
A faster algorithm for the discrete Fréchet distance under translation∗

Rinat Ben Avraham† Haim Kaplan‡ Micha Sharir§

Abstract

The discrete Fréchet distance is a useful similarity measure for comparing two sequences of points
P = (p1, . . . , pm) and Q = (q1, . . . , qn). In many applications, the quality of the matching can be
improved if we let Q undergo some transformation relative to P . In this paper we consider the problem
of finding a translation of Q that brings the discrete Fréchet distance between P and Q to a minimum.
We devise an algorithm that computes the minimum discrete Fréchet distance under translation in R2,
and runs in O(m3n2(1 + log(n/m)) log(m + n)) time, assuming m ≤ n. This improves a previous
algorithm of Jiang et al. [10], which runs in O(m3n3 log(m+ n)) time.

∗Work by Haim Kaplan has been supported by Israel Science Foundation grant no. 822/10, and German-Israeli Foundation for
Scientific Research and Development (GIF) grant no. 1161/2011, and Israeli Centers of Research Excellence (I-CORE) program
(Center No. 4/11). Work by Micha Sharir has been supported by Grant 892/13 from the Israel Science Foundation, by the Israeli
Centers of Research Excellence (I-CORE) program (Center No. 4/11), and by the Hermann Minkowski–MINERVA Center for
Geometry at Tel Aviv University. Work by Micha Sharir and Rinat Ben Avraham has been supported by Grant 2012/229 from the
U.S.-Israeli Binational Science Foundation.
†School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel; rinatba@gmail.com
‡School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel; haimk@post.tau.ac.il
§School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel; michas@post.tau.ac.il

1

ar
X

iv
:1

50
1.

03
72

4v
1

 [
cs

.C
G

]
 1

5
Ja

n
20

15

1 Introduction

Shape matching is an important area of computational geometry, that has applications in computer vision,
pattern recognition, and other fields that are concerned with matching objects by shape similarity. Generally,
in shape matching we are given two geometric objects A and B and we want to measure to what extent they
are similar. Usually we may allow certain transformations, like translations, rotations and/or scalings, of
one object relative to the other, in order to improve the quality of the match.

In many applications, the input data consists of finite sets of points sampled from the actual objects. To
measure similarity between the sampled point sets, various distance functions have been used. One popular
function is the Hausdorff distance that equals to the maximum distance from a point in one set to its nearest
point in the other set. However, when the objects which we compare are curves, sequences, or contours
of larger objects, and the sampled points are ordered along the compared contours, the discrete Fréchet
distance may be a more appropriate similarity measure. This is because the discrete Fréchet distance takes
into account the ordering of the points along the contours which the Hausdorff distance ignores. Comparing
curves and sequences is a major task that arises in computer vision, image processing and bioinformatics
(e.g., in matching backbone sequences of proteins).

The discrete Fréchet distance between a sequence of points P and another sequence of points Q is de-
fined as the minimum, over all possible independent (forward) traversals of the sequences, of the maximum
distance between the current point of P and the current point of Q during the traversals. See below and in
Section 2 for a more formal definition.

In this work, we focus on the problem of computing the minimum discrete Fréchet distance under
translation. That is, given two sequences P and Q of m and n points, respectively, in the plane, we wish to
translate Q by a vector t ∈ R2 such that the discrete Fréchet distance between P and Q+ t is minimized.

Background. The Fréchet distance has been extensively studied during the past 20 years. The main variant,
the continuous Fréchet distance, where no transformation is allowed, measures similarity between (polyg-
onal) curves. It is the smallest δ for which there exist forward simultaneous traversals of the two curves,
from start to end, so that at all times the distance between the corresponding points on the curves is at
most δ. The discrete Fréchet distance considers sequences P and Q of points instead of curves. It is de-
fined analogously, where (a) the simultaneous traversals of the sequences are represented as a sequence of
pairs (p(1), q(1)), . . . , (p(t), q(t)), where p(i) ∈ P , q(i) ∈ Q, for i = 1, . . . , t, (b) the first (resp., last) pair
consists of the starting (resp., terminal) points of the two sequences, and (c) each (p(i), q(i)) is obtained
from (p(i−1), q(i−1)) by moving one (or both) point(s) to the next position in the corresponding sequence.
Most studies of the problem consider the situation where no translation (or any other transformation) is al-
lowed. In this “stationary” case, the discrete Fréchet distance in the plane can be computed, using dynamic
programming, in O(mn) time (Eiter and Mannila [9]). Agarwal et al. [1] slightly improve this bound,

and show that the (stationary) discrete Fréchet distance can be computed in O
(
mn log logn

log n

)
time on

a word RAM, and a very recent result of Bringmann [5] indicates that a substantially subquadratic solu-
tion (one that runs in time O((mn)1−δ), for some δ > 0) is unlikely to exist. Alt and Godau [3] showed
that the (stationary) continuous Fréchet distance of two planar polygonal curves with m and n edges, re-
spectively, can be computed, using dynamic programming, in O(mn logmn) time. This has been slightly
improved recently by Buchin et al. [6], who showed that the continuous Fréchet distance can be computed
in O(N2(logN)1/2(log logN)3/2) time on a pointer machine, and in O(N2(log logN)2) time on a word
RAM (here N = m = n denotes the number of edges in each curve). In short, the best known algorithms
for the stationary case, for both discrete and continuous variants, hover around the quadratic time bound.

1

Not surprisingly, the problems become much harder, and their solutions much less efficient, when trans-
lations (or other transformations) are allowed. For the problem of computing the minimum continuous
Fréchet distance under translation, Alt et al. [4] give an algorithm with O(m3n3(m+ n)2 log(m+ n)) run-
ning time, where m and n are the number of edges in the curves. They also give a (1 + ε)-approximation
algorithm for the problem, that runs in O(ε−2mn) time. That is, they compute a translation of one of the
curves relative to the other, such that the Fréchet distance between the resulting curves is at most (1+ε) times
the minimum Fréchet distance under any translation. In three dimensions, Wenk [14] showed that, given two
polygonal chains withm and n edges respectively, the minimum continuous Fréchet distance between them,
under any reasonable family of transformations, can be computed inO((m+n)3f+2 log(m+n)) time, where
f is the number of degrees of freedom for moving one chain relative to the other. So with translations alone
(f = 3), the minimum continuous Fréchet distance in R3 can be computed in O((m + n)11 log(m + n))
time, and when both translations and rotations are allowed (f = 6), the corresponding minimum continuous
Fréchet distance can be computed in O((m+ n)20 log(m+ n)) time.

The situation with the discrete Fréchet distance under translation is somewhat better, albeit still ineffi-
cient. Jiang et al. [10] show that, given two sequences of points in the plane, the minimum discrete Fréchet
distance between them under translation can be computed in O(m3n3 log(m+n)) time. For the case where
both rotations and translations are allowed, they give an algorithm that runs in O(m4n4 log(m + n)) time.
They also design a heuristic method for aligning two sequences of points under translation and rotation in
three dimensions. Mosig et al. [12] present an approximation algorithm that computes the discrete Fréchet
distance under translation, rotation and scaling in the plane, up to a factor close to 2, and runs in O(m2n2)
time.

Our results. Our algorithm improves the bound of Jiang et al. [10] by a nearly linear factor, with running
time O(m3n2(1 + log(n/m)) log(m+n)), assuming m ≤ n. It uses a 0/1-matrix M(P,Q) of size m×n,
whose rows (resp., columns) correspond to the points of P (resp., of Q). Assuming a stationary situation,
or, rather, a fixed translation of Q, an entry in the matrix is equal to 1 if and only if the distance between
the two corresponding points is at most δ, where δ is some fixed distance threshold. We use (i, j) to denote
an entry in the matrix that corresponds to the points pi and qj , and we use Mi,j to denote its value. The
discrete Fréchet distance is at most δ if and only if there is a row- and column-monotone path of ones in M
that starts at (1, 1) and ends at (m,n) (see Section 2 for a more precise definition).

