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Abstract

In this paper we prove several point-selection theorems concerning objects “spanned” by a
finite set of points. For example, we show that for any set P of n points in R? and any set C
of m > 4n distinct pseudo-circles, each passing through two points of P, there is a point in P
that is covered by (i.e., lies in the interior of) Q(m?/n?) pseudo-circles of C. Similar problems
involving higher dimensions are also studied.

Most of our bounds are asymptotically tight, and they improve and generalize results of
Chazelle et al. [7], where weaker bounds for some of these cases were obtained.

1 Introduction

In this paper we study several point selection problems of the following flavor. Let P be a set of
n points in R?, and let D be a family of m distinct objects of some fixed kind (such as spheres,
discs, triangles, etc.), so that the boundary of each object in D passes through some distinct tuple
of points of P. We wish to assert that there always exists a point that is contained in many objects
of D, or that there exists a line that stabs many objects of D, etc.

Problems of this kind have been studied in the past. Barany [2] has shown that for any finite
set P of n points in RY there is always a point that lies in the interior of Q((dil)) = Q(ndt)
simplices spanned by P, that is, simplices whose vertices belong to P (see also [4]). In other
words, a fixed percentage of all the simplices spanned by P have a nonempty intersection. In the
plane, this means that for any set P of n points, there exists a point that lies in the interior of
Q(n?) triangles with vertices from P, which is asymptotically tight. This raises the following more
general question: For given positive parameters n and ¢, what is the maximum number f(n,t),
such that, for any set P of n points in IR? and any set 7' of ¢ triangles spanned by P, there exists
a point that lies in the interior of at least f(n,t) triangles of T. Aronov et al. [1] have shown
that f(n,t) = Q(t*/(n®log®n)). Their motivation was to derive an upper bound on the number
of halving planes of a finite set of points in IR? (i.e., planes that pass through a triple of the given
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points, and partition the remaining points into two subsets of equal size). Indeed, using the above
bound, combined with Lovdsz Lemma [9] for halving triangles (i.e., the triangles spanned by the
triples of points that span the halving planes), Aronov et al. were able to show that any set of n
points in IR? determines at most O(n%/3 10g5/3 n) halving planes.

A different motivation for this type of problems was introduced by Chazelle et al. in [7]. Their
goal was to reduce the size of Delauney triangulations for finite point sets in IR®. For such a set
P, the Delauney triangulation, D(P), consists of all tetrahedra spanned by the points of P whose
circumscribed spheres enclose no point of P in their interior (see, e.g., [6]). Depending on how
the points are distributed, the number of tetrahedra can vary between linear and quadratic in n.
The goal in [7] was to find, for any set P on n points in IR?, an additional small set Q of points
such that D(Q U P) is guaranteed to have only a small number of tetrahedra. The approach in [7]
was to find a point ¢ that lies inside “many” spheres circumscribing the tetrahedra of the original
Delauney triangulation. Adding g to P would remove all corresponding tetrahedra and replace them
by at most a linear number of new tetrahedra, all incident to ¢. Thus, the problem of slimming
down 3-dimensional Delauney triangulations can be attacked by showing that if there are “many”
circumscribing spheres then there must be a point enclosed by “many” of them. The main tool
used in [7] was the following d-dimensional selection lemma for axis-parallel boxes: For any set P
of n points in R? and any set of m distinct d-dimensional boxes, each of which is axis-parallel and
determined by a unique pair of points of P (as opposite vertices), there is a point that is covered
by Q(m?/(n?log?* 2 n)) of the boxes. Then, observing that any diametrical sphere spanned by two
points p and ¢ (i.e., the sphere for which pq is a diameter) must contain the box determined by p
and ¢, it follows that the same lower bound also holds for points covered by diametrical spheres.
Using additional arguments, the analysis was extended to any collection of m spheres, each passing
through a distinct pair of points of P, showing that there always exists a point enclosed by at least
Q(m?/(n?1log??n)) of the spheres.

