on its boundary are not contained in the same halfspace
bounded by a hyperplane that passes through its center,
and thus any further infinitesimal translation of the points
a + ti−1 + ∆ti from their current position causes at least
one of the points on the boundary of (the translated ball)
Di−1 + ∆ti to get further from the origin (which is also the
center of Di−1 + ∆ti); see Figure 6 for an illustration. 2

In contrast with Theorem 2.4, we have:

Lemma 4.3. Put H(t) = maxa∈A ‖a + t − NB(a + t)‖. In
two and higher dimensions, the cost function H(t0 +ξ∆t) of
ξ ∈ [0, 1] does not necessarily decrease monotonically along
the relative translation vector ∆t that the algorithm executes
from translation t0.

Proof: A planar example (which can be lifted to any di-
mension d ≥ 3) is depicted in Figure 8(a). Initially, all three
points a0, a1, a2, are closer to b. By Lemma 4.2, the trans-
lation ∆t moves the center c of the circumcircle of ∆a0a1a2

to b, so the final distance of all three ai’s from b is equal to
the radius r of this circle. As we translate each of them by
∆t, a0 crosses into V(b′), its distance to its nearest neigh-
bor (first b and then b′) keeps decreasing, and its final value
is strictly smaller than r. In contrast, the distances of a1,
a2 from b (their nearest neighbor throughout the transla-
tion) both increase towards the end of the translation, and
their final values are both r. Hence, towards the end of the
translation H(t0 + ξ∆t) is increasing. 2

Lemma 4.4. Let H(t) be as above. At each iteration i ≥ 1
of the algorithm

H(ti−1)
2 − H(ti)

2 ≥ ‖∆ti‖2.

Proof: Using Lemma 4.2, the next relative translation ∆ti

is the vector ci−1o, where ci−1 is the center of the minimum
enclosing ball Di−1 of the set A∗ = {a+ti−1−NB(a+ti−1) |
a ∈ A}, and o is the origin.

By Lemma 4.2, the cost H(ti) (obtained after the relative
translation by ∆ti) is the radius of Di−1. Let A∗

0 denote the
set of all points a∗ ∈ A∗ that appear on ∂Di−1, and let a∗

0

be the point of A∗

0 farthest from the origin.
As above, since Di−1 is a minimum enclosing ball, it fol-

lows that all points of A∗

0 cannot be contained in the same

b′

a0
b

a2

a1

∆t

r

c

a − NB(a)
0c

∆t1D0

a∗
− b∗

b′ a0 + ∆t

∆t

a1 + ∆t

a2 + ∆tb

λ1

a + ∆t1 − B(a)
c = 0

a∗ + ∆t1 − b∗

(a) (b)

Figure 8: (a) Proof of Lemma 4.3. The point b is placed at the

origin, the center of the minimum enclosing disc of the points a0,

a1, a2 is c, and its radius is r. Initially, ‖a0−b‖ = max ‖ai−b‖ > r,

for i = 0, 1, 2 (top), and after translating by ∆t, ‖a0 +∆t− b′‖ < r

(bottom). (b) Proof of Lemma 4.6. The points a − NB(a), for

a ∈ A, before translating by ∆t1 (top), and after the translation

(bottom).

halfspace bounded by a hyperplane through ci−1, which, in
particular, implies that a∗

0 and o are separated by the hyper-
plane λ, perpendicular to the segment connecting ci−1 and
o, and passing through ci−1; see Figure 7 for an illustration.
Clearly, the cost H(ti−1) is at least ‖a∗

0‖ (the maximum dis-
tance may be obtained by another point of A∗ that lies in
the interior of Di−1). Hence the angle ∡a∗

0ci−1o is at least
π/2, and thus

H(ti−1)
2−H(ti)

2 ≥ ‖a∗

0‖2−‖a∗

0−ci−1‖2 ≥ ‖ci−1−o‖2 = ‖∆ti‖2.