We can partition the plane of translations into a subdivision Aδ with O(m2n2) regions, so that, for all
translations in the same region, the matrix M is fixed (for the fixed δ). We then traverse the regions of Aδ,
moving at each step from one region to a neighboring one. Assuming general position, in each step of our
traversal exactly one entry of M changes from 1 to 0 or vice versa. We present a dynamic data structure
Γ(M) that supports an update of an entry of M , in O(m(1 + log(n/m))) time, assuming m ≤ n,1 and then
re-determines whether there is a monotone path of ones from (1, 1) to (m,n), in O(1) additional time. If
we find such a monotone path in M , we have found a translation t (actually a whole region of translations2)
such that the discrete Fréchet distance between P and Q + t is at most δ. Otherwise, when we traverse
the entire Aδ and fail after each update, we conclude that no such translation exists. Using this procedure,
combined with the parametric searching technique [11], we obtain an algorithm for computing the minimum
discrete Fréchet distance under translation.

We reduce the dynamic maintenance of M to dynamic maintenance of reachability in a planar graph,
as edges are inserted and deleted to/from the graph. Specifically, we can think of (the 1-entries of) M as a
representation of a planar directed graph with N ≤ mn nodes. Each 1-entry of M corresponds to a node

1This is without loss of generality as we can change the roles of m and n by flipping M .
2For a critical value of δ, the region can degenerate to a single vertex of Aδ; see Sections 3 and 6 for details.

2

in the graph, and each possible forward move in a joint traversal is represented by an edge (see Section 2
for details). Then, determining whether there is a row- and column-monotone path of ones from (1, 1) to
(m,n) corresponds to a reachability query in the graph (from (1, 1) to (m,n)).

A data structure for dynamic maintenance of reachability in directed planar graphs was given by Sub-
ramanian [13]. This data structure supports updates and reachability queries in O(N2/3 logN) time, where
N is the number of nodes in the graph. Diks and Sankowski [8] improved this data structure, and gave a
structure that supports updates and reachability queries in O(N1/2 log3N) time.

We give a simpler and more efficient structure for maintaining reachability in M that exploits its special
structure. Our structure can update reachability information in M in O(m(1 + log(n/m))) time, assuming
m ≤ n, and answers reachability query (from (1, 1) to (m,n)) in O(1) time. In contrast, the data structure
of [8] applied in our context performs an update and a query in O((mn)1/2 log3(mn)) time. Using our
structure, we obtain an algorithm for computing the minimum discrete Fréchet distance under translation
that runs in O(m3n2(1 + log(n/m)) log(m+ n)) time (again, assuming m ≤ n).

To summarize the contributions of this paper are twofold: (a) The reduction of the problem of computing
the minimum discrete Fréchet distance to a dynamic planar directed graph reachability problem. (b) An
efficient data structure for this reachability problem. For m ≈ n our structure is faster than the general
reachability structure of [8] by a polylogarithmic factor, and when m� n the improvement is considerably
more significant (roughly by a factor

√
n/m). Moreover, our data structure is simpler than that of Diks and

Sankowski.

2 Preliminaries

We now define the (stationary) discrete Fréchet distance formally. Let P = (p1, . . . , pm) and Q =
(q1, . . . , qn) be the two planar sequences defined in the introduction.

For some fixed distance δ > 0 we define a 0/1-matrix Mδ(P,Q) formally as follows. The rows (resp.,
columns) of Mδ(P,Q) correspond to the points of P (resp., of Q) in their given order. An entry (i, j) of
Mδ(P,Q) is 1 if the distance between pi and qj is at most δ, and is 0 otherwise. we denote Mδ(P,Q) by M
when P and Q and δ are clear from the context.

The directed graph Gδ(P,Q) associated with P , Q and δ has a vertex for each pair (pi, qj) ∈ P ×Q and
an edge for each pair of adjacent ones in Mδ(P,Q). Specifically, we have an edge from (pi, qj) to (pi+1, qj)
if and only if both (i, j) and (i+1, j) are 1 in M , an edge from (pi, qj) to (pi, qj+1) if and only if both (i, j)
and (i, j+1) are 1 inM , and an edge from (pi, qj) to (pi+1, qj+1) if and only if both (i, j) and (i+1, j+1)
are 1 in M . we denote Gδ(P,Q) by G when P and Q and δ are clear from the context.

The (stationary) discrete Fréchet distance between P and Q, denoted by δ∗(P,Q), is the smallest δ > 0
for which (pm, qn) is reachable from (p1, q1) in Gδ. Informally, think of P and Q as two sequences of
stepping stones and of two frogs, the P -frog and the Q-frog, where the P -frog has to visit all the P -stones
in order and the Q-frog has to visit all the Q-stones in order. The frogs are connected by a rope of length
δ, and are initially placed at p1 and q1, respectively. At each move, either one of the frogs jumps from its
current stone to the next one and the other stays at its current stone, or both of them jump simultaneously
from their current stones to the next ones. Furthermore, such a jump is allowed only if the distances between
the two frogs before and after the jump are both at most δ. Then δ∗(P,Q) is the smallest δ > 0 for which
there exists a sequence of jumps that gets the frogs to pm and qn, respectively.

The problem of computing the minimum discrete Fréchet distance under translation, as reviewed in the
introduction, is to find a translation t such that δ∗(P,Q+ t) is minimized.

We say that an entry (i, j) of M is reachable from an entry (k, l), with k ≤ i, l ≤ j, if (pi, qj) is

3

reachable from (pk, ql) in G. A path from (pk, ql) to (pi, qj) in G corresponds to a (weakly) row-monotone
and column-monotone sequence of ones in M connecting the one in entry (k, l) to the one in entry (i, j).
This is sequence consists of three kinds of moves: 1) upward moves between entries of the form (r, s) to
(r + 1, s) in which the P -frog moves from pr to pr+1, 2) right moves between entries of the form (r, s) to
(r, s + 1) in which the P -frog moves from qs to qs+1, and 3) diagonal moves between entries of the form
(r, s) to (r + 1, s + 1) in which the P -frog moves from qs to qs+1 both frogs move simultaneously — the
P -frog from pr to pr+1, and the Q-frog from qs to qs+1. See Figure 1. We call such a monotone sequence
of ones in M a path in M from (k, l) to (i, j). To determine whether δ∗(P,Q) ≤ δ, we need to determine
whether there is such a path in M that starts at (1, 1) and ends at (m,n). We say that an entry (i, j) of M is
reachable if there is a path from (1, 1) to (i, j).

We denote the concatenation of two paths π1, π2 by π1 · π2, assuming that the last entry of π1 is the first
entry of π2; this entry appears only once in the concatenation.

q1 q2 q3 q4 q5 q6 q7 q8 q9q10q11q12

p1
p2
p3
p4
p5
p6
p7
p8

1 1 1

1

1 1 1 1 1

1

1 1

1

1

1

1

1 1

1

1

1 1 1

1 1

1

1 1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

M

q1 q2 q3 q4 q5 q6 q7 q8 q9q10q11q12

p1
p2
p3
p4
p5
p6
p7
p8

1 1 1

1

1 1 1 1 1

1

1 1

1

1

1

1

1 1

1

1

1 1 1

1 1

1

1 1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

(a) (b)

Figure 1: (a) A reachability path from (4, 3) to (7, 7). (b) A reachability path from (1, 1) to (8, 12).