Both problems that originally motivated the study in [1, 7], namely the problem of halving
planes and of sliming Delauney Triangulation in 3-space, have since been further improved (see
[14] or [3], respectively). Nevertheless, point selection theorems of this kind remain of independent
interest. In particular, the bounds obtained in [1, 7] are not shown to be optimal (and, as the
present paper shows, many of them are not optimal).

In this paper we improve and generalize some of the bounds obtained in [7], using a fairly simple
and more direct approach to tackle the problem. We outline the main ideas employed in all of our
results, using the following specific problem: Given a set P of n points and a set C of m distinct
discs in the plane, each passing through a distinct pair of points of P, we wish to show that there is
a point in P that lies in “many” of the given discs. First, we define a configuration to be a pair of
a point in P and a circle in C', such that the point lies inside the circle. We aim to show that there
are many such configurations. We show that if m is large enough (specifically, larger than 3n), then
there exists at least one configuration. Then, using a random sampling technique, similar to that
used in the proof of the Crossing Lemma of Leighton and Ajtai et al. (see [12, 13]), we derive a
lower bound f(n,m) on the number of such configurations. Finally, by the pigeonhole principle, at
least one of the points of P participates in at least f(n,m)/n configurations, yielding the desired
lower bound.

We now summarize the main results and present the outline of this paper. In Section 2 we
introduce our technique, by showing that, for any set P of n points in the plane and any set of m
distinct discs, each of which is spanned by a pair of points (resp., a triple of points) of P, there
is a point in P that lies in the interior of Q(m?/n?) (resp., Q(m?/?/n/?)) of the discs. A simple
application of the latter analysis is an alternative derivation of the bound O(nk?) on the overall



Table 1: Summary of point selection bounds results.

objects H dim ‘ prev bound ‘ new bound ‘ stab. pt in P
circles through point pairs 2 (W@;Lq) Q(TT’Z—;) yes
circles through triples of points 2 - Q(%) yes
pseudo-circles through point pairs 2 - Q(’:}—;) yes
pseudo-circles through triples of points 2 - o= 3/2) yes
arbitrary spheres through point pairs d Q(m) (’T’L’—) no
lines stabbing discs through point pairs | 3 - (%) -
axis-parallel rectangles 2 (= ;70";2 -) O(opg ”(7 /m)) no
complexity of the first j-order Voronoi diagrams of a set P of n points in the plane, for j =1,...,k

(see [8]). We describe this application in Section 2. In Section 3, we show how to generalize these
results to arbitrary families of pseudo-circles (closed Jordan curves, every two of which intersect at
most twice). Section 4 deals with the higher dimensional analog of this problem, involving n points
and m distinct spheres in IR?. We show that there exists a point (not necessarily of P) that lies
inside Q(m?/n?) spheres. We also study a variant where we have n points in IR? and m distinct
discs, each passing through a pair of points. We show that there exists a line that stabs Q(m?/n?)
of the given discs. In Section 5 we show that all the results mentioned so far are asymptotically
tight in the worst case. In Section 6 we show that for any set P of n points in the plane and any
set of m distinct axis-parallel rectangles, each of which contains a pair of points of P as opposite
vertices, there exists a point (not necessarily of P) that lies inside Q(m?/n?log? n) rectangles. This
bound was proved in [7], but the proof technique that we present is totally different (and follows
the same general approach used in the preceding sections). We also present an improved upper
bound. Namely, for any n and m we construct a set P of n points in the plane and m axis-parallel
rectangles spanned by pairs of points of P such that no point in the plane lies inside more than
O(m?/n?log(n?/m)) rectangles.

Each of our results either improves the previous corresponding result of [7], or is the first
nontrivial bound for the problem. Furthermore, the two-dimensional results of Sections 2 and 3 are
stronger than that of [7] in the additional sense that they guarantee the existence of a stabbing
point that belongs to P, rather than an arbitrary point in the plane.