2

Corollary 4.5. If the relative translations computed by
the algorithm are ∆t1, . . . , ∆tk, then

1

k

k
X

i=1

∆ti

!2

≤
k
X

i=1

‖∆ti‖2 ≤ H(0)2 − H(tk)2. (6)

4.2 The one-dimensional problem
Let A, B be two point sets on the real line, with |A| = m,

|B| = n.

Lemma 4.6 (Monotonicity). The points of A are al-
ways translated in the same direction, over all iterations of
the algorithm. That is, either ∆ti ≥ 0 for each i ≥ 1, or
∆ti ≤ 0 for each i ≥ 1.

Proof: Let a∗ ∈ A, b∗ = NB(a∗), be the pair (which is
unique if we assume initial general position) that satisfies
initially ξ = |b∗ − a∗| = maxa∈A |NB(a)− a|. Suppose with-
out loss of generality that a∗ < b∗. By Lemma 4.2, the
initial “ball” (i.e., interval) D0 has a∗ − b∗ = −ξ as its left
endpoint, and its right endpoint is smaller than ξ (otherwise,
the algorithm terminates). Hence the center (midpoint) of
D0 is negative, so the first translation ∆t1 of the algorithm
is to the right. See Figure 8(b).

After translating, a∗ + ∆t1 is still to the left of b∗ (since
∆t1 < ξ) and is closer to b∗, so b∗ is still the nearest neighbor
of a∗ + ∆t1, and |a∗ + ∆t1 − b∗| = maxa∈A{|a + ∆t1 −
NB(a)|} ≥ maxa∈A{|a + ∆t1 − NB(a + ∆t1)|}, as is easily

verified. Thus a∗ + ∆t1 − b∗ is still the left endpoint of
the new interval D1, whose right endpoint is closer to the
origin (or at the same distance, in which case the algorithm
terminates). Hence, the preceding argument implies that
∆t2 will also be to the right, and, using induction, the lemma
follows. 2

Remarks: (1) The proof implies that the pair a∗, b∗, which
attains the maximum value of the cost function at the initial
position of A continues to do so over all iterations of the
algorithm. The point a∗ gets closer to b∗, and can never
exit its cell V(b∗) (actually, it never passes over b∗).
(2) The relative translation ∆ti is always determined by a∗,
b∗, and by another pair of points a′, b′, which determine
the other endpoint of Di−1. Note that in the next iteration
NB(a′) must change, or else the algorithm terminates.
(3) While monotonicity holds in R

1, we do not know (in view
of Lemma 4.3) whether the analog of Theorem 2.5 holds for
the Hausdorff measure in two (and higher) dimensions.

Our main result on the ICP algorithm under the Hausdorff
measure is given in the following theorem.

Theorem 4.7. Let A and B be two point sets on the real
line, with |A| = m, |B| = n, and let δB be the spread of
B. Then the number of iterations that the ICP algorithm
executes is O ((m + n) log δB/ log n).

Proof: Let the elements of A be a1 < a2 < . . . < am, and
those of B be b1 < b2 < . . . < bn. Put ∆A = am −a1, ∆B =
bn − b1. Assume, without loss of generality, that, initially,
all the points of A lie to the left of all the points of B, and
that am, b1 coincide. Then b1−a1 = maxa∈A |NB(a) − a| =
∆A, and the initial interval D0 (in the above notation) is
[a1 − b1, 0]. As shown in Lemma 4.6, all translations will
be to the right, and a1 will stay to the left of b1. Thus the
overall length of all translations is at most b1 − a1 = ∆A.
Put Ik−1 = b1 − (a1 + tk−1), for each iteration k ≥ 1 of the
algorithm.

A relative translation ∆tk, computed at the k-th iteration
of the algorithm, for k ≥ 0, is said to be short if ∆tk <

Ik−1

2n/ log n
, otherwise, ∆tk is long. We first claim that the

overall number of (short and long) relative translations that

the algorithm executes is O
“

m log
“

∆A

∆B
δB

”

/ log n
”

.