We use a decomposition of M into blocks. A block is a submatrix of M that corresponds to contiguous
subsequences P ′ and Q′ of P and Q, respectively. We denote by M(P ′, Q′) the block of M(P,Q) formed
by P ′ and Q′. Consider a block M(P ′, Q′) of M(P,Q). Let p− (resp., p+) denote the first (resp., last)
point of P ′ and let q− (resp., q+) denote the first (resp., last) point of Q′. We call the entries of M(P ′, Q′)
corresponding to {p−} ×Q′ ∪ P ′ × {q−} the input boundary of M(P ′, Q′), and denote it by M(P ′, Q′)−

(the common entry corresponding to {p−}×{q−} appears only once in the boundary). Similarly, we call the
entries ofM(P ′, Q′) corresponding to {p+}×Q′∪P ′×{q+} the output boundary ofM(P ′, Q′), and denote
it by M(P ′, Q′)+ (with a similar suppression of the duplication of the common element {p+} × {q+}).
Note that there is a two-entry overlap between the input and output boundaries. We enumerate the entries
of M(P ′, Q′)− by first enumerating the entries of {p−} × Q′ from right to left (i.e., backwards) and then
the remaining entries of P ′×{q−} from bottom to top (forward). We enumerate the entries of M(P ′, Q′)+

by first enumerating the entries of P ′ × {q+} from bottom to top (forward) and then the remaining entries
of {p}+ × Q′ from right to left (backwards). Informally, M(P ′, Q′)− is enumerated in “clockwise” order,
while M(P ′, Q′)+ is enumerated in “counterclockwise” order; see Figure 2. For two entries i, j of this
enumeration of an input or output boundary B of M(P ′, Q′), we use [i, j] to denote the sequence of entries
(i, i+ 1, . . . , j) of B.

We also use the following definitions. We call the entries corresponding to P ′ × {q−} the vertical
input boundary of M(P ′, Q′), and denote it by M(P ′, Q′)−. We call the entries corresponding to P ′ ×
{q+} the vertical output boundary of M(P ′, Q′), and denote it by M(P ′, Q′) +. That is, M(P ′, Q′)− and
M(P ′, Q′) + are the vertical parts of M(P ′, Q′)− and M(P ′, Q′)+, respectively. We enumerate the entries
of each vertical boundary from bottom to top.

4

q1 q2 q3 q4 q5 q6 q7 q8 q9q10q11q12

p1
p2
p3
p4
p5
p6
p7
p8

1 1 1

1

1 1 1 1 1

1

1 1

1

1

1

1

1 1

1

1

1 1 1

1 1

1

1 1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1

1 1

1

1

1

23456

7

8

8 7 6 5 4

3

2

output-boundary M(P ′, Q′)+

input-boundary M(P ′, Q′)−

M(P ′, Q′)
M 9

1

1

(a) (b)

Figure 2: (a) A (highlighted) block M(P ′, Q′) of M(P,Q) , where P ′ = (p5, p6, p7, p8) and Q′ = (q7, q8, . . . , q12).
(b) The input boundary M(P ′, Q′)− and the output boundary M(P ′, Q′)+ of M(P ′, Q′) are marked, with the order-
ings of their elements.

3 The subdivision of the plane of translations

We first consider the corresponding decision problem. That is, given a value δ > 0, we wish to decide
whether there exists a translation t ∈ R2 such that δ∗(P,Q+ t) ≤ δ.

For a point x ∈ R2, let Dδ(x) be the disk of radius δ centered at x. Given two points pi ∈ P and
qj ∈ Q, consider the disk Dδ(pi− qj), and notice that t ∈ Dδ(pi− qj) if and only if ‖(pi− qj)− t‖ ≤ δ (or
‖pi− (qj + t)‖ ≤ δ). That is, Dδ(pi− qj) is precisely the set of translations t for which qj + t is at distance
at most δ from pi.

We construct the arrangement Aδ = Aδ(P,Q) of the disks in D = {Dδ(pi − qj) | (pi, qj) ∈ P × Q}.
We assume general position of the points. That is, we assume that (a) no more than two boundaries of these
disks intersect in a common vertex ofAδ, and (b) no pair of the disks are tangent to each other. Nevertheless,
such a degeneracy can arise when δ is a critical value (see Section 6 for details about critical values of δ
that arise during the optimization procedure), but we assume that at most one such degeneracy can happen
for a given δ. Since the number of disks is mn, the combinatorial complexity of Aδ is O(m2n2). Let f be
a face of Aδ of any dimension 0, 1 or 2 (by convention, f is assumed to be relatively open), and let t ∈ f be
a translation. Then, for points pi ∈ P, qj ∈ Q, qj + t is at distance at most δ from pi if and only if the disk
Dδ(pi − qj) contains f (otherwise, the disk is disjoint from f). Since this holds for every t ∈ f , it follows
that f corresponds to a unique pairwise-distances matrix M(P,Q+ t), for any t ∈ f . We denote this matrix
by M(P,Q+ f), for short.

The setup just described leads to the following naive solution for the decision problem. Construct
the arrangement Aδ for the given distance δ, and traverse its faces. For each face f ∈ Aδ, form the
corresponding pairwise-distances matrix M(P,Q+ f), and solve the (stationary) discrete Fréchet distance
decision problem for P and Q+ f using a straightforward dynamic programming on M(P,Q+ f) (or the
more sophisticated slightly subquadratic algorithm of Agarwal et al. [1]). If δ∗(P,Q+f) ≤ δ for some face
f , we conclude that there exists a translation t such that δ∗(P,Q+ t) ≤ δ (any translation t ∈ f would do).
If the entire arrangement Aδ is traversed and no face f of Aδ satisfies δ∗(P,Q+ f) ≤ δ, we determine that
δ∗(P,Q + t) > δ for all translations t ∈ R2. The complexity of Aδ is O(m2n2), and solving the discrete
Fréchet distance decision problem for each face ofAδ takes O(mn) time (or slightly less, as in [1]). Hence,
the solution just described for the decision problem takes (slightly less than) O(m3n3) time.

Jiang et al. [10] used an equivalent solution for the decision problem, that takes the same asymptotic
running time. Rephrasing their procedure in terms ofAδ, they test whether δ∗(P,Q+ t) ≤ δ for translations
t corresponding to the vertices of Aδ, and over an additional set of mn translations, one chosen from the

5

boundary of each disk. The correctness of this approach follows by observing that if f is a face of Aδ and t
is any point on ∂f , then all the 1-entries of M(P,Q+ f) are also 1-entries of M(P,Q+ t), so it suffices to
test the vertices of f , or, if f has no vertices, to test an arbitrary point t ∈ ∂f . We will use this observation
in our implementation of the optimization procedure.

Our naive solution is similar to the algorithm of Jiang et al. [10], in the sense that they both discretize
the set of possible translations. However, our solution is more suitable for the improvement of this naive
bound, that we present in Section 5, since it allows us to traverse the set of possible translations in a manner
that introduces only a single change in M(P,Q + f), when we move from one face f of translations to a
neighboring one.

To exploit this property we need a data structure that maintains reachability data for M , and updates
it efficiently after each change. We present this structure in two stages. First, in Section 4, we present a
compact reachability structure for blocks of M(P,Q + f), which is the main building block of the overall
structure. Then, in Section 5, we present the overall data structure, and show how to use it to improve the
naive solution sketched above by a nearly linear factor.

4 Compact representation of reachability in a block

Let B be a block of M = M(P,Q + f) of size r × c, and suppose that we have already computed the
reachable entries ofB− and we then wish to compute the reachable entries ofB+. If the entries of the block
are given explicitly, this can be done in O(rc) time using dynamic programming (or slightly faster using the
algorithm of [1]). Our goal in this section is to design a data structure, that we denote as Φ(B), that allows
us to compute the reachable entries of B+ from the reachable entries of B−, in O(r + c) time. The overall
data structure itself is constructed recursively from these block structures (see Section 5 for details), and
implicitly accesses all the entries of B. The advantage of using this block decomposition is that updating
the structure can be done more efficiently.

BB−

B+
σ(i) σ(j)

π(e, σ(i))

e
π(e, σ(j))π(j, e)

π(i, e)

j

i

· ·
·

3

2

123

··· 1

1

B

B− B+

2

3

· ·
·

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

11

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

σA(1)

σZ(1)

σA(i)

σA(1)

σZ(i)

σA(j)

σZ(j)

i

1j

3 112

(a) (b)

Figure 3: (a) Two entries i, j ofB− and two entries σ(i) and σ(j) ofB+ that are reachable from i and j, respectively.
Since i < j and σ(i) > σ(j), σ(j) is reachable also from i, and σ(i) is reachable also from j. (b) The intervals
[σA(k), σZ(k)], for any 1-entry k of B−, are either disjoint or overlap in a common subinterval. Neither of these
intervals can strictly contain both endpoints of the other. These intervals are defined (and shown in the figure) only for
1-entries of B−.

