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ABSTRACT
In a Batched Colored Intersection Searching Problem (CI),
one is given a set of n geometric objects (of a certain class).
Each object is colored by one of c colors, and the goal is
to report all pairs of colors (c1, c2) such that there are two
objects, one colored c1 and one colored c2, that intersect
each other. We also consider the bipartite version of the
problem, where we are interested in intersections between
objects of one class with objects of another class (e.g., points
and halfspaces).

In a Sparse Rectangular Matrix Multiplication Problem
(SRMM), one is given an n1 ×n2 matrix A and an n2 ×n3

matrix B, each containing at most m non-zero entries, and
the goal is to compute their product AB.

In this paper we present a technique for solving CI prob-
lems over a wide range of classes of geometric objects. The
basic idea is first to use some decomposition method, such
as geometric cuttings, to represent the intersection graph of
the objects as a union of bi-cliques. Then, in each of these
bi-cliques, contract all vertices of the same color. Finally,
use an algorithm for sparse matrix multiplication (adapted
from Yuster and Zwick [20]) to compute the union of the bi-
cliques. We apply the technique to segments in R

1, to seg-
ments in R

2, to points and halfplanes in R
2, and, more gen-

erally, to points and halfspaces in R
d, for any fixed d. How-

ever, the technique extends to colored intersection searching
in any class (or pair of classes) of geometric objects of con-
stant descriptive complexity.
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In particular, using our technique we obtain an algorithm
that reports all the pairs of intersecting colors for n points
and n halfplanes in R

2, that are colored by c colors, in
O(n4/3c0.46) time when n ≥ c1.44, and in O(n1.04c0.9 + c2)
time when n ≤ c1.44.

The algorithms that we give for CI use the algorithm for
SRMM as a black box, which means that any improved al-
gorithm for SRMM immediately leads to an improved algo-
rithm for all colored intersection problems that our method
applies to. We also show that the complexity of computing
all intersecting colors in a set of segments on the real line
is identical, up to a polylogarithmic multiplicative factor,
to the complexity of SRMM with the appropriate parame-
ters.

Categories and Subject Descriptors: F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumerical Al-
gorithms and Problems - geometrical problems and compu-
tations; I.3.5 [Computational Geometry and Object Model-
ing]: Hierarchy and geometric transformations;

General Terms: Algorithms, Theory

Keywords: Matrix multiplication, Colored intersection search-
ing, Generalized intersection searching, Range searching

1. INTRODUCTION
Colored intersection searching. In a Batched Colored
Intersection Searching Problem (CI)1, one is given a set of n
geometric objects of a class C (say, the class of all segments
on the real line). Each of the objects is colored by one of c
colors, and the goal is to report all pairs of colors (c1, c2) such
that there are two objects, one colored c1 and one colored
c2, that intersect each other. Often, we wish to consider
the bipartite version of the problem, where we are given two
sets of objects, from two different classes (e.g., points and
halfplanes in R

2), and the goal is to report all pairs (c1, c2)
of colors, so that an object with color c1 of the first set
intersects an object with color c2 of the second set.

Colored Intersection Searching Problems arise naturally
when we are interested in detecting intersections between

1In the literature, Batched Colored Intersection Searching is
also called Single-Shot Generalized Intersection Searching;
see [12].



complex objects. Assume that we can decompose each ob-
ject into simple pieces, so that two objects x and y intersect
if and only if some piece of x intersects some piece of y.
Then we choose a distinct color for each original object, as-
sign this color to all pieces of that object, and solve a colored
intersection searching problem associated with the resulting
colored simple objects. Each pair of intersecting colors cor-
respond to a pair of original objects that intersect. Some
especially useful instances of this setup are the problems of
detecting all intersecting pairs in a set of c polygonal regions
in the plane with a total of n edges, or in a set of polyhedral
objects in 3-space or in higher dimensions.

As another example, consider the following terrain guard-
ing problem (see, e.g., [1]). Given a polyhedral terrain T in
R

3, and a parameter h > 0, determine whether it is possible
to place two “watchtowers” (vertical segments of height h)
at two respective vertices of T , so that together they (more
precisely, their top endpoints) see the entire terrain. This
can be reduced to colored intersection searching as follows.
For each vertex u, compute the invisibility region I(u) of the
watchtower erected at u, that is, the portion of T that is not
visible from that watchtower. Decompose each invisibility
region I(u) into triangles, color all triangles of I(u) by the
same distinct color associated with u, and compute all pairs
of “intersecting” colors. Any pair of non-intersecting col-
ors yield a pair of watchtowers that together see the entire
terrain.

Gupta, Janardan and Smid (see [12]) have systematically
studied many colored intersection searching problems, mostly
in the preprocessing-and-query setting, where one wants to
build a data structure for future queries. See their survey
[12] and the references therein. Bozanis et al. [3] give some
output-sensitive algorithms for the problems that we ad-
dress. They solve the CI problem for iso-oriented boxes
in R

d in time O(n(1 +
√

k) log2d n), and the CI problem

for line segments in R
2 in time O(n3/2+ε(1 + k1/4−ε/2)),

where k is the number of intersecting pairs of colors, and
ε > 0 is an arbitrarily small constant. In the “dense” case,
where k = Θ(c2) and output-sensitivity does not matter,
the bounds in [3] are such that the sum of the exponents of
n and c is 2, while in our bounds it is below 2. (As follows
from the discussion in Section 3.3, any explicit algorithm
for the case of iso-oriented boxes for which the sum of the
exponents is below 2 would give a new algorithm for sparse
matrix multiplication; the smaller is the sum, the faster is
the algorithm.)