We say that a pair (a′, b′) of points, a′ ∈ A, b′ ∈ B, a′ 6=
a1, is a configuration of the algorithm, if, at some iteration
k, a′ − b′ is the right endpoint of Dk−1 (so (a1, b1), (a′, b′)
determine the k-th relative translation of the algorithm).
Due to monotonicity, each configuration can arise at most
once, and thus an upper bound on the overall number of such
configurations also applies to the actual number of iterations
performed by the algorithm.

The idea of the proof is as follows. The overall number
of long relative translations is relatively small, since, after
performing each of them, the distance between (the trans-
lated copy of) a1 and b1 (which measures the cost function)
significantly decreases. As to the number of short relative
translations, if there are at least two configurations involv-
ing the same point a′ 6= a1 in A, which determine short
relative translations, then the cost function must signifi-
cantly decrease (since a′ has changed its nearest neighbor,
and becomes significantly further from its previous nearest
neighbor), and, as a result, each such point a′ cannot be
involved in too many configurations that determine short
relative translations.

B

A

bjb1

a1

bj+1

Ik−1
a

∆t

βj

Figure 9: Proof of Theorem 4.7.

Let S be the sequence of all configurations produced by
the algorithm (sorted by the “chronological” order of their
creation), which determine short relative translations. We
next bound the number of a-configurations in S , namely,
those that involve the same point a ∈ A.

Fix some a 6= a1 ∈ A. Let (a, bj), (a, bl), 1 ≤ j 6= l ≤ n,
be two consecutive configurations in S , so each configuration
that appears between (a, bj), (a, bl) does not involve a. Due
to the monotonicity of the relative translations, we must
have j < l. Suppose that (a, bj) arises at the k-th iteration,
and (a, bl) arises at the k′-th iteration (k′ > k). Since (a, bj)
determines a short relative translation, (the translated copy
of) a must lie to the right of bj before the k-th step, for

otherwise ∆tk would be at least
Ik−1

2
, and thus would not

be short. Furthermore, we have, by construction,

∆tk =
1

2
(Ik−1 + (bj − (a + tk−1))) <

Ik−1

2n/ log n
,

and thus

|bj − (a + tk−1)| ≥ Ik−1 −
Ik−1

n/ log n
.

Hence

|bl − bj | ≥ |bj+1 − bj | ≥ 2

„

Ik−1 −
Ik−1

n/ log n

«

,

and, in particular, |bj+1− (a+ tk−1)| ≥ Ik−1− Ik−1

n/ log n
. Thus

a can pass over bj+1 only if we further translate it by at

least
“

Ik−1 − Ik−1

n/ log n

”

; see Figure 9 for an illustration. Since

(a, bl) determines a short relative translation at the k′-th
iteration (and thus lies to the right of bl at that time), it

follows that
Pk′

−1
r=k ∆tr > Ik−1 − Ik−1

n/ log n
. But then, |b1 −

(a1 + tk′−1)| <
Ik−1

n/ log n
. Thus the cost function is reduced

by a factor of at least n/ log n between each two consecutive
configurations of S that involve the same point a 6= a1 of A.

We now show that the overall number of such configura-

tions is O
“

log
“

∆A

∆B
δB

”

/ log n
”

, for a fixed point a 6= a1 ∈
A. Let CB be the distance between the closest pair in B;
that is, CB = ∆B

δB
. We claim that when Ik−1 becomes

smaller than CB

4
(at some iteration k ≥ 1), the algorithm

terminates. Indeed, since Ik−1 = maxa∈A{|NB(a + tk−1) −
(a + tk−1)|}, this implies that the next relative translation

satisfies |∆tk| < CB

4
. On the other hand, the distance be-

tween each (translated) point a+ tk−1, a ∈ A, to its nearest

Voronoi boundary is at least CB

4
(since the distance between

any b ∈ B and the (left or right) boundary of its Voronoi cell

V(b) is at least CB

2
), and thus, after shifting the points by

∆tk, the nearest-neighbor assignments do not change. This
easily implies that the overall number of iterations, in which
I0 is reduced by a factor of at least n/ log n until it becomes

bn

B

A

an

b2 b1

a1a2

nn − 1n −

Pn−2
i=0

1
2i

Figure 10: The lower bound construction.

smaller than CB

4
, is

O(logn(∆A) − logn(CB)) = O

„

log

„

∆A

∆B
δB

«

/ log n

«

,

as asserted. Thus the overall number of iterations of the
algorithm that involve short relative translations, over all

points of A, is O
“

m log
“

∆A

∆B
δB

”

/ log n
”

.