6

Observation 4.1. LetB be a block ofM and let i, j be two entries ofB− such that j > i (in the “clockwise”
order defined in Section 2). Let σ(i) be an entry of B+ that is reachable from i, and let σ(j) be an entry of
B+ that is reachable from j. If σ(j) < σ(i) (in the corresponding “counterclockwise” order) then σ(j) is
also reachable from i, and σ(i) is also reachable from j.

Proof. See Figure 3(a). Since σ(i) is reachable from i, there is a (monotone) path π(i, σ(i)) from i to σ(i) in
M . Similarly, since σ(j) is reachable from j, there is a (monotone) path π(j, σ(j)) from j to σ(j). Since i <
j and σ(j) < σ(i), π(i, σ(i)) must cross π(j, σ(j)) (i.e., there exists a 1-entry e ∈ π(i, σ(i)) ∩ π(j, σ(j)).
Hence, π(i, σ(i)) can be decomposed into two subpaths π(i, e), π(e, σ(i)) such that π(i, σ(i)) = π(i, e) ·
π(e, σ(i)), and π(j, σ(j)) can be similarly decomposed as π(j, σ(j)) = π(j, e) · π(e, σ(j)). As a result, the
paths π(i, σ(j)) = π(i, e) · π(e, σ(j)) and π(j, σ(i)) = π(j, e) · π(e, σ(i)) are also (monotone) paths, and
the claim follows.

Corollary 4.2. Let B be a block of M , let i be an entry of B− and let σ1(i), σ2(i) be two entries in B+

that are both reachable from i, with σ1(i) < σ2(i). If there exists an entry σ(j) that is reachable from some
j ∈ B−, such that σ1(i) < σ(j) < σ2(i), then σ(j) is also reachable from i.

Proof. By Observation 4.1, if i < j, then σ(j) is reachable from i since σ(j) < σ2(i). If i > j, then σ(j)
is reachable from i since σ1(i) < σ(j).

The corollary is applied as follows. Let i be an entry of B−, let σA(i) and σZ(i) denote the first and
last entries in B+ that are reachable from i. (Note that for these entries to be defined, the value of the entry
i must be 1. Symmetrically, the values of both σA(i) and σZ(i), if defined, must be equal to 1.) Then the
interval [σA(i), σZ(i)] can only contain entries of the following three types.

1. 1-entries that are reachable from i.

2. 0-entries.

3. 1-entries that are not reachable from i, nor from any other entry of B−.

In other words, [σA(i), σZ(i)] cannot contain 1-entries that are reachable from some j in B− and not
from i.

Corollary 4.3. Let B be a block of M and let i and j be two entries of B− such that j > i. Then
σA(j) ≥ σA(i) and σZ(j) ≥ σZ(i).

Proof. Assume to the contrary that σA(i) > σA(j). Then, according to Observation 4.1, σA(j) is reachable
from i. Hence, σA(i) ≤ σA(j), a contradiction. Similarly, if σZ(j) < σZ(i), then Observation 4.1 implies
that σZ(i) is reachable from j. Hence, σZ(j) ≥ σZ(i), contradiction.

In other words, [σA(i), σZ(i)] and [σA(j), σZ(j)] can be either disjoint or overlap in a common subinter-
val, but they cannot be properly nested inside one another (that is, neither of these intervals can contain both
endpoints of the other in its “interior”). Note, however, that one interval can weakly contain the other. That
is, if one interval contains the other, then either σA(i) = σA(j) or σZ(i) = σZ(j), or both. See Figure 3(b).

Let B be a block of M of size r × c. We construct a data structure Φ(B) for B, which stores the
following information. (Here we only specify the structure; its construction is detailed in Section 5.)

1. For each 1-entry i of B− we store

(a) the first entry σA(i) of B+ that is reachable from i, and

7

(b) the last entry σZ(i) of B+ that is reachable from i.

2. For each 1-entry j of B+ we store

(a) a flag f(j) indicating whether j is reachable from some entry of B−.

(b) a list LA(j) of the 1-entries i ∈ B− such that σA(i) = j, and

(c) a list LZ(j) of the 1-entries i ∈ B− such that σZ(i) = j.

Lemma 4.4. Given the data structure Φ(B) for a block B, and given the entries of B− that are reachable
from (1, 1), we can determine, in O(r + c) time, the entries of B+ that are reachable from (1, 1).

Proof. We go over the reachable 1-entries ofB− in order. For each such entry i, we go over the entries in the
interval I(i) = [max{σZ(i−), σA(i)}, σZ(i)] of B+, where i− is the previous reachable 1-entry of B− (for
the first reachable entry i of B−, I(i) = [σA(i), σZ(i)] and i− is undefined). Note that, by Corollary 4.3,
max{σZ(i−), σA(i)} ∈ [σA(i), σZ(i)] so I(i) ⊆ [σA(i), σZ(i)]. (The entries of [σA(i), σZ(i)] that precede
max{σZ(i−), σA(i)} were already processed when we went over I(i−) or over intervals associated with
earlier indices.)

For each 1-entry j of I(i) that is reachable from some entry of B− (according to the flag f(j)), we
determine that j is reachable also from (1, 1). Since we traverse each interval [σA(i), σZ(i)] starting from
max{σZ(i−), σA(i)}, the internal portions of the subintervals that we inspect are pairwise disjoint, implying
that the running time is linear in r + c. We omit the straightforward proof of correctness of this procedure.

5 Dynamic maintenance of reachability in M(P,Q+ f)

We present a data structure, that uses the compact representation of reachability in a block of the previous
section, to support an update of a single entry of M in O(m(1 + log(n/m))) time, assuming m ≤ n. We
present this data structure in two stages. First, in Section 5.1, we show how to support an update of a single
entry in O(m) time, in the case where M is a square matrix of size m × m. Then, in Section 5.2, we
generalize this data structure to support an update of a single entry in O(m(1 + log(n/m))) time, in the
general case where M is an m × n matrix with m ≤ n (the case m ≥ n is treated in a fully symmetric
manner).

In Section 5.3, we describe the overall decision procedure that improves the naive solution sketched in
Section 3, using this dynamic data structure.

5.1 A dynamic data structure for reachability maintenance in a square matrix

We store the reachability data of M(P,Q + f) (of some arbitrary face f from which we start the traversal
of the arrangement Aδ) in a so-called decomposition tree Γ, by halving P and Q alternately. That is, the
root v of Γ corresponds to the entire matrix M(P,Q + f) and we store at v the reachability information
Φ(M(P,Q + f)), as described in the previous section. (The actual construction of the reachability data,
at all nodes of Γ, is done bottom-up, as described below.) In the next level of Γ we partition P into two
subsequences P1, P2, of at most bm/2c + 1 points each, such that the last point of P1 is the first point
of P2, and obtain a corresponding “horizontal” partition of M(P,Q + f) into two blocks M(P1, Q + f),
M(P2, Q + f), each of size at most (bm/2c + 1) ×m, with a common “horizontal” boundary. We create
two children v1, v2 of v and store at each vi the reachability information Φ(M(Pi, Q+ f)), for i = 1, 2. In

8

1

By =M(Pv ∪ Pw, Qy)

Bv =M(Pv, Qy)

Bw =M(Pw, Qy)

B−
w

B−
v

B+
w

B+
v

j

k

i

σv(k)

σw(j)

σy(i)

Bw =M(Pw, Qy)

B−
w

B−
v

B+
w

B+
v

σy
Z(`) σy

A(`)

σv
Z(`) σv

A(`)

`

(a) (b)

Figure 4: A block By = M(Py, Qy), corresponding to a node y of Γ, is composed of the blocks of the children
v, w of y. The block Bv = M(Pv, Qv) corresponding to the left child v lies below the block Bw = M(Pw, Qw) that
corresponds to the right child w, and we have Py = Pv ∪ Pw and Qy = Qv = Qw.
(a) σy(i) and σy(k) are examples of reachable entries of B+

y and we have σy(i) = σw(σv(i)) and σy(k) = σv(k).
σw(j) is an entry of B+

w that is reachable from B−w , but it is not a reachable entry of B+
y (from B−y) since all the paths

in By that lead to σw(j) go through entries of B+
v that are not reachable from B−v .