Table 1 summarizes the results obtained in this paper.

2 Discs Spanned by Points in R?

Theorem 2.1 Let P be a set of n points and let D be a set of m > 4n distinct discs in R2.

(i) If the boundary of each disc passes through a distinct pair of points of P, then there exists
a point of P that is covered by Q(m?/n?) discs.

(ii) If the boundary of each disc passes through a triple of points of P, then there exists a point
of P that is covered by Q(m>/?/n?/?) discs.

Both bounds are tight in the worst case, in the strong sense that there are constructions involving

n points and m discs, for which no point in the plane is covered by more than O(m?/n?) discs in
case (i), or O(m 3/2/773/2) discs in case (ii).

First, we prove the following ‘boot-strapping’ lemma. Define a configuration to be a pair



(p,d) € P x D such that p lies in d, and p is not one of the two points (in case (i)) or three points
(in case (ii)) that define d.

Lemma 2.2 Let P and D be as in Theorem 2.1 and let X denote the number of configurations in
P x D. Then X > m — 3n in case (i), and X > m — 2n in case (ii).

Proof: Suppose first that the points of P are in general position, in the sense that no four of them
are cocircular. It is well known (see, e.g., [6]) that the number of pairs of points p,q € P, such
that there is an empty circle passing through p and ¢ (i.e., a circle containing no points of P in its
interior), is at most 3n — 6 (those pairs are the Delauney edges of P) and the number of triples
of points p,q,r € P such that the circle passing through them is empty, is at most 2n — 4 (those
triples form the Delauney triangles of P). If the points are not in general position, the following
modified property holds: The number of distinct circles that pass through pairs (resp., triples) of
points of P is at most 3n — 6 (resp., 2n — 4).

We first present the proof of the first inequality, which proceeds by induction on m — 3n. For
m — 3n < 0 the claim is trivial. Assume that the claim holds for some non-negative integer k
(namely, for m and n satisfying m — 3n = k). Suppose that m — 3n = k + 1. Since m > 3n,
there must exist a nonempty disc d € D, which generates at least one configuration with the points
of P. After removing d from D we are left with m — 1 discs, n points, and X' configurations,
where X > X’ +1. We have m — 1 — 3n = k, so we can apply the induction hypothesis to obtain
X'">m—1-3n. Thus X > X' +1 > m — 3n. This completes the proof of the first claim of the
Lemma. The proof of the second claim is similar. O

Proof of Theorem 2.1: Let X denote the number of configurations, as in Lemma 2.2. We aim
to show that the number of such configurations is “large”. We take a random sample P’ of the
points in P by choosing each point independently with some fixed probability p (to be determined
later on). Let D' denote the subset of discs in D, all of whose defining points are in P'. Put
n' = |P'|;m' = |D'|, and let X' denote the number of configurations all of whose defining points are
in P'. Consider first case (i) of the theorem. By Lemma 2.2 we have X’ > m' — 3n’. Note that X',
m/ and n’ are random variables, so the above inequality holds for their expectations as well. Hence,
Exp[X'] > Exp[m'] — 3Exp[n']. It is easily seen that Exp[n'] = pn. We have Exp[m’] = p?>m and
Exp[X'] = p?X. Indeed, the probability that a given disc d € D belongs to D' is the probability
that the two points defining d are chosen in P’, which is p? for any fixed d € D. Similarly, the
probability that a configuration of a point p € P that is covered by a disc passing through two
other points r, ¢ € P is counted in X’ is p®. Substituting these values in the above inequality, we

m 3n

get p?X > p’m — 3pn, or X > R This inequality holds for any 0 < p < 1, and we choose
p = 4n/m (by assumption, p < 1) to obtain X > %. By the pigeonhole principle, one of the

discs. This completes the proof of case (i) of the

. . . 2
points in P is covered by at least X/n > ¢~
theorem.