Sparse rectangular matrix multiplication. In a Sparse
Rectangular Matrix Multiplication Problem (SRMM), one is
given an n1 × n2 matrix A and an n2 × n3 matrix B, where
A contains at most m1 non-zero entries and B contains at
most m2 non-zero entries. The goal is to compute the prod-
uct AB. Non-sparse rectangular matrix multiplication has
been studied in depth, see Section 2. A simple efficient al-
gorithm for sparse square matrix multiplication has recently
been given by Yuster and Zwick [20] (this algorithm uses an
algorithm for multiplying dense matrices as a black box).
We adapt the algorithm of [20] to the case of rectangular
sparse matrices (see Section 2.1).

A common characteristic of many problems that can be
solved using fast matrix multiplication techniques is that
they require some aggregation (or consolidation) of informa-
tion, involving interactions between pairs of objects, where
the same pair may arise multiple times but we need to record

it only once. This idea, in fact, has been one of the primary
insights that has led to our results. A typical example, which
will also play an eminent role in our analysis, is the prob-
lem of computing the union of bi-cliques. Specifically, we
wish to compute

⋃

i Ai ×Bi efficiently, faster than the triv-
ial approach, whose running time is about

∑

i |Ai| · |Bi|. As
we will shortly see, this problem is in fact sparse (rectangu-
lar) matrix multiplication in the Boolean ring, in a different
guise (see Section 2.1).

Our results. Let S be a set of colored objects. Let G(S)
denote the intersection graph of S, whose vertices are the
elements of S, and (s1, s2) ∈ E(G(S)) if s1 and s2 intersect
each other. Our approach for solving CI on S consists of
the following three steps:

1. Use some geometric decomposition method (e.g., cut-
tings) to obtain a representation of G(S) as a (not
necessarily disjoint) union of bi-cliques.

2. In each bi-clique, contract each group of vertices that
correspond to objects of the same color, to a single
vertex. The solution to the CI problem is the union
of the contracted bi-cliques.

3. Transform the bi-clique-union problem into a sparse
matrix multiplication problem (Section 2.1) and solve
it using an efficient algorithm adapted from Yuster and
Zwick [20].

We demonstrate this approach on several concrete exam-
ples, obtaining the following results (the exponents in the
bounds are functions of the exponents ω, α, used in the com-
plexity bounds of algorithms for rectangular matrix multi-
plication – see Section 2).

(i) For the CI problem on the line, where we have n seg-
ments colored by c different colors, we obtain an algorithm
with running time

O

({

nc0.69 if n ≥ c1.69

n0.7c1.21 + c2 if n ≤ c1.69

)

.

This result is described in Section 3. A similar result holds
for iso-oriented boxes in R

d.

(ii) For the CI problem in the plane, where we have n
points and n halfplanes colored by c colors, and we want to
report all pairs of colors (c1, c2) such that there is a point
colored c1 in a halfplane colored c2, we obtain an algorithm
with running time

O

({

n4/3c0.46 if n ≥ c1.44

n1.04c0.9 + c2 if n ≤ c1.44

)

.

This result is described in Section 4.

(iii) The preceding result can easily be extended to points
and halfspaces in any fixed dimension d, involving n points
and n halfspaces, where the running time is

O

({

n
2d

d+1 c
1.376
d+1 if n ≥ c

1+2.376d
2d ,

n
1.066d

0.533d+1 c
1.844

0.533d+1 + c2 if n ≤ c
1+2.376d

2d

)

.

This result is also described in Section 4.
These are just a few concrete examples. The technique

can be applied to any CI problem involving geometric ob-
jects of any simple shape (namely, objects having constant
descriptive complexity) in any fixed dimension.



As mentioned, we can apply these results to the problem of
reporting all intersecting pairs in a set of c polygonal regions
in the plane, with a total of n edges. The running time
is asymptotically the same as that for the colored segment
intersection problem (ii) given above. In a similar fashion,
we can report all intersecting pairs in a set of polyhedral
regions in any R

d (for d fixed), as well as detecting other
kinds of interaction between pairs of complex objects. Some
of these generalizations will be presented in the full version
of the paper.

Many results use fast matrix multiplication techniques
(over the real field, the Boolean ring, or polynomial rings) as
a subroutine to derive efficient algorithms for various prob-
lems in graph theory (see, e.g., [15, 21]), learning theory [18],
computational linguistics [16], numerical algorithms [14], and
many more. Much less common are results where the reduc-
tion to matrix multiplication can also be reversed. That is,
in such a case the complexity of the problem is shown to be
equivalent (or nearly so) to the complexity of matrix mul-
tiplication (one case where this does occur is [16]). Here
we provide such a result. We show, in Section 3.2, that the
complexity of CI for segments on the line is equivalent, up
to a polylogarithmic factor, to the complexity of SRMM
over the Boolean ring.

A more general problem is the following “counting ver-
sion” of CI. In this counting version, each object s has a
real weight w(s), and we want to compute for each pair of
colors (c1, c2) the sum

∑

(s1,s2) w(s1)w(s2) over all pairs of

objects (s1, s2) such that s1 is of color c1, s2 is of color c2,
and s1 and s2 intersect each other. Our technique extends
to this counting version of CI with similar running times.
However, here we need to represent the intersection graph
as a union of disjoint bi-cliques, and then we can use matrix
multiplication over the reals rather than over the Boolean
ring. Furthermore, we can show that here too, this weight-
counting problem for segments on the line is equivalent, up
to a polylogarithmic factor, to the complexity of SRMM
over the reals.