We next show that the overall number of long relative

translations is O
“

n log
“

∆A

∆B
δB

”

/ log n
”

. A long relative

translation ∆tk reduces Ik−1 by a factor of at least (1 −
1

2n/ log n
), so if j long relative translations occur before the

k-th iteration then Ik−1 ≤ ∆A

“

1 − 1
2n/ log n

”j

. Arguing as

above, the largest value of j for which ∆A

`

1 − log n
2n

´j ≥ CB

4

satisfies (using the fact that (1 − x) < e−x, for 0 < x < 1)

j = O
“

n log
“

∆A

∆B
δB

”

/ log n
”

.

In order to remove the factor log ∆A

∆B
from the bound, we

argue that when ∆A ≥ 4∆B , the algorithm terminates after
at most two iterations. Indeed, the first relative translation
∆t1 satisfies |∆t1| ≥ ∆A

2
≥ 2∆B (assuming all the points

of A lie initially to the left of the points in B). This im-
plies that after the first iteration of the algorithm, the next
relative translation is determined by (a1, b1), (am, bn), and
these two pairs of points maintain this property in any fur-
ther iteration, so the algorithm will terminate at the next
iteration, as claimed. This is easily shown to hold also by
any other initial placement of A. Hence, the actual bound on
the overall number of iterations is O ((m + n) log δB/ log n),
which completes the proof of the theorem. 2

Corollary 4.8. The number of iterations of the ICP al-
gorithm is O(m + n) when the spread of the point set B
is polynomial in n, where the constant of proportionality is
linear in the degree of that polynomial bound.

Our second main result of this section is a matching linear
lower bound construction, for the case where the spread of
B is polynomial (actually linear) in n.

Theorem 4.9. There exist point sets A, B of arbitrarily
large common size n, such that the spread of B is linear, for
which the number of iterations of the algorithm is Θ(n).

Proof: We construct two point sets A, B on the real line,
with |A| = |B| = n. For simplicity of the analysis, we
implicitly define the two point sets by the following relations:

(i) a1 = 0, (ii) a1 − b1 = n, (iii) aj − bj = −
“

n −Pj−2
k=0

1
2k

”

,

for each 2 ≤ j ≤ n, and (iv) a1− b1+b2
2

= 2n, aj − bj+bj+1

2
=

Pj−1
k=1

1
2k − ε, for each 2 ≤ j ≤ n− 1, where ε = o

`

1
2n

´

. It is
easy to verify that the above conditions determine uniquely
the sets A and B, and that 2(n − 1) < |bj+1 − bj | ≤ 2n,
for each j = 1, . . . , n − 1, and thus the spread of B is O(n).

Note that in this construction each point aj ∈ A is initially
located in the respective Voronoi cell V(bj), for j = 1, . . . , n;
see Figure 10 for an illustration.

We now claim, using induction on the number of iterations
of the algorithm, that the relative translation at the i-th
iteration ∆ti is − 1

2i , for i ≥ 1. As a consequence, each
point aj ∈ A progresses to the left towards V(bj+1), and, in
particular, ai+1 crosses the Voronoi boundary common to
V(bi+1) and V(bi+2) due to property (iv), for i = 1, . . . , n−2.
In addition, all the remaining NNA’s remain the same (at
that iteration), and the nearest neighbor of ai+1 remains
bi+2 at any further iteration — see below. This would imply
that the overall number of iterations is n − 2, which asserts
our bound.