For case (i), we have X' > m' — 2n/, Exzp[m'] = p*m, and Ezp[X'] = p?X, which implies

>
that p*X > p3m — 2pn, or X > % — Z—’; This inequality holds for any 0 < p < 1, and we choose

p = 2y/n/m (again, p < 1), to obtain X >

m3/2

4nt/2”
3/2 . . ..

least X/n > % of the discs. This completes the proof of case (ii) of the theorem. The proofs of

the worst-case optimality of these bounds are delegated to Section 5.

As above, one of the points in P is covered by at

Remark 2.3 A simple application of the above analysis is an alternative derivation of the bound
O(nk?) on the overall complexity of the first j-order Voronoi diagrams of a set P of n points in



the plane, for j = 1,...,k (see [8]). Specifically the vertices of those diagrams are exactly the
centers of discs passing through three points of P and containing at most k — 1 points of P in their
interior. Let m denote the number of such discs. By the proof of Theorem 2.1, the number of
configurations of a point in P inside such a disc is Q(m3/2/n]/2). On the other hand, the number
of such configurations is at most mk, since no disc contains more than k points in its interior.
Solving the resulting inequality, we obtain m = O(nk?). Many other variants can also be tackled
using the above analysis. For example, the mazimum number of discs, each passing through a triple
of points of P, so that no point of P is contained in more than k of them is O(nk2/3)—use the upper
bound nk on the number of such configurations. See also [13] for related work.

3 Pseudo-circles and Points in IR’

In this section we generalize Theorem 2.1 to an arbitrary collection of pseudo-circles. We begin
with several technical definitions and lemmas:

Definition 3.1 A simple closed Jordan curve (resp., a simple Jordan arc) is the image of a con-
tinuous 1-1 mapping from the unit circle (resp., from [0,1]) to R?.

We next state the famous Jordan theorem for closed Jordan curves (see, e.g., [11]):

Theorem 3.2 (Jordan Theorem) Let vy be a simple closed Jordan curve. Then the complement
of v (i-e., R?\ ) consists of exactly two connected components, one of which is bounded and the
other is unbounded.

For a simple closed Jordan curve 7, we say that a point p lies in the interior (resp., exterior) of
7 if p lies in the bounded (resp., unbounded) connected component of the complement of ~.

Lemma 3.3 Let v be a simple closed Jordan curve and let p and q be two points in IR? \7v. Thenp
and q lie in different connected components of IR? \ v if and only if every simple Jordan arc between
p and q that intersects v only at points where the curves cross each other, meets v an odd number
of times. See Figure 1(i).

Lemma 3.4 Let p,q be two points in the plane and let 1,732,773 be three pairwise openly disjoint
simple Jordan arcs with end-points p and q. Then the relative interior of exactly one of the arcs,
say y1, lies fully in the interior of the closed Jordan curve vy U-ys. See Figure 1(ii).

The above two lemmas are easy consequences of the Jordan theorem.

Definition 3.5 A family of closed Jordan curves is called a family of pseudo-circles if any two of
its members are either disjoint or cross in exactly two points.

Definition 3.6 Let I' be a family of graphs of totally defined continuous univariate functions. T’
is called a family of pseudo-parabolas if any two of its members are either disjoint or intersect in
ezactly two crossing points.’

! Actually, it suffices to assume that each pair intersect at most twice, because one can always modify a family
of curves that satisfy this latter condition, to turn it into a family of curves where each intersecting pair cross each
other exactly twice.
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Figure 1: (i): A Jordan arc between p and ¢ (dashed) intersects a closed Jordan curve, that
separates p and ¢, an odd number of times. (ii): The relative interior of the arc -y; is contained in
the interior of the closed Jordan curve o U 7s.

Lemma 3.7 Let P be a set of n points in the plane. Let C' be a family of m distinct pseudo-circles,
such that every member of C' passes through a distinct pair of points p,q € P, and such that all
curves in C' are empty (i.e., no point of P lies in the interior of any curve in C). Then m < 3n —6.