In a CI problem our goal is to report all pairs of colors
c1, c2 such that there are objects s1, s2 of these respective
colors that intersect. Our method can actually be general-
ized to report all triples of colors c1, c2, c3, or, more gener-
ally, all k-tuples of colors c1, . . . , ck, such that there is a set
of k objects of these respective colors that have a common
point. In such a case we need to decompose the k-uniform
hypergraph of k-wise intersections of the given objects into a
union of k-cliques, and then use a variant of matrix multipli-
cation that computes the union of these k-cliques. Further
details of this extension will be given in the full version of
the paper.

To obtain the best asymptotic results, we use algorithms
for matrix multiplication which are asymptotically efficient
but are far from being practical. However, even using Strassen’s
algorithm for matrix multiplication [19], or any other non-
trivial algorithm, our results give improvements over the
naive O(n2) algorithm for CI. Implementation of our method
using simple and efficient algorithms for matrix multiplica-
tion should be practical.

2. PRELIMINARIES
We use the notation Õ(·) to hide poly-logarithmic multi-

plicative factors. That is, we write f(n) = Õ(g(n)) if there
exists c such that f(n) ≤ g(n) logc n.

Notation for CI problems. Let CISegments,R1(c, n, m)
denote the problem where one is given a set S1 consisting of
n segments on the line and a set S2 consisting of m segments
on the line, and the goal is to report for each ordered pair of
colors (c1, c2) whether there is a segment s1 ∈ S1 of color c1

and a segment s2 ∈ S2 of color c2 such that s1 and s2 inter-
sect each other. Let CISegments,R2(c, n, m) denote the anal-
ogous problem where S1 (resp., S2) consists of n (resp., m)
segments in R

2. A special case of CISegments,R1(c, n, m) and
CISegments,R2(c, n, m) is when S1 = S2. We denote these
special cases by CISegments,R1(c, n) and CISegments,R2(c, n),
respectively.

Let CIPoints,Halfplanes,R2(c, n, m) denote the analogous
colored intersection searching problem where S1 consists of
n points in R

2 and S2 consists of m halfplanes in R
2. Fi-

nally, CIPoints,Halfspaces,Rd(c, n, m) denotes the analogous

problem involving points and halfspaces in R
d.

We somewhat abuse notation so that the same notation
(e.g., CISegments,R1(c, n)) refers both to the problem and to
(an upper bound on) its running time.

Notation for SRMM problems. We use RMM(n1, n2, n3)
to denote (the complexity of) the problem of multiplying an
n1 × n2 matrix by an n2 × n3 matrix.

We denote by SRMM(n1, n2, n3, m1, m2) the problem of
computing AB when A is an n1 × n2 matrix with at most
m1 non-zero entries, and B is an n2 × n3 matrix with at
most m2 non-zero entries. Again, we abuse notation so that
RMM , SRMM refer both to the problems and to (upper
bounds on) their respective complexities. We also use the
following notations:

SRMM(n1, ∗, n3, m1, m2) =

SRMM(n1, max(m1, m2), n3, m1, m2)

(this means that we practically impose no restriction on n2),
and

SRMM(n1, ∗, n3, m) = SRMM(n1, ∗, n3, m, m) .

The ring containing the elements of A and B is not spec-
ified in this notation. We usually use the 2-element Boolean
ring, and sometimes the real field. In most cases, the spe-
cific choice of the ring is immaterial, because the complexity
of all known algorithms for matrix multiplication does not
seem to be different for different rings (for example, no bet-
ter algorithms are known for the Boolean ring than for the
reals). We will sometimes denote the problems as RMMBool

or SRMMBool, when we want to stress the fact that we are
using the Boolean ring.

Throughout, we will assume that the input matrices are
given to us in sparse representation, that is as a collection of
triplets (row, column, value) which lists all positions where
the matrix is non-zero (in the Boolean ring, the first two
components suffice). Thus, the size of the representation of
an input matrix is linear in the number m1 +m2 of non-zero
entries of the matrices.

Bounds for Matrix Multiplication.
Let ω be the matrix multiplication exponent, i.e. ω is the

smallest number such that RMM(n, n, n) = O(nω). Let



α = max{0 ≤ r ≤ 1 | RMM(n, nr, n) = O(n2)}, and let
β = ω−2

1−α
. It is well known that:

Theorem 2.1 (Coppersmith and Winograd [9]).
ω < 2.376.

Theorem 2.2 (Coppersmith [8]). α > 0.294.

Theorem 2.3 (Coppersmith [8], Huang and Pan [13]).

RMM(n1, n2, n1) = O

({

nω−1
1 n2 if n2 ≥ n1

n2−αβ
1 nβ

2 + n2
1 if n2 ≤ n1

)

.

Setting ω = 2.376 and α = 0.294 gives β ≈ 0.533.
We note that in recent years there have been some de-

velopments in algorithms for matrix multiplication. Cohn
et al. [7, 6] propose a new approach to matrix multiplica-
tion, which is based on group theory. They give a framework
which is different (and perhaps deeper) than that of previous
methods. They in a relatively simple way derive an exponent
of 2.41 (which still falls short of the current ω = 2.376), and
claim to have unpublished results that re-derive the known
matrix multiplication exponent 2.376, eliminating some of
the complications of the original algorithm.