(b) σy
A(`) = σw

A(σv
A(`)) and σy

Z(`) = σw
Z (σv

Z(`)).

the next level of Γ, we partition Q into two subsequences Q1, Q2, of at most bm/2c + 1 points each, such
that the last point of Q1 is the first point of Q2, and obtain a corresponding “vertical” partition of each block
M(Pi, Q+ f), i ∈ {1, 2}, into two blocks M(Pi, Qj + f), j ∈ {1, 2}, each of size at most (bm/2c+ 1)×
(bm/2c + 1), with a common vertical boundary. We construct four respective grandchildren, and store the
corresponding reachability structures Φ(M(Pi, Qj+f)) at these nodes. We continue recursively to partition
each block by halving it horizontally or vertically, alternately, in the same manner, until we reach blocks of
size 2 × 2. For each node v of Γ, let Pv and Qv denote the subsequences of P and Q that form the block
M(Pv, Qv + f) that is associated with v. To simplify the notation, we denote Φ(M(Pv, Qv + f)) as Φv, for
each node v.

The reachability data Φv at the nodes v of Γ is computed by a bottom-up traversal of Γ, starting from the
leaves. The construction of Φ(M(Pv, Qv + f)) at a leaf v is trivial, and takes constant time. The following
lemma provides an efficient procedure for constructing the reachability data at inner nodes of Γ.

Lemma 5.1. Let y be an inner node of Γ with left and right children v andw, where the blocks stored at v, w
have a common horizontal boundary. Given the reachability data Φv,Φw, the data Φy can be computed in
O(|Py| + |Qy|) time. An analogous statement holds when the common boundary of the children blocks is
vertical.

Proof. Note that in the setup of the lemma, we have Qy = Qv = Qw and Py = Pv ∪ Pw. By construction,
M(Pv, Qy) lies below M(Pw, Qy). Denote M(Pv, Qy) by Bv, M(Pw, Qy) by Bw, and M(Py, Qy) by By.
For each entry i of B−y , denote by σyA(i) (resp., σyZ(i)) the first (resp., last) entry of B+

y that is reachable
from i. We also use σy(i) to denote an entry of B+

y that is reachable from i in By. Analogous notations are
used for the children blocks Bv, Bw. See Figure 4.

We first copy the reachability information from the boundaries of Bv and Bw to the boundary of By
(except for the “interior” portion B∗vw of the common boundary B+

v ∩ B−w of Bv and Bw, which is not a

9

boundary of By). The data for the 1-entries on the left boundary of Bw (which are of type 1 in the definition
of Φ) is still valid, since the reachability paths of By that start at these entries are fully contained in Bw.
Similarly, the data for the 1-entries on the right boundary of Bv (which are of type 2) is still valid, since
the reachability paths of By that end at these entries are fully contained in Bv. We thus need to determine
the reachability information from the 1-entries of the input boundary B−v of Bv to the entries of the output
boundary B+

w of Bw, and merge it with the already available data, to get the complete structure Φ at y.
First note that an entry j of B+

w that is reachable from B−w may now become unreachable from B−y .
This happens if all the reachability paths in By to j go through entries on B∗vw that are not reachable from
B−v . See Figure 4(a). We thus need to turn the flag f(j) of such entries to false. To do this, we go over the
entries of B+

w in order, and maintain a queue Q that satisfies the invariant that, when we are at an entry j of
B+
w , Q contains all the entries i of B−w that are reachable from B−y , such that j is reachable from i. That is,
Q contains all the entries i ∈ B∗vw that are reachable from B−v such that j is reachable from i, and all the
entries i ∈ B−w \ B∗vw (that is, the left side of B−w) such that j is reachable from i. We start with an empty
queue. For each 1-entry j of B+

w we first go over the list LA(j) (of Φw), and for each element i in LA(j)
that is in B∗vw, we check if it is reachable from B−v (using the flag f(i) from Φv). If it is, we put it in Q.
We also add to Q each element in LA(j) that is in B−w \ B∗vw. If Q is empty, there is no reachability path
from B−y to j and we set f(j) to be false. We then go over the list LZ(j) (of Φw) and remove from Q each
element in LZ(j) that is in Q. This traversal takes O(|Py|+ |Qy|) time, since each element of B−w appears
at most once in the lists LA and at most once in the lists LZ . The correctness follows from the invariant that
when we go over an entry j ∈ B+

w , all the entries of B−w that j is reachable from, and that are reachable
from B−y , are in Q. The invariant is maintained correctly because each time that an interval [σA(i), σZ(i)]
of an entry i ∈ B−w begins (and i is reachable from B−y), i is inserted into Q, and when the interval ends, i
is removed from Q, so i is in Q for all entries j that are reachable from i. In conclusion, if Q is empty, j is
not reachable from B−y and the flag f(j) can be turned false. Otherwise, i is reachable from B−y .

We now update the intervals [σA(i), σZ(i)] of the entries i ∈ B−v and, in correspondence, the lists
LA(σ(i)), LZ(σ(i)) of B+

w (where σ(i) is any entry of B+
w that is reachable from i). Consider a 1-entry i

of B−v and consider an entry σv(i) in B∗vw; that is, σv(i) is a 1-entry in [σvA(i), σvZ(i)] that is reachable from
i. By transitivity, the entries σw(σv(i)) of B+

w that are reachable from σv(i) are also reachable from i. We
update [σA(i), σZ(i)] according to this rule, as follows (see Figure 4(b)). We set σyA(i) = σwA(σvA(i)), for
each entry i ∈ B−v such that σvA(i) ∈ B∗vw; correspondingly, we also add i to LA(σyA(i)). Similarly, for
each entry i ∈ B−v such that σvZ(i) ∈ B∗vw, we set σyZ(i) = σwZ (σvZ(i)) and we add i to LZ(σyZ(i)). (Recall
that if σvA(i) (or σvZ(i)) is in B+

v \B∗vw, this reachability information was already copied to Φy and that the
reachability information for B−w \ B∗vw was also copied to Φy.) Clearly, for each entry i ∈ B−y , no entry of
B+
y \ [σvA(i), σvZ(i)] is reachable from i. This traversal takes O(|Py|+ |Qy|) time.

Finally, when we copied information from B+
w to B+

y , we also copied the lists LA and LZ that may
include entries of B∗vw. Since B∗vw is not a part of the boundary of By, we need to remove this information
from the lists LA and LZ of B+

y . We thus go over the entries of B∗vw. For each entry e of B∗vw, we remove
e from LA(σwA(e)) and from LZ(σwZ (e)). Clearly, this traversal takes O(|Qy|) time.

We now show how to use Lemma 5.1 to construct Γ in O(m2) time and to update it, when a single entry
changes, in O(m) time. We also show how to determine, using Γ, whether (m,m) is reachable from (1, 1)
in constant time after the update.

Lemma 5.2. (a) Given a square matrix M , the decomposition tree Γ (including the reachability data at its
nodes) can be constructed from scratch in O(m2) time. (b) If a single entry of M is updated, then Γ can be
updated in O(m) time. (c) Given Γ, we can determine whether (m,m) is reachable from (1, 1) in constant

10

time.

Proof. (a) We construct Γ in a bottom-up manner, as prescribed in Lemma 5.1. For the blocks at the leaves,
the reachability data is computed in brute force, in O(1) time per block, and at each inner node y, the data is
computed from the data at its children in time O(|Py|+ |Qy|), using Lemma 5.1; we refer to |Py|+ |Qy| as

the size of the block By at y. The sizes of the blocks at levels 2j − 1 and 2j is O
(m

2j

)
, and the number of

these blocks is O(22j). The height of Γ is dlogme. The cost of the overall construction of Γ is proportional
to the sum of the sizes of its blocks (this also holds at the leaf level), which is thus

O

dlogme∑
j=0

22j · m
2j

 = O

m dlogme∑
j=0

2j

 = O
(
m2
)
.