Proof: Let G be the graph whose vertices are the points in P and whose edges are the m point
pairs that define the curves of C. For an edge (p, q) of G, let ¢,, be the curve in C passing through
p and q. We embed G in the plane, so that the edge (p,q) is drawn along one of the two possible
portions of ¢, delimited by p and g, which we choose arbitrarily and denote it by v,,. We will show
that in the above drawing of G, any two edges on four distinct vertices intersect an even number
of times. This, combined with the Hanani-Tutte’s theorem [15] (see also [5, 10]), implies that G is
planar (and simple) and hence m < 3n — 6.

Assume to the contrary that there are four vertices of G, p1,q1,p2, g2, such that the arc 7,4,
(71 for short) and the arc 7,4, (72 for short) intersect an odd number of times. Since C is a family
of pseudo-circles, any two such edges intersect at most twice. Hence if 1 and -y, intersect an odd
number of times then they intersect exactly once. See Figure 2 for an illustration. Let ¢; (resp., ¢2)
denote the pseudo-circle passing through p; and ¢; (resp., through py and ¢9). If 9 intersects ¢
exactly once, then, by Lemma 3.3, ps and ¢ must lie in different connected components of IR? \ c1.
Hence one of the two points po, g2 must lie in the interior of ¢, contradicting the assumption that
¢1 is empty. Therefore, 7o must intersect ¢; exactly twice. This implies that the second portion
of the curve ¢y between ps and g9 (i.e., ¢o \ y2) does not intersect ;. Hence ~y; intersects ¢y exactly
once. Again, by Lemma 3.3 one of the points py,¢; must lie in the interior of ¢y (and one in the
exterior of ¢3), a contradiction. This completes the proof of the lemma. O

Similar to the case of discs, we define a configuration, with respect to a set P of points and a
set C of pseudo-circles, to be a pair (p,c) € P x C such that p lies in the interior of c.

Lemma 3.8 Let P be a set of n points in the plane. Let C be a family of m distinct pseudo-circles
such that every member of C passes through a distinct point pair p,q € P. Let X denote the number
of configurations in P x C. Then X > m — 3n.



Figure 2: If the pseudo-circles ¢y, ¢y are empty, the arcs vy, 2 cannot intersect just once.

Proof: The proof proceeds by induction on m — 3n, using Lemma 3.7, and follows the same
reasoning as in the proof of Lemma 2.2. O

Using Lemma 3.8 and the same random sampling technique as in the proof of Theorem 2.1, we
obtain the following generalization of Theorem 2.1(i):

Theorem 3.9 Let P be a set of n points in the plane. Let C be a family of m > 4n distinct
pseudo-circles such that every member of C' passes through a distinct point pair p,q € P. Then
there is a point p € P that lies in the interior of Q(m?/n?) pseudo-circles in C. The bound is
asymptotically tight, as in Theorem 2.1.

The proof of the upper bound is delegated to Section 5.
Theorem 2.1(ii) can also be generalized to the case of pseudo-circles:

Theorem 3.10 Let P be a set of n points in the plane, and let C' be a family of m > 4n dis-
tinct pseudo-circles such that every member of C' passes through a distinct triple of points of P.
Then there is a point in P that lies in the interior of 3//;) pseudo-circles in C. This bound is
asymptotically tight, as in Theorem 2.1.

The proof of the upper bound is delegated to Section 5. For the lower bound, we first prove the
following Lemma, which extends the result of Lemma 2.2.

Lemma 3.11 Let P be a set of n points and let C be a family of m distinct pseudo-circles, such
that every curve ¢ € C passes through a distinct triple of points from P and has an empty interior
(i.e., no point of P lies in the interior of ¢). Then m < 2n — 4.