2.1 Sparse Rectangular Matrix Multiplication
We use the following lemma in the proof of Lemma 3.2:

Lemma 2.4. Any instance of SRMM(n1, n2, n1, m) can
be reduced to an instance of SRMM(2n1, n2, 2n1, 2m), in
which B = AT . The reduction takes linear time.

Proof. Given an instance (A1, B1) of SRMM(n1, n2, n1, m),
where B1 is not necessarily equal to AT

1 , define a new 2n1 ×
n2 matrix A which consists of A1 placed on top of BT

1 ,

i.e. A =

(

A1

BT
1

)

. Then AAT =

(

A1A
T
1 A1B1

BT
1 AT

1 BT
1 B1

)

and the

upper-right quadrant of AAT is equal to A1B1. 2

The following theorem upper bounds SRMM(n, ∗, n, m1, m2)
and SRMM(n, ∗, n, m). The proof is an extension of the one
in [20], and is given here for the sake of completeness. With
some additional care and case-analysis, one can generalize
these bounds to SRMM(n1, n2, n3, m1, m2).

Theorem 2.5.

(i) SRMM(n, ∗, n, m) =

O

















mn
ω−1

2 if m ≥ n
ω+1

2 ,

m
2β

β+1 n
2−αβ
β+1 if n1+ α

2 ≤ m ≤ n
ω+1

2 ,

n2 if m ≤ n1+ α
2






.

(ii) SRMM(n, ∗, n, m1, m2) =

O

















(m1m2)
1/2n

ω−1
2 + m1 + m2 if m1m2 ≥ nω+1,

(m1m2)
β

β+1 n
2−αβ
β+1 + m2 + m2 if n2+α ≤ m1m2 ≤ nω+1,

n2 + m1 + m2 if m1m2 ≤ n2+α






.

Proof. The first part is a corollary of the second, setting
m1 = m2 = m, and noticing that the term m1 + m2 in
each of these bounds is dominated by the other term of the
bound when m1 = m2. Therefore, we consider only the
second part.

Suppose that the columns of A and the corresponding
rows of B are indexed by the elements of a set I. Partition

I into two subsets IH and IL, referred to as the heavy indices
and the light indices, respectively, as follows. Denote by |v|
the number of nonzero elements in a vector v, and choose a
threshold parameter k that we will fix later. An index i is
in IH if |A∗i| · |Bi∗| ≥ k, where A∗i denotes the ith column
of A, and Bi∗ denotes the ith row of B; otherwise i ∈ IL.

Partition the matrix A into two matrices, AH and AL,
such that AH (resp., AL) consists of the columns of A which
are indexed by IH (resp., IL) in their original order. Like-
wise, partition B into BH and BL, such that BH (resp., BL)
consists of the heavy (resp., light) rows of B in their origi-
nal order. Clearly, AB = AHBH + ALBL, and we therefore
consider each of the two multiplications AHBH and ALBL

separately.
We compute ALBL in the following brute-force manner.

Put xi = |A∗i|, yi = |Bi∗|, for i ∈ IL. For each i ∈ IL, we
compute the product of the ith column of A and the ith row

of B. This is an n×n matrix C(i) satisfying C
(i)
uv = AuiBiv.

We fill in only the nonzero entries of C(i), whose number is
xiyi ≤ k, in O(xiyi) time. We bound the sum of these costs
over all light columns, as follows. Choose another threshold
parameter t, and write

∑

i∈IL

xiyi =
∑

i∈IL, xi≤t

xiyi +
∑

i∈IL, xi>t

xiyi .

The first sum is at most
∑

i∈IL
tyi ≤ tm2. For the second

sum, since xiyi ≤ k, we have yi ≤ k/t for each i in that sum,
so the sum is at most

∑

i∈IL
kxi/t ≤ km1/t. (We have used

the fact that A (resp., B) contains at most m1 (resp., m2)
nonzero entries.) Optimizing for t, we conclude that ALBL

can be computed in O(
√

km1m2) time.
We compute AHBH using the fast matrix multiplication

algorithms of Theorem 2.3. We claim that |IH | ≤
√

m1m2/k.
Indeed, as above, put xi = |A∗i|, yi = |Bi∗|, for i ∈ IH .
We have xiyi ≥ k for each i ∈ IH , and

∑

i∈IH
xi ≤ m1,

∑

i∈IH
yi ≤ m2. Hence

m1m2 ≥





∑

i∈IH

xi



 ·





∑

i∈IH

yi



 ≥

k





∑

i∈IH

xi



 ·





∑

i∈IH

1

xi



 ≥ k|IH |2,

as follows from the arithmetic-harmonic inequality (or sim-
ply from the Cauchy-Schwarz inequality). This implies the
claim. Hence, the cost of computing AHBH is at most

RMM(n, |IH |, n) ≤ RMM(n,
√

m1m2/k, n).

Thus the total cost of computing AB is at most

RMM(n,
√

m1m2/k, n) + O
(√

m1m2k
)

+ O(m1 + m2), .

where the last term bounds the steps of processing the in-
put, finding the heavy and light indices, and partitioning the
matrices into their heavy and light parts. We choose the op-
timal k by case analysis, depending on the value of m1m2.
Specifically, using Theorem 2.3, we have: If m1m2 ≥ nω+1

then we choose k = nω−1, and obtain the first bound. If

m1m2 ≤ nω+1, we choose k = (m1m2)
β−1
β+1 n

2(2−αβ)
β+1 . This

gives us a running time of

O((m1m2)
β

β+1 n
2−αβ
β+1 + n2 + m1 + m2),



which means that we get either the second or the third
bound of the theorem, depending on whether or not m1m2 ≥
n2+α.