The pair a1, b1 satisfies b1 = NB(a1) and |a1 − b1| =
maxa∈A |a−NB(a)|, as is easily verified, and, by Lemma 4.6,
this pair attains the maximum value of the cost function at
each subsequent iteration of the algorithm. Thus (at the first
iteration of the algorithm) (a1 − b1) is the right endpoint of
the interval D0, and, (a2 − b2) is its left endpoint. Hence

∆t1 =
(b1 − a1) + (b2 − a2)

2
= −1

2
,

and, as a consequence, all the points of A move to the left,
and, due to property (iv) of the construction, the nearest
neighbor of a2 becomes b3, and the NNA’s of all the remain-
ing points do not change. Suppose now, for the induction
hypothesis, that at the (i − 1)-th iteration ∆ti−1 = − 1

2i−1 ,
and, as a consequence, the overall computed translation ti−1

is −Pi−1
j=1

1
2j . It can be easily verified, using property (iv),

that each point aj , j = 2, . . . , i, has exchanged its nearest
neighbor in B from bj to bj+1, and that aj is located to the
right of bj+1. We next claim, using properties (iii) and (iv),
that each of these points satisfies

(aj + ti−1 − bj+1) = n − 2ε −
i−1
X

k=1

1

2k
< (7)

(a1 + ti−1 − b1) = n −
i−1
X

k=1

1

2k
,

as is easily verified. In addition, due to property (iii) (ai+1+
ti−1 − bi+1) = −(n − 1) < (aj + ti−1 − bj), for each j =
i+2, . . . , n. That is, (ai+1 + ti−1 − bi+1) is the left endpoint
of the “ball” (i.e., interval) Di−1. Thus, at the i-th step we
have

∆ti =
(b1 − (a1 + ti−1)) + (bi+1 − (ai+1 + ti−1))

2
=

−
1 −Pi−1

k=1
1
2k

2
= − 1

2i
,

as asserted, which, using property (iv), implies that the new
nearest neighbor of ai+1 is bi+2. Note that it can be eas-
ily verified, using (7) and properties (iii), (iv), that all the
remaining points remain in their previously computed cells,
and, in particular, that none of the points aj , for j = 2, . . . , i
may exit the cell V(bj+1) in any further iteration (since the
overall translation length is less than 1). This completes the
induction step. Note that, the NNA’s of the points a1, an

do not change during the execution of the algorithm, and
thus the overall number of iterations is n−2, as asserted. 2

Remark: In the above construction, the number of bits
that is required in order to represent each input point is

Θ(n). We are not aware of any construction in which this
number is O(log n) and the number of iterations is Ω(n).
We would therefore like to conjecture that in the latter case
the overall number of iterations that the algorithm performs
is sublinear.

5. CONCLUDING REMARKS
One major open problem that this paper raises is to im-

prove the upper bound, or, alternatively, present a tight
lower bound construction, on the number of iterations per-
formed by the algorithm under each of the above measures.
This problem is challenging even in the one-dimensional
case. So far, we have not managed to obtain a construction
that yields Ω(n2) iterations (under the RMS measure), and
we conjecture that the actual bound is subquadratic in this
case, perhaps matching our lower bound, i.e., Θ(n log n).

Another problem concerns the running time of the algo-
rithm. The algorithm has to reassign the points in A to
their (new) nearest neighbors in B at each iteration. This
can be done by searching with each point of A in V(B), but
this will take time that is more than linear in m for each
iteration. Thus, for points in R

1, when the number of it-
erations is linear or super-linear, we face a super-quadratic
running time. The irony is that we can solve the pattern
matching problem (for the RMS measure) directly, without
using the ICP algorithm, in O(mn log m) time, as follows.
(i) Compute the overlay M(A,B) of the Voronoi diagrams
V(B − a), for a ∈ A, in O(mn log m) time. (ii) Process the
intervals of M(A, B) from left to right. (iii) For each in-
terval I , compute the corresponding NNA by updating, in
O(1) time, the NNA of the previous interval (only one point
changes its nearest neighbor). (iv) Obtain, in O(1) time, the
minimizing translation of this NNA, using (3) for the left-
most interval, and (2) for any sequential interval, and the
corresponding value of the cost function. (v) Collect those I
for which the minimizing translation lies in I ; these are the
local minima of the cost function. (vi) Output the global
minimum from among those minima. The problem can also
be solved for the Hausdorff measure in O(mn log m) time,
by computing the upper envelope of the m Voronoi surfaces
S(B− a), for a ∈ A, and reporting its global minimum (see,
e.g., [10]).