Proof: The proof is an easy consequence of the following claim: For a given pair p,q € P, there
are at most two curves in C' that pass through both p and ¢. Indeed, assume to the contrary
that there are three such curves cy,co,c3 € C. Each such curve passes through both p and ¢ and
through another point of P. Denote those points, respectively, by r1, 79 and r3. Denote by ~y; the
portion of the curve ¢; that is delimited by p and g and contains r;, for i = 1,2,3; See Figure 3
for an illustration. Since the pseudo-circles ¢; and ¢y intersect at points p and ¢, it follows that ~;
is either fully interior or fully exterior to co (except for the endpoints p and ¢). However, since o



has an empty interior and -y; contains rq, 7y must be exterior to cy. Similarly, v, is exterior to c;.
This is easily seen to imply that the union of y; and 7y is a closed Jordan curve 7, whose interior
is the union of the interiors of ¢; and of ¢y (See Figure 3). Similarly, this holds for the pair i, ;3
and for the pair v5,v3. By Lemma 3.4, one of the arcs 71, 9,3 lies in the interior of the union of
the two other arcs. Assume without loss of generality that this arc is 3. Then, since 73 contains
the point rs, r3 must lie in the interior of 1 U 2. This however implies that rs lies in the interior
of at least one of the pseudo-circles ¢y, cg, a contradiction.

Construct a graph G on the vertex set P, by connecting, for each ¢ € C, each pair of points
p,q € P that are consecutive along ¢, by the corresponding arc 7,4 C c that is delimited by p and q.
Arguing as in the proof of Lemma 3.7, each pair of edges of G cross an even number of times, so G
is planar. By what we have just shown, each edge of G has multiplicity at most two, so the number
of edges of G is at most 6n — 12. On the other hand, this number is at least 3m, by construction,
so we have 3m < 6n — 12, or m < 2n — 4, as asserted. O

Figure 3: ~; is the portion of the closed Jordan curve ¢; between p and ¢ that contains the point
rq1. Similarly, v, is the portion of ¢, that contains ro.

An immediate consequence of Lemma 3.11 is the following boot-strapping lemma:

Lemma 3.12 Let P be a set of n points in the plane. Let C be a family of m pseudo-circles as in
Theorem 8.10. Let X denote the number of configurations in P x C. Then X > m — 2n.

Proof: The proof proceeds by induction on m — 2n, using Lemma 3.11, and follows the same
reasoning as in the proof of Lemma 2.2. O

An application of the same sampling technique as in Theorem 2.1 completes the proof of The-
orem 3.10. O

One can use the same proof techniques developed in this section to obtain the following similar
results on points “missing” many curves:

Theorem 3.13 Let P be a set of n points in the plane and let C' be a family of m > 4n distinct
pseudo-circles. (i) If every curve in C passes through a distinct point pair in P, then there is a
point p € P that lies in the exterior of Q( ) pseudo-circles in C.

(ii) If every curve in C passes fhmuqh a distinct triple of points in P, Then there is a point

q € P that lies in the exterior of Q( 3/2) pseudo-circles in C.



4 Spheres and Points in Higher Dimensions

Theorem 4.1 Let P be a set of n points in R and let D be a collection of m distinct spheres
spanned by distinct pairs of points of P. Then there exists a point (not necessarily in P) that is
covered by Q(Z’—;) spheres in D.

Definition 4.2 Let p and ¢ be two points in RY. The diametrical sphere of the pair {p,q}, denoted

dpqs s the smallest (d—1)-sphere that passes through p and q. Thus, §pq is centered at z = (p+q)/2,

the midpoint between p and q, and has radius p = qu‘, half the distance between p and q.

Lemma 4.3 Let P be a set of n points in R?, and let C be a set of m spheres, each passing through
a distinct pair of points of P. If m > cqn, for an appropriate positive constant cq that depends on
d, then one of the following two cases must occur:

(1) There ezists o € C that contains a point p € P in ils interior.

(2) There exist four distinct points p1.qi,p2,q2 € P such that op,4,,0p,9, € C, and the diametrical
sphere 0p,q, spanned by pa and go intersects the ball bounded by op,4, in a set whose measure
is at least B4 times the measure of d,,q,, for some absolute positive constant By that depends
on d.