(b) The main observation here is that to update Γ when an entry e of M changes, it suffices to update the
reachability data along the single path of Γ of those nodes y for which e ∈ By. (Actually, because of the
overlap between block boundaries, there are two such paths that meet at the unique node y for which e
belongs to the “interior” of the common boundary of the blocks of its children.) The reachability data of the
nodes along this path is constructed again from scratch in a bottom-up manner, using Lemma 5.1. The cost
of the updates of these blocks is proportional to the sum of their sizes, which is

O

dlogme∑
j=0

m

2j

 = O(m).

(c) To determine whether (m,m) is reachable from (1, 1), we simply check in the reachability data structure
Φ(M) of the root of Γ whether (m,m) is a 1-entry that belongs to [σA((1, 1)), σZ((1, 1))] and the flag
f((m,m)) is true.

5.2 A generalized structure for arbitrary matrices

We next describe a modified variant of the structure for the case wherem and n are unequal. In what follows
we assume, as above and without loss of generality, that m ≤ n.

We first partition M into k = O(n/m) square blocks B1, B2, . . . , Bk, of size m × m each such that
consecutive blocks overlap in a single column. (The last block may be of smaller width, but we handle it
in the same manner as the other blocks; it is easy to show that the bounds of Lemma 5.2 still hold.) We
build the decomposition tree and the associated reachability data for each of these blocks, as in Section 5.1;
denote the structure for block Bi by Γ̄i, for i = 1, . . . , k.

We now combine the structures Γ̄1, . . . , Γ̄k into a single global structure Γ̄. For this, we construct a
balanced binary tree T , with k leaves v1, . . . , vk, where vi, for i = 1, . . . , k, corresponds to Bi and stores
Γ̄i. Each node v of T represents a block Bv that is the concatenation of the blocks stored at the leaves of
the subtree rooted at v. Since each leaf block spans all the rows of M , the common boundary of any pair of
consecutive blocks consists only of a full single column of M . The same holds at any node y of T , with left
child v and right-child w. That is, the common boundary Bvw := B+

v ∩B−w between Bv and Bw is vertical,
and consists of a full single column of M .

We claim that we can merge the reachability structures Φv of Bv and Φw of Bw into the structure Φy of
By in O(m) time, instead of O(|By|) = O(m + |Qy|) time (as was the cost in the preceding subsection),
which can be much larger. The main observation that facilitates this improvement is that there is no need to

11

maintain the reachability data Φv at the horizontal portions of the boundary of any of the blocks Bv. This
follows from the obvious property that any path π from the initial entry (1, 1) to any entry (i, j) in any leaf
block reaches (i, j) by crossing all the vertical boundaries B12, B23, . . . that delimit all the preceding leaf
blocks, and the portion πl of π within each of the preceding blocks Bl connects an entry on the left vertical
boundary of Bl to an entry on its right vertical boundary. Note that πl can “crawl” along the lower or upper
boundary of Bl, but to exit Bl it has to cross the vertical boundary, possibly through its entries in row 1 or
row n.

Figure 5 is an illustration of an inner block By of Γ̄ that is composed of a left block Bv and a right block
Bw.

By = M(P,Qv ∪Qw)

Bv = M(P,Qv) Bw = M(P,Qw)

B̄−
y = B̄−

v B̄+
y = B̄+

w

Bvw = B+
v ∩B−

w =

j

k

ii

j

k

=

= B̄+
v = B̄−

w

Figure 5: A block By = M(Py, Qy), corresponding to a node y of Γ̄, is composed of the blocks Bv = M(Pv, Qv)
and Bw = M(Pw, Qw) of the children v, w of y, with v being the left child and w being the right child. We have
Py = Pv = Pw = P and Qy = Qv ∪Qw.

We therefore use the same reachability data structure Φv at v as defined in the previous subsection,
except that we limit the input and output domains of its maps to the vertical boundaries only. Recall our
notation from Section 2, where the left (resp., right) vertical boundary of a block B is denoted as B̄− (resp.,
B̄+). Specifically, denoting the modified structure as Φ̄v = ¯Φ(Bv), it stores the following items.

1. For each 1-entry i of B̄−v we store

(a) the first entry σ̄A(i) of B̄+
v that is reachable from i, and

(b) the last entry σ̄Z(i) of B̄+
v that is reachable from i.

2. For each 1-entry j of B̄+
v we store

(a) a flag f̄(j) indicating whether j is reachable from some entry of B̄−v .

(b) a list L̄A(j) of the 1-entries i ∈ B̄−v such that σ̄A(i) = j, and

(c) a list L̄Z(j) of the 1-entries i ∈ B̄−v such that σ̄Z(i) = j.

In other words, Φ̄(Bv) is a constrained variant of Φ(Bv), obtained by replacingB−v andB+
v by B̄−v and B̄+

v ,
respectively. The structure Φ̄v of the root v of a child Γ̄i of Γ̄ is obtained from Φv by first setting, for each
entry i of B̄−v for which σA(i) is in B̄+

v and σZ(i) is not in B̄+
v , σZ(i) to be the last reachable entry k of

B̄+
v , then updating LZ(k) accordingly, and finally ignoring the horizontal parts of the boundaries of Bv and

deleting the data regarding them from the lists LA and LZ of entries of B̄+
v .

12

We next claim that the modified structures Φ̄y are sufficient for obtaining reachability data for the blocks
of Γ̄, in the precise sense stated below, and that the structure Φ̄y at an inner node y of Γ̄ can be obtained from
the structures at the children of y in O(m) time. Concretely, we have the following variants of Lemmas 4.4
and 5.1.

Lemma 5.3. Given the data structure Φ̄(B) for a block B of size r × c., and given the entries of B̄− that
are reachable from (1, 1), we can determine, in O(r) time, the entries of B̄+ that are reachable from (1, 1).

Lemma 5.4. Let y be an inner node of Γ̄ with left and right children v and w. Given the reachability data
Φ̄(M(Pv, Qv)), Φ̄(M(Pw, Qw)), the data Φ̄(M(Py, Qy)) can be computed in O(m) time.

The proof is essentially identical to those of Lemma 4.4 and Lemma 5.1, except that we restrict the
domains and the images of each of the maps (i.e., σA, σZ , f, LA, and LZ) to the vertical portions of the
boundaries. This is justified using the observation made earlier that all the reachability paths traverse only
vertical boundaries of the relevant blocks — those that are stored at Γ̄, from its leaves up, which span the
entire range P of rows of M . Since we only traverse vertical boundaries, the cost of constructing Φ̄y from
Φ̄v and Φ̄w is O(m). 2

The following lemma extends Lemma 5.2.

Lemma 5.5. (a) Given the matrix M , Γ̄ can be constructed in O(mn) time. (b) If a single entry of M is
updated, then Γ̄ can be updated in O(m(1 + log(n/m))) time, assuming m ≤ n. (c) Given Γ̄, we can
determine whether (m,n) is reachable from (1, 1) in constant time.

Proof. (a) We construct the structure Γ̄i for each block Bi, and extract Φ̄vi from it. We then construct Φ̄y

for each inner node y ∈ T by merging the corresponding data structures of the children of y in O(m) time.
We obtain Γ̄ at the root of T . Since T is of size O(n/m) and we spend O(m) time at each block, it takes
O(n) time to construct Γ̄ from the leaf structures Γ̄i for i = 1, . . . , k. The cost of constructing each Γ̄i,
i = 1, . . . , k = dn/me, is O(m2), by Lemma 5.2, for a total of O(km2) = O(mn). It follows that that the
overall construction of Γ̄ takes O(n+mn) = O(mn) time.