We remark that the final term in the running time, m1 +
m2, may dominate the running time, when one of m1/m2, m2/m1

is very large compared to n. 2

Computing the union of cliques or bi-cliques.
As discussed in the introduction, matrix multiplication

is related to problems in which we need to eliminate du-
plicates efficiently. The following two examples, on which
all our geometric applications are based, are in fact matrix
multiplication in disguise.

Lemma 2.6. (i) Let {Ki} be a set of cliques over a vertex
set V where |V | = n. Define the size of a clique to be the
number of vertices it contains. Assume that the total size of
the cliques is m. Then the problem of computing the union
of the cliques is equivalent to SRMMBool(n, ∗, n, m).

(ii) Let {Ki} be a set of bi-cliques (that is, complete bi-
partite graphs) whose left side is a subset of some vertex set
V1, and whose right side is a subset of another vertex set
V2, where |V1| = |V2| = n. Suppose that the sum of the sizes
of the left (resp., right) sides of the bi-cliques is m1 (resp.,
m2). Then the problem of computing the union of the bi-
cliques is equivalent to
SRMMBool(n, ∗, n, m1, m2).

Proof. It suffices to consider (ii). Given the collection of
bi-cliques, construct two Boolean matrices A, B, where A
is an n × k matrix and B is a k × n matrix, where k is the
number of bi-cliques, so that Aij = 1 if the ith element of V1

belongs to the jth bi-clique, and Bjl = 1 if the lth element
of V2 belongs to the jth bi-clique. It is now obvious that
the union of the bi-cliques is represented by the 1-entries
of AB. The converse transformation follows from the same
argument in reverse. 2

3. SEGMENTS ON THE LINE AND ISO-
ORIENTED BOXES IN HIGHER DIMEN-
SIONS

In this section we give two solutions to CISegments,R1(c, n).
In Section 3.1 we give a simple solution, which exhibits
some similarity with the algorithm for solving SRMM that
is presented in Theorem 2.5. In Section 3.2 we show that
CISegments,R1(c, n) is in fact equivalent, up to poly-logarithmic
factors, to SRMMBool(c, ∗, c, n).

The latter result is of interest because it shows that we
can use any algorithm for SRMMBool as a black box to get
an algorithm for CISegments,R1(c, n), whereas in the simple
solution we, in a sense, simulate the algorithm of Theorem
2.5 and so use it in an explicit, non-black-box manner.

3.1 An Explicit Solution via RMM

Theorem 3.1. CISegments,R1(c, n) can be solved in time

O

















nc
ω−1

2 if n ≥ c
ω+1

2 ,

n
2β

β+1 c
2−αβ
β+1 if c1+ α

2 ≤ n ≤ c
ω+1

2 ,

c2 if n ≤ c1+ α
2






.

Note: The expression for the running time in the last
Theorem is the same as the upper bound shown in Theorem

2.5 for SRMMBool(c, ∗, c, n). This is because, as just noted,
we essentially “simulate” the SRMM algorithm of Theorem
2.5.
Proof. Assume without loss of generality that all segments
of the same color are disjoint. We can also assume that the
segments have nonempty interiors, and that their endpoints
are all distinct, because otherwise it is easy to perturb the
endpoints to achieve this property, so that all intersections
remain and no new intersections are created. We can sort
the endpoints, and assume that all endpoints are integers
between 1 and 2n, and that every integer between 1 and 2n
is the endpoint of exactly one segment.

Let k be a parameter which we fix later. We divide the
points into 2n/k consecutive blocks, B1, . . . , B2n/k, so that
each block consists of at most k points. We are interested
in the 2n/k endpoints of the blocks, which we call cutoff
points.

We distinguish between two types of intersections between
pairs of the segments: (i) two segments that contain a com-
mon cutoff point; (ii) two segments that have an endpoint
in the same block. It is easy to see that each pair of in-
tersecting segments are at least of one of these types (they
may be of both types). Therefore it suffices to detect all
intersections of type (i) and all intersections of type (ii).

To detect intersections of type (ii), we process each block
Bi, go over all pairs of segments such that both have an
endpoint in Bi and check whether they intersect each other.
There are at most k such segments, so we perform O(k2)
work per block, and in total 2n/k · O(k2) = O(nk) work.

To detect intersections of type (i), we define a c × 2n/k
Boolean matrix A whose rows correspond to the c colors, and
whose columns correspond to the 2n/k cutoff points. We
put Aij = 1 if there is a segment of color i that contains the
jth cutoff point, and Aij = 0 otherwise. The matrix A can
be constructed in time O(cn/k + n log n). Computing AAT

gives a Boolean c× c matrix which has 1 in location (c1, c2)
if and only if there is a segment s1 of color c1 and a segment
s2 of color c2 such that s1 and s2 have an intersection of
type (i). This takes time O(RMMBool(c, n/k, c)). Using
the bounds in Theorem 2.3, and optimizing over k, one gets
the required expression for the running time, as is easily
checked. 2

Remark. Note that in the proof of Theorem 3.1, in or-
der to detect intersections of type (ii) we essentially ran the
naive algorithm that goes over all intersections of segments.
The step in the proof where we saved work relative to the
naive O(n2) algorithm is in the detection of the intersections
of type (i). In this step, the use of matrix multiplication
enabled us to aggregate information about the intersect-
ing pairs of colors instead of running over all intersecting
pairs of segments. Note also that using cutoff points is, in a
sense, analogous to distinguishing between light and heavy
columns/rows in the proof of Theorem 2.5.