Proof: We show that if no configuration of type (1) arises, then one of type (2) must exist. An
illustration of a configuration of type (2) is shown in Figure 4(b).

Let A be a set of O(1) directions, represented as points on the unit sphere S?~!, with the
property that for any direction u there exists a direction ug € A such that the angle between u and
ug is smaller than « = 1/2000 radians. Clearly, there exists such a set A whose size, denoted by
kg, is O(1/a%=") = O(1). Put c¢g = 2k, and assume that m > cgn.

Let G be the graph whose vertices are the points of P and whose edges connect those pairs
p,q € P for which o, € C. We make G into a directed graph, by replacing each edge of G' by two
oppositely-oriented directed edges. For each u € A, let G, denote the subgraph of G consisting of
all directed edges (p, q) such that the direction pg forms an angle at most a with u. {Gy}yecn is a
decomposition of G into kg (not necessarily edge-disjoint) directed graphs.

Since G has more than 4k;n edges, there exists u € A such that G, has more than 4n edges.

Color at random each point of P red or blue (with equal probabilities), and consider the bipartite
subgraph G7, of GG, consisting of all directed edges that emanate from a blue point to a red point.
The expected number of edges of G}, is more than 4n/4 = n, so there exists a coloring for which
the resulting G has at least n + 1 edges.
For each blue or red vertex p of G}, erase from the graph the edge (p,q) (or (¢,p)) incident to
p for which the Euclidean length |pq| is the largest (if the points are not in general position, erase
only one such edge). We erase at most n edges. Let pg be a surviving edge, with p blue and ¢ red.
By construction, there exist another blue point p’ and another red point ¢', such that pq' and p'q
are edges of G¥ and |pq'| > |pql, [p'q| > |pg|. Suppose, without loss of generality, that |pq’| > |p'ql.
See Figure 4(a).

Choose v = 0.01. We distinguish between two cases:

Case (i) |pq’'| > (14 7)|pg|: The angles between any pair among the three vectors x = g,y = 9y,
z = p/q is at most 2a. Put z = |x|, y = |y|, z = |z|. Let ¢ denote the center of Opy, and let R
denote its radius. Consider the plane 7 spanned by ¢, p,¢'. By assumption, ¢ lies outside oy, .

Let ¢* denote the point that lies on the shorter circular arc of 7 Nop, at distance |pg| from p (¢*

exists because |pq’'| > |pq|) . The angle § = Zq¢'pg* is smaller than or equal to the angle Z¢'pq < 2a.



Figure 4: The three edges (p,q'), (p,q), (p',q) in G}

To see this, refer to Figure 5, and let s be the point of intersection between g*c and pq’. The ball
centered at s and having radius |s¢*| is fully contained in o,,. This implies that [sq| > |sq*|.
Comparing the two triangles spg and spq*, we conclude that Zspq > Zspq*, as asserted.

Figure 5: Showing that Zspq > Zspq*.

Clearly, R is the radius of the circumcircle of the triangle ¢'pg*, so we have, by the Sine Theorem,

lq'q"|
R— .
2sinf
We have
| > Ipd'| - Ipa*| = pd'| — [pal > ——Ipq'|.
- 14y
Hence,
y
——————|pd']. (1)

R>
~ 2(1 + 7)sin 2«

We now turn to estimate the measure of the portion of d,/, that lies inside o,,. Let v denote
the center of d,4; that is, the midpoint of the segment p'q. The portion under consideration is a
spherical cap, whose measure (as a fraction of the total measure of d,,) depends only on its central
angle ¢ subtended at v. This angle in turn is twice the angle at v of the triangle cvw, shown in
Figure 6, where w is any point on o,y N 0,4, which thus satisfies |cw| = R and |vw| = r = radius
of §4. Put |cv| = R +t. We may assume ¢ > 0, for otherwise the angle ¢ only gets larger; see

10



Figure 6: The interaction between o,y and d,,,.