(b) To update Γ̄ when an entry e ofM changes we first need to update the reachability structures along a path
in the structure of the block Bi containing e (If e is in the common column of two blocks we update both
structures.). This takes O(m) time by Lemma 5.2. Once we have the updated Γ̄i we update the reachability
structures along the path π of T of those nodes y for which e ∈ By. (There are two such paths if e is in
the common column of two consecutive blocks.) Since the depth of T is O(log(n/m)) and we spend O(m)
time to reconstruct the structure at each node of T , we update T in O(m(1 + log(n/m))) time.

(c) As in Lemma 5.2, to determine whether (m,n) is reachable from (1, 1), we simply check in the reacha-
bility data structure Φ̄(M) of the root of Γ̄ whether (m,n) ∈ [σ̄A((1, 1)), σ̄Z((1, 1))] and the flag f̄((m,n))
is true.

5.3 The overall decision procedure

We now put together the pieces of the decision procedure. We construct the arrangement Aδ of the disks
Dδ(pi − qj) as in Section 3 in O(m2n2 log(m + n)) time. We pick an arbitrary (0-, 1-, or 2- dimensional)
face f0 of Aδ. f0 corresponds to a unique matrix M(P,Q + f0) and we construct the data structure Γ̄ of
Section 5.2 based on M(P,Q+ f0). We then perform a traversal of the entire arrangementAδ. In each step
of the traversal we move from a face f of Aδ to a neighbor face f ′ (both faces are of any dimension 0, 1, or
2). In this step, we either enter a single disk of Aδ or exit a single disk of Aδ. This corresponds to a change

13

in a single entry of M(P,Q + f). We update Γ̄ accordingly, in time O(m(1 + log(n/m))), and thereby
determine whether δ∗(P,Q+ f ′) ≤ δ. We continue in this manner till we process the entire arrangement. If
we encounter a face f along the traversal at which δ∗(P,Q + f) ≤ δ we report that the minimum distance
under translation is ≤ δ, and otherwise we report that the minimum distance is > δ. We thus obtain the
following intermediate result.

Theorem 5.6. Let P , Q be two sequences of points in R2 of sizes m and n, respectively and let δ > 0
be a parameter. Then the decision problem, where we want to determine whether there exists a translation
t ∈ R2 such that δ∗(P,Q+ t) ≤ δ, can be solved in O(m3n2(1 + log(n/m))) time, assuming that m ≤ n.

6 The optimization procedure

We now show how to use the decision procedure of Section 5 to compute the minimum discrete Fréchet
distance under translation. Assume without loss of generality that m ≤ n. As we increase δ, the disks
Dδ(pi − qj) expand, and their arrangement Aδ varies accordingly. Nevertheless, except for a discrete set of
critical values of δ, the combinatorial structure of Aδ does not change. That is, the pairs of intersecting disk
boundaries remain the same, all their intersection points remain distinct and vary continuously, and no pair
of disks are tangent to each other. Consequently, the representation ofAδ that we use, namely, a collection of
circular sequences of vertices, each containing the vertices ofAδ along some circle Cδ(pi− qj), for pi ∈ P ,
qj ∈ Q, sorted along the circle, remain unchanged. The critical values of δ, at which this representation of
Aδ changes qualitatively, are

1. The radii of the disks that have three points of P − Q = {pi − qj | pi ∈ P, qj ∈ Q} on their
boundaries.

2. The half-distances between pairs of points of P −Q.

There are O(m3n3) critical values (most of which are of type 1), so we cannot afford to enumerate them
and run an explicit binary search to locate the optimal value of δ among them.

Instead, we use the parametric searching technique of [11]. In general, using parametric searching can
be fairly complicated, since it is based on a simulation of a parallel version of the algorithm. However,
we only have to simulate, by a parallel algorithm, the part of the decision procedure that depends on (the
unknown value of) the optimum δ∗T = mint δ

∗(P,Q+ t). In our case, this portion is the construction ofAδ.
Instead of actually constructing Aδ, we first observe that it suffices to restrict our attention to vertices

of Aδ, in the sense that each face f of Aδ has a vertex ξ, such that all the 1-entries of M(P,Q + f) are
also 1-entries of M(P,Q + ξ) (the latter matrix can contain additional 1-entries), so it suffices to test for
reachability in the matrices M(P,Q + ξ) associated with vertices ξ of Aδ. (Technically, we add to the set
of vertices one additional point, say the rightmost point, on each disk boundary, to cater to faces that have
no real vertices.)

Hence, our parallel implementation of the algorithm will only simulate the construction of the sorted lists
of vertices along each of the circles Cδ(pi− qj). Recall that during the parametric searching simulation, we
collect comparisons that the decision procedure performs and that depend on δ, and resolve them. This is
done by finding the critical values of δ at which the outcome of some comparison changes, during a single
(simulated) parallel step of the algorithm and then by running a binary search through these critical values
of δ, guided by the decision procedure of Theorem 5.6. In this manner, we maintain a shrinking half-open
interval I = (α, β] of values of δ that contains δ∗T . Note that we have called the decision procedure at α
and it has determined that δ∗T > α. Then, as is easily seen, δ∗T must be at least as large as the first critical

14

value of δ within I (and it cannot be arbitrarily close to α). Assume that we have simulated the construction
of Aδ, and obtained a half-open interval range I = (α, β] of δ that contains δ∗T . That is, we know that
α < δ∗T ≤ β, and we know the sorted sequences of vertices of Aδ∗T along each circle Cδ∗T (pi − qj). None
of the comparisons that the decision procedure has performed has a critical value inside I , other than those
comparisons that have produced (α and) β. Hence the output representation of Aδ is fixed in the interior
of I . The rest of the algorithm, which constructs the structure Γ̄, traverses the vertex sequences along the
circles Cδ∗T (pi − qj), and dynamically updates the reachability data, is purely combinatorial, and does not
introduce new critical values (i.e., does not involve comparisons that depend on δ∗T), so there is no need to
run it at all. Since the decision procedure fails at α and succeeds at β, it follows that δ∗T = β.

It is thus sufficient to simulate, at the unknown δ∗T , an algorithm that

1. finds the intersection points of each circle Cδ∗T (pi − qj) with the circles {Cδ∗T (pk − ql) | pk ∈ P, ql ∈
Q}, other than itself, and

2. sorts, for each circle Cδ∗T (pi − qj), the intersection points that were found on its boundary in step 1,
along this boundary.

During the simulation we progressively shrink an interval I = (α, β] ⊆ R that is known to contain δ∗T . We
start with I = (0,∞].

We first obtain all the O(m2n2) critical values of type 2, sort them, and run an explicit binary search
among them guided by the decision procedure. (This part requires no parametric simulation.) As a re-
sult I is shrunk to an interval (α, β], where α, β are two consecutive critical values of type 2. This takes
O(m2n2 log(m+ n) +m3n2(1 + log(n/m)) log(m+ n)) = O(m3n2(1 + log(n/m)) log(m+ n)) time.
We can now accomplish step 1, because the property that a pair of circles Cδ(p − q), Cδ(p′ − q′) intersect
either holds for all δ ∈ (α, β) or does not hold for any such δ.

We then execute step 2. The task at hand is to sort, for each circle Cδ∗T (p0 − q0), the resulting fixed
set of intersection points along Cδ∗T (p0 − q0). For each pair Cδ∗T (p − q), Cδ∗T (p′ − q′) of such circles, the
order of the intersection points can change only at the radius δ̃ of the circumcircle of p0 − q0, p− q, p′ − q′.
We then simulate a parallel sorting procedure, to sort these intersection points along Cδ∗T (p0 − q0), and run
it in parallel over all these circles. We omit the (by now) routine details of this simulation (see, e.g., [3]
for similar application of parametric searching). They imply that we can simulate this sorting, for each
circle Cδ∗T (pi − qj), using O(mn) processors and O(log(mn)) = O(log(m+ n)) parallel steps (for a total
of O(m2n2) processors). Thus, for each parallel step, we need to resolve O(m2n2) comparisons, each of
which compares δ∗T to a critical circumradius of type 1. We run a binary search among these critical values
using the decision procedure. This takes O(m3n2(1 + log(n/m)) log(m + n)) time for each parallel step,
for an overall O(m3n2(1 + log(n/m)) log2(m + n)) time for O(log(m2n2)) = O(log(m + n)) steps. To
(slightly) improve this running time we use the improvement of Cole [7] which finds, for each parallel step,
the (weighted) median of the (suitably weighted) unresolved critical values involved in this step, and calls
the decision procedure only at this value, instead of using a complete binary search. This allows us to resolve
comparisons that contribute at least some fixed fraction of the total weight, while the other unresolved critical
values are carried over to the next step with their weights increased. Proceeding in this manner, we make
only one call to the decision procedure at each parallel step, and add only O(log(m + n)) parallel steps
to the whole procedure. We thus obtain an overall algorithm with O(m3n2(1 + log(n/m)) log(m + n))
running time.