3.2 Equivalence toSRMM

Consider the problem CISegments,R1(c, n). It is easily seen
that by taking an input where all segments are points (i.e.,
closed segments of length 0) and using Lemmas 2.4 and 2.6,
we get that a special case of CISegments,R1(c, n) is equivalent
to SRMMBool(c, ∗, c, n). Thus:

Lemma 3.2.

CISegments,R1(c, n) = Ω(SRMMBool(c, ∗, c, n)) .



In what follows we show that this is tight up to a poly-
logarithmic multiplicative factor:

Theorem 3.3.

CISegments,R1(c, n) = O(SRMMBool(c, ∗, c, n log n)) .

This easily follows from using our technique together with
the following Lemma:

Lemma 3.4. Let S be a set of n segments on the real line.
Then their intersection graph G(S) can be represented as the
disjoint union of bi-cliques of total size O(n log n). These bi-
cliques can be found in time O(n log n).

Proof. Construct a segment tree over the given segments
(see [10]). For each node ξ of the tree, construct a bi-clique,
consisting of the segments stored at ξ on one side, and
the segments whose left endpoints are stored at the sub-
tree rooted at ξ, on the other side. It is easy to see that
each edge of the bi-clique corresponds to a pair of inter-
secting segments. Furthermore, for each pair of intersecting
segments, there is a unique bi-clique in which they corre-
spond to an edge. Hence G(S) is equal to the union of these
bi-cliques. It then follows that the sum of the sizes of the
bi-cliques is O(n log n), and that they can all be constructed
in O(n log n) time. 2

Using a similar and slightly modified approach, we can
extend this result to any fixed dimension d > 1:

Lemma 3.5. Let S be a set of n iso-oriented boxes in R
d.

Then their intersection graph G(S) can be represented as the
union of bi-cliques of total size O(n logd n). These bi-cliques
can be found in time O(n logd n).

It can be seen that Lemma 3.4 is tight: there exist sets S of
segments for which G(S) has no representation as a union of
bi-cliques of smaller order of magnitude. Such a set is the set
S which consists of all segments of the form Ii = [i, i + n/2]
for 1 ≤ i ≤ n. Here, the (bipartite) intersection graph
between the segments I1, . . . , In/2 and In/2+1, . . . , In is the
bipartite graph H where Ii is connected to Ij+n/2 if and
only if j ≤ i. Any cover of G(S) by bi-cliques is also a cover
of H. Erickson [11, Theorem 3.1] showed that covering H
by bi-cliques of total size o(n log n) is impossible.

Lemma 3.4 together with Lemma 2.6 immediately give
the proof of Theorem 3.3.

Note: It is possible to generalize the results of this section
to show that CISegments,R1(c, n, m) is equivalent, up to a
poly-logarithmic factor, to SRMMBool(c, ∗, c, n, m).

Generalizations. Lemma 3.5 implies that CI of iso-
oriented boxes in any fixed dimension is equivalent, up to
polylogarithmic factors, to SRMMBool(c, ∗, c, n). This also
holds for a large variety of other iso-oriented objects.

Remark: One of the motivations that have led to this
study has been the problem of guarding a terrain by two
watchtowers, as reviewed in the Introduction (also see [1]).
The bottleneck step in the solution of this problem is a CI
problem on the line, involving O(n3) segments with n colors
(where n is the number of vertices of the terrain). Theo-

rem 3.1 then gives a solution that runs in time O(n3+(ω−1)/2) ≈
O(n3.688). However, using a different, more global geomet-
ric approach, which exploits the special structure of these
segments of invisibility, Agarwal et al. [1] obtain a slightly

improved solution with a running time of roughly n11/3. We
also note that an indirect use of matrix multiplication for
terrain guarding in two dimensions was given earlier in [2].

4. COLORED INTERSECTION OF POINTS
AND HALFSPACES

In this section we consider the problem
CIPoints,Halfplanes,R2(c, n, m), and, more generally,
CIPoints,Halfspaces,Rd(c, n, m), for any fixed d. In Section
4.1 we give some necessary background on cuttings. We
then show how to use cuttings to decompose the intersection
graph of points and halfspaces into the union of bi-cliques.
We then use these results in Section 4.2 to obtain an efficient
solution of CIPoints,Halfplanes,R2(c, n, n). For simplicity of
exposition, we only present a detailed solution of the prob-
lem in R

2, and only for the balanced case n = m. We
then state (without proof) the extension to higher dimen-
sions. We also mention several applications of these results.
More details, including the handling of the unbalanced case
n 6= m, are given in the full version.

4.1 Cuttings and Decomposition of the Inter-
section Graph

Let S and T be two sets of geometric objects. As above,
the intersection graph G(S, T ) of S and T is the bipartite
graph with S as the set of its left vertices, T as the set of
its right vertices, and an edge connecting s ∈ S and t ∈ T
if s and t intersect each other. In this section, we consider
the case where S is a collection of n points in R

d and T
is a collection of n halfspaces (bounded by hyperplanes) in
R

d. We denote by H the set of hyperplanes bounding the
halfspaces in T . As in the iso-oriented case, we want to
represent G(S, T ) as a union of bi-cliques. As it turns out,
a full representation of this kind is too expensive, and we
can improve the solution if we use only the following repre-
sentation, which decomposes the graph into a collection of
bi-cliques, and leaves a sparse residual graph that is dealt
with separately.