Of course, in practice the ICP algorithm tends to per-
form much fewer steps, so it performs much faster than this
worst case bound. We remark that a variant of the preced-
ing algorithm (for points in R

1) can be employed in the ICP
algorithm, so that the overall cost of updating the NNA’s
remains O(mn log n), regardless of how many iterations it
performs. Many interesting open problems arise in this con-
nection, such as finding a faster procedure to handle the
NNA updates, analyzing the performance under the Haus-
dorff distance and in higher dimensions, and so on.

Moreover, inspired by a comment of D. Kozlow, if we
contend ourselves with finding a local minimum of the cost
function, this can be found in near-linear time, using binary
search over the intervals of M(A, B), which we keep implicit.
Details are omitted here.

Clearly, one expects the algorithm to converge faster (say,
under the RMS measure) when the initial placement of A is
sufficiently close to B, in the sense that RMS(0) is small.
Attempts to exploit such heuristics in practice are reported
in [5, 9]. It would be interesting to quantify this “belief”,
and show that when RMS(0) is smaller than some threshold

that depends on the layout of B, the algorithm converges
after very few iterations.

Finally, we note that some of the results given in this
paper were supported and verified by running experimen-
tation. Our implementation is based on the Cgal [1] and
Leda [2] libraries.

Acknowledgments.. The authors wish to thank Boris Aronov
for useful discussions concerning the problem. In particular,
during these discussions, the second proof of Theorem 2.4
has been obtained, and the parametrization given in the con-
struction presented in Section 3 has been simplified (from
the original construction given by the authors). The au-
thors also wish to thank Leo Guibas, Pankaj Agarwal, Jie
Gao and Vladlen Koltun for helpful discussions concerning
this problem. In particular, the first proof of Theorem 2.4
has been obtained during these discussions. We also thank
Emo Welzl, Dmitri Kozlow and Sariel Har-Peled for helpful
comments on the problem.

6. REFERENCES
[1] The Cgal project homepage. http://www.cgal.org/.

[2] The Leda homepage.
http://www.algorithmic-solutions.com/enleda.htm.

[3] H. Alt and L. Guibas. Discrete geometric shapes:
matching, interpolation, and approximation. In
Handbook of Computational Geometry. J.-R. Sack and
J. Urrutia, eds. Elsevier, Amsterdam, pages 121–153,
1999.

[4] P. J. Besl and N. D. McKay. A method for
registration of 3-d shapes. IEEE Trans. Pattern Anal.
Mach. Intell., 14(2):239–256, 1992.

[5] N. Gelfand, L. Ikemoto, S. Rusinkiewicz, and
M. Levoy. Geometrically stable sampling for the ICP
algorithm. In Fourth International Conference on 3D
Digital Imaging and Modeling (3DIM), pages 260–267,
Oct. 2003.

[6] S. Har-Peled and B. Sadri. How fast is the k-means
method? Algorithmica, 41(3):185–202, 2005.

[7] V. Koltun, and M. Sharir. On overlays and
minimization diagrams. These proceedings.

[8] H. Pottmann, Q.-X. Huang, Y.-L. Yang, and S.-M.
Hu. Geometry and convergence analysis of algorithms
for registration of 3D shapes. Technical Report 117,
Geometry Preprint Series, TU Wien, June 2004.

[9] S. Rusinkiewicz and M. Levoy. Efficient variants of the
ICP algorithm. In Third Internat. Conf. 3D Digital
Imag. Model. (3DIM), pages 145–152, June 2001.

[10] M. Sharir and P. Agarwal. Davenport-Schinzel
Sequences and their Geometric Applications.
Cambridge University Press, New York, 1995.

[11] G. C. Sharp, S. W. Lee and D. K. Wehe. ICP
registration using invariant features, IEEE Trans.
Pattern Anal. Mach. Intell., 24(1):90–102, 2002.