In conclusion, we get the following main result of the paper.

15

Theorem 6.1. Let P , Q be two sequences of points in R2 of respective sizes m and n, where m ≤ n. Then
the minimum discrete Fréchet distance under translation between P andQ can be computed inO(m3n2(1+
log(n/m)) log(m+ n)) time.

Discussion. Our algorithm is composed of two main parts. The first part is the construction of the subdivi-
sion Aδ whose complexity is O(m2n2). The challenge here is either to argue that, in favorable situations,
the actual complexity of Aδ is o(m2n2), or be able to process only a portion of Aδ that has o(m2n2) com-
plexity. Here is a simple illustration of such an approach. Consider the case where P and Q are sampled
along a pair of c-packed curves, where a curve γ is c-packed if, for every disk D, the length of γ ∩D is at
most c times the radius of D. Assume also that the sampling is more or less uniform, so that the distance
between any pair of consecutive points of P or of Q is roughly some fixed value ∆. We may assume,
without loss of generality that p1 = q1. Consider the decision procedure with a given parameter δ, and
observe that if t is any translation for which δ∗(P,Q + t) ≤ δ then ‖t‖ ≤ δ. Therefore, for each pi ∈ P ,
the only points qj ∈ Q that can align with pi during a simultaneous traversal of P and Q + t, for any
such “good” translation t, are those at distance ≤ 2δ from pi. The assumptions on P and Q imply that the
number of such points is at most roughly 2δc/∆. That is, instead of constructing the entire arrangement
Aδ, it suffices to construct a coarser arrangement, involving only roughly 2cδm/∆ disks. Then, traversing
the coarser arrangement is done as before, where each update step (and the following reachability query)
cost O(m log(1 + log(n/m))) time, assuming that m ≤ n. This improves the running time of the decision
procedure to O

((
2cδ
∆

)2
m3(1 + log(n/m))

)
, assuming that m ≤ n and δ < ∆n

2c .
Given this decision procedure, we can solve the optimization problem using parametric searching. How-

ever, to ensure that the decision procedure does not become too expensive, we want to run it only with values
δ = O(δ∗T). This will become significant only when δ∗T ≤ δ0 := n∆

2c ; otherwise the running time will be
close to the running time of the algorithm of Section 6. Therefore, in the following we describe how to solve
the optimization problem assuming that δ∗T < δ0 (if the following procedure fails, we run the algorithm
of Section 6). We also assume, for now, that δ∗T > ∆ (we explain below how the case where δ∗T ≤ ∆ is
dealt with). We consider the interval (∆, δ0) that is assumed to contain δ∗T , and run an “exponential search”
through it, calling the decision procedure with the values δi = 2i ·∆, for i = 0, 1, 2, . . ., in order, until the
first time we reach a value δ′ = δi ≥ δ∗T (and δ′ < δ0). Note that the cost of running the decision procedure
at δ′ and at δ∗T differ by at most a factor of 4, so the cost of running the decision procedure at δ′ is asymptoti-
cally the same as at δ∗T . Moreover, since the running time bounds on the executions of the decision procedure
at δ1, . . . , δi form a geometric sequence, the overall cost of the exponential search is also asymptotically the
same as the cost of running the decision procedure at δ∗T . We then run the parametric searching technique
as above, with the constraint that δ∗T is at most δ′ (i.e., we set δ′ as the minimal β obtained so far). Hence,
from now on, each call to the decision procedure made by the parametric searching, will cost no more than
the cost of calling the decision procedure with δ′ (which is asymptotically the same as calling the procedure

with δ∗T). We thus obtain an overall algorithm with O
((

cδ∗T
∆

)2
m3(1 + log(n/m)) log(m+ n)

)
running

time. Note that, in the case where δ∗T ≤ ∆, after running the decision procedure with δ = ∆, we realize that
δ∗T ≤ ∆, and run the parametric searching technique with the constraint that δ∗T is at most ∆. In this case,
the running time of the algorithm is O

(
c2m3(1 + log(n/m)) log(m+ n)

)
.

The second part of the algorithm presented in this work is the dynamic data structure for maintaining
reachability inM . It is an open question of independent interest whether this data structure can be improved.
A related problem is whether the techniques used in our structure can be extended to the general case of
reachability in planar directed graphs, so as to simplify and improve the efficiency of the earlier competing
method of Diks and Sankowski [8].

16

References

[1] P. K. Agarwal, R. Ben Avraham, H. Kaplan and M. Sharir, Computing the discrete Fréchet distance in
subquadratic time, SIAM J. Comput. 43(2) (2014), 429–449, and in arXiv:1204.5333 (2012).

[2] H. Alt, B. Behrends and J. Blömer, Approximate matching of polygonal shapes, Ann. Math. Artif. Intell.
13(3-4) (1995), 251–265.

[3] H. Alt and M. Godau, Computing the Fréchet distance between two polygonal curves, Internat. J.
Comput. Geom. Appl. 5 (1995), 75–91.

[4] H. Alt, C. Knauer and C. Wenk, Matching polygonal curves with respect to the Fréchet distance, Proc.
18th Annu. Sympos. Theo. Asp. Comput. Sci. (2001), 63–74.

[5] K. Bringmann, Why walking the dog takes time: Fréchet distance has no strongly subquadratic al-
gorithms unless SETH fails, Proc. 55th Annu. IEEE Sympos. Found. Comput. Sci. (2014), and in
arXiv:1404.1448 (2014).

[6] K. Buchin, M. Buchin, W. Meulemans and W. Mulzer, Four soviets walk the dog — with an application
to Alt’s conjecture, Proc. 25th Annu. ACM-SIAM Sympos. Discrete Algorithms (2014), 1399–1413.

[7] R. Cole, Slowing down sorting networks to obtain faster sorting algorithms, J. ACM 34 (1987), 200–208.

[8] K. Diks and P. Sankowski, Dynamic plane transitive closure, Proc. 15th Annu. European Sympos. Algo-
rithms (2007), 594–604.

[9] T. Eiter and H. Mannila, Computing discrete Fréchet distance, Technical Report CD-TR 94/64, Christian
Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.

[10] M. Jiang, Y. Xu and B. Zhu, Protein structure-structure alignment with discrete Fréchet distance, J.
Bioinform. Comput. Biol., 6(1) (2008), 51–64.

[11] N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J. ACM 30
(1983), 852–865.

[12] A. Mosig and M. Clausen, Approximately matching polygonal curves with respect to the Fréchet
distance, Comput. Geom. 30(2) (2005), 113–127.

[13] S. Subramanian, A fully dynamic data structure for reachability in planar digraphs, Proc. 1st Annu.
European Sympos. Algorithms (1993), 372–383.

[14] C. Wenk, Shape matching in higher dimensions, PhD thesis, Freie Universitaet Berlin (2002).

17

http://arxiv.org/abs/1204.5333
http://arxiv.org/abs/1404.1448

	1 Introduction
	2 Preliminaries
	3 The subdivision of the plane of translations
	4 Compact representation of reachability in a block
	5 Dynamic maintenance of reachability in M(P,Q+f)
	5.1 A dynamic data structure for reachability maintenance in a square matrix
	5.2 A generalized structure for arbitrary matrices
	5.3 The overall decision procedure

	6 The optimization procedure