The representation is based on the hierarchical cutting
technique of Chazelle [4] (see also Matoušek [17]). We recall
the definition of an efficient hierarchical (1/r)-cutting for H,
with respect to constant parameters C, ρ. It is a sequence
of cuttings Ξ0, Ξ1, . . . , Ξk, such that (i) Ξ0 is the cutting
consisting of the single “simplex” R

d; (ii) each Ξi, for 1 ≤
i ≤ k, is a (1/ρi)-cutting for H (each of its cells is crossed by
at most |H|/ρi hyperplanes of H), of O(ρid) simplices, which
C-refines Ξi−1, meaning that each simplex of Ξi is contained
in a single simplex of Ξi−1, and each simplex of Ξi−1 contains
at most C simplices of Ξi; and (iii) ρk−1 < r ≤ ρk (so
k = Θ(log r)).

Theorem 4.1 (Chazelle [4]; cf. Matoušek [17]).
There exist constants C, ρ that depend on d, such that, for
any sets S of n points in R

d and H of n halfplanes in R
d,

and for any parameter r, there exists an efficient hierar-
chical (1/r)-cutting for H, with respect to the parameters
C and ρ, such that each cell of the ith cutting contains at
most n/ρid points of S. Such a cutting can be constructed
deterministically in time O(nrd−1).

As a corollary, we obtain:



Theorem 4.2. Let S, T , and r ≤ n1/(d+1) be as above.

Then G(S, T ) can be represented as
(

⋃cr2d

i=1 Si × Ti

)

∪G0(S, T ),

for some absolute constant c, where the residual graph G0(S, T )
has O(n2/r2) edges, and

∑

i |Si|,
∑

i |Ti| = O(nrd−1 log r).
This decomposition can be constructed deterministically in
time O(nrd−1 log r + n2/r2).

Proof. Construct an efficient hierarchical (1/r)-cutting for
the set H of hyperplanes bounding the halfspaces in T , with
respect to the constants C, ρ provided in Theorem 4.1, and
denote the resulting sequence of cuttings as Ξ0, Ξ1, . . . , Ξk.
For each Ξi, i ≥ 1, and for each simplex τ of Ξi, construct a
bi-clique Sτ ×Tτ , where Sτ is the set of points that lie in τ ,
and Tτ is the set of halfspaces that fully contain τ . For each
i we have

∑

τ |Sτ | = n, and (recalling that ρ is a constant)

∑

τ

|Tτ | = O(ρid · n/ρi−1) = O(ρnρi(d−1)) = O(nρi(d−1)) .

Summing these bounds over i, we get an overall bound of
O(nρk(d−1)) = O(nrd−1) for T -sizes of the bi-cliques.

We next continue to decompose the residual graph G0(S, T )
using duality. We note that if (s, t) ∈ G(S, T ) is an inter-
section that does not appear in the union of the bi-cliques
constructed so far, then there must exist a cell τ of the final
cutting Ξk, such that s lies in τ and the hyperplane that
bounds t crosses τ . For each such τ , we pass to the dual
space, where the points of S that lie in τ become halfspaces
(we denote by H∗

τ the set of their bounding hyperplanes),
and the halfspaces whose bounding hyperplanes cross τ be-
come points (we denote by T ∗

τ the set of these points).
We apply Theorem 4.1 to H∗

τ and T ∗
τ , to obtain an efficient

hierarchical (1/r)-cutting for H∗
τ , with the above properties.

Proceeding as above, we obtain a collection of bi-cliques,
so that the sum of the sizes of their vertex sets that are
contained in H∗

τ is O(|H∗
τ |rd−1), and the sum of the sizes

of their vertex sets that are contained in T ∗
τ is O(|T ∗

τ | log r).
Summing these bounds over all cells τ of Ξk, and using the
facts that

∑

τ |H∗
τ | = n and

∑

τ |T ∗
τ | = O(nrd−1), we obtain

that the total size of the vertex sets of all the bi-cliques
constructed so far is O(nrd−1 log r).

We are left with O(r2d) cells of all the dual cuttings, each
intersected by at most n/rd+1 hyperplanes of the respec-
tive set H∗

τ , and containing at most n/rd+1 points of the
respective set T ∗

τ . Arguing as above, one can show that
any containment between a point s ∈ S and a halfspace
t ∈ T that is not represented in any of the bi-cliques con-
structed so far, must be such that there exists a cell σ of
one of the dual cuttings, such that the hyperplane bound-
ing the halfspace dual to s crosses σ, and the point dual
to t lies in σ. Hence, the size of the residual graph is at
most O(r2d · (n/rd+1)2) = O(n2/r2). The time bound for
constructing this decomposition is an easy consequence of
Theorem 4.1. This completes the proof. 2

4.2 SolvingCIPoints,Halfplanes,R2(c, n, n)

For simplicity of presentation, we restrict the foregoing
analysis to the planar case d = 2 and to the balanced case
n = m, and establish the following main result.

Theorem 4.3.

CIPoints,Halfplanes,R2(c, n, n) =

Õ

















n4/3c
ω−1

3 if n ≥ c
1+2ω

4 ,

n
4β

2β+1 c
2−αβ
2β+1 if c1+ α

4 ≤ n ≤ c
1+2ω

4 ,

c2 if n ≤ c1+ α
4






.

Proof. As above, let S and T be the given sets of n
points and n halfplanes in R

2, respectively. For an ap-
propriate choice of r, that we will fix later, construct the

decomposition G(S, T ) =
(

⋃cr4

i=1 Si × Ti

)

∪ G0(S, T ), where
∑

i |Si|,
∑

i |Ti| = O(nr log r), and |E(G0(S, T ))| = O(n2/r2).
Recall that this can be done in time O(nr log r + n2/r2).

We then compute the union of bi-cliques
⋃cr4

i=1 Si × Ti, us-
ing Lemma 2.6, in time O(SRMMBool(c, ∗, c, m)), where

m = O(nr log r) = Õ(nr). By Theorem 2.5(i), computing
the union takes time

Õ

















nrc
ω−1

2 if nr ≥ c(ω+1)/2,

(nr)
2β

β+1 c
2−αβ
β+1 if c1+α/2 ≤ nr ≤ c(ω+1)/2,

c2 if nr ≤ c1+α/2






.

For the total running time, we add O(n2/r2) to this bound,
and optimize the choice of r as follows. For the first case
we choose r = n1/3/c(ω−1)/6, and obtain the first bound
in the theorem. For the second and third case we choose
r = n1/(2β+1)/c(2−αβ)/2(2β+1), and obtain the second or the

third bound, depending or whether or not n ≥ c1+α/4. 2

Remark. An alternative approach is to obtain a complete
decomposition of G(S, T ) into the union of bi-cliques, by

choosing r = n1/(d+1) = n1/3 in Theorem 4.2. However, this
is too expensive: The overall size of the resulting bi-cliques
is O(n4/3 log n), and then the first bound of Theorem 2.5

is only O(n4/3c(ω−1)/2), which is weaker than our solution
(the same happens for the second bound). This should be
contrasted with the 1-dimensional case, where the solution
that we obtained is based on a complete decomposition.

Extension to higher dimensions. Using the decompo-
sition given by Theorem 4.2 for any fixed d > 2, we obtain

Theorem 4.4.

CIPoints,Halfspaces,Rd(c, n, n) =

Õ

















n2d/(d+1)c
ω−1
d+1 if n ≥ c

1+dω
2d ,

n
2dβ

dβ+1 c
2−αβ
dβ+1 if c1+ α

2d ≤ n ≤ c
1+dω

2d ,

c2 if n ≤ c1+ α
2d






.

Generalizations. The cases of points and halfplanes in R
2

and of points and halfspaces in R
d are only two simple appli-

cations of the technique. We can apply it to any other kind
of batched range searching with colored objects. For exam-
ple, we can consider the CI problems involving segments in
the plane, triangles and points in the plane, triangles in R

3,
(d − 1)-simplices in R

d, a variety of ray-shooting problems
in R

2 and R
3, and so on. The running time bounds for the

first two problems (segments in the plane, and points and
triangles in the plane) are asymptotically the same as those
given in Theorem 4.3.

As an interesting application, consider the problem where
we are given c arbitrary polygonal regions in the plane with
a total of n edges, and wish to report all intersecting pairs



of these regions. We note that a pair of regions intersect
if either an edge of one of them intersects an edge of the
other, or a vertex of one of them is contained in a triangle
of some triangulation of the other. We then transform these
two latter problems into CI problems, where we assign to
each region a distinct color, and color all its edges, vertices,
and triangles by that color. We obtain two colored inter-
section searching problems, one involving n line segments
in the plane with c colors, and the other involving n points
and O(n) triangles, again with c colors. It is easy to see that
both problems can be solved within the same time bounds
as in Theorem 4.3, so we can report all intersecting pairs of
the given polygons within a time bound as given in Theo-
rem 4.3. A similar technique solves the problem of reporting
all intersecting pairs in a collection of c arbitrary polyhedral
regions in R

3 with a total of n facets. We defer the detailed
study of this and other extensions to the full version of the
paper.

5. CONCLUSION
In this paper we have shown how to use efficient algo-

rithms for matrix multiplication, combined with geometric
decomposition techniques, to obtain efficient algorithms for
batched colored intersection problems.

One obvious question raised by our study is whether our
bounds for the iso-oriented CI problems and non-iso-oriented
CI problems are optimal. An immediate way to improve our
bounds is to improve the bounds for SRMM , or, more pro-
foundly, for the raw matrix multiplication problem itself.
The (near-)equivalence of the CI problem on the line and
SRMM suggests that a faster algorithm for CI may lead
to a faster algorithm for SRMM . It would indeed be very
interesting if new direct geometric methods could yield an
improved solution for SRMM .

To get a better feeling for the complexity of SRMM ,
let us assume that ω = 2. That is, assume that mul-
tiplying two n × n matrices takes Θ(n2) time, and mul-
tiplying an n1 × n2 matrix by an n2 × n3 matrix takes
Θ(n1n2 + n2n3 + n1n3) time, which is proportional to the
sum of the sizes of the input and output. However, even un-
der this optimistic assumption, our algorithm for SRMM
only gives SRMMBool(n, ∗, n, m) = Õ(m

√
n + n2), as op-

posed to the lower bound of Ω(m + n2) which is the sum
of the sizes of the input and output. An interesting open
question is whether a matching lower bound Ω(m

√
n + n2)

can be established in some computational model. It may
be helpful, as a first step, to assume that any column has
exactly

√
n 1s. Such a lower bound may support the hy-

pothesis that the dependence of our algorithm for SRMM
on ω is optimal.

One might also like to consider the output-sensitive vari-
ant of CI where we want an algorithm which runs faster if
the number of intersecting pairs of colors is small (see [3]).
To use our techniques for this problem, a natural subtask is
to develop an output-sensitive algorithm for SRMM , which
runs faster when the output matrix has a small number of
non-zero entries.
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