Figure 6. By the Cosine Theorem, we have

(R+t)2+7r2—R?> 2Rt+t* 412 t+ r? — 2 <t+ r @
cos p = = =4 - " <l
v 2r(R+1t) 2r(R+1t) r 2r(R+t) —r 2R

The fraction ¢/r is estimated as follows.

lue|? = |vp + pe|? = |up|* + |pe|? + 20p - pe.

enee wpl? 20 - pe 1/2 lwp|?2  vp - pe
|1)c:R+t:R(1+ };)2 + ZQZ)‘) <R<1+2£2 + pR2p,>’
w0 o ool -
" 2R R’
e b opl? |
- : (3)

r 2rR rR

Since Zvgp < 2a, the side vp cannot be the longest in the triangle pvg. Moreover, |vg| = r, by
definition, and |pq| < |p'q| = 2r. Hence |vp| < max {|pg|, lvg|} < 2r.
We have vp = %z —y. Hence

<

R|p’ >
— ‘% coS Z(p/qu_‘c) — R|pq‘ COos Z(p_(’lap_é)

oo T .
|vp - pt| = 9% Pty - pt

rR (cos L(prq,p_&) + 2 cos 4(p‘('],p‘&)) .

Substituting everything in (3), we obtain

t 2 -
- < ET + (cos Z(p'q, pe) + 2 cos Z(p_i],p_&)) .
T ,

Denote the central angle Zpcq’ by %w The_‘angle between pc and pa’ is thus 5§ —4). Since the angles
between pg and pq’ and between p'q and pq’ are both at most 2«, it follows that

L(p'q, pE), Z(py,pt) > = — P — 2a,

s
2

11



and thus
cos Z(p'q, pc), cos £(pg, pe) < sin(¢h + 2a).

We have siny = |pq'|/(2R), so

pd'|

sin(y + 2a) < sint) + sin2a < °R + sin 2a..

We thus have

SR Y R
cos -4+ —=< — sin2« | .
7=7"2R " 2R 2R
Since r = |p'q|/2 < |pq'|/2, we obtain
11{pq 11(1 sin 2a 11+13
cos @ < pq’ + sin2a < (1 +7)sin a+sin2a<gsin2a<3/4,
4R 2y 2y

say, by our choice of a and +.

We have thus shown that the central angle of the cap of d,, inside o,y is at least 2arccos 3/4,
so p,q',p',q form a configuration of type (2), with an appropriate constant 3, .
Case (ii): [pq’| < (1 4+ v)|pg|: In this case we have

lpg| < |p'q| < |pd'| < (14 7)|pgl. (4)

This says, informally, that the three vectors pq, pa’ , prq are nearly the same. One difference between
the two cases is that now we can no longer claim that the radius R of 0, must be large. Instead,
we tackle the problem in a different way.

Figure 7: Case (ii) of the proof.

Let v denote, as above, the midpoint of p’q, and refer to Figure 7. We show that the angle
6 = Zvpq' is small (informally, this is because v is close to the midpoint of pq’). We have

lupl|pq’| cos 0 = pis - pq'.

Since pb =y — %z, we have

1 1 1
ly — §z|$ cosf = (y — §Z) -x = gycosb — ixz cos By > xycos2a — Egjz’

where 6; is the angle between x and y and 6, is the angle between x and z, both at most 2c. We
also have
2 2

1 z 2\ 2 z .
\y—iz\Q:yQ—i—Z—y-z:(y—E) +yz(1—c0893)§<y—§) + 2yzsin? a.

12



where 03 < 2« is the angle between y and z.
Recall that y < z < 2 < (1 4+ 7)y. Hence we have

1 1 1/2
lp| = |y — §z| <z <— + 2sin? (J/> < Z(1 4 4sin?a) = (1 + 4sin’ a).

4

N N

We thus get, by our choice of a and 7,

2
cosf> VB2 F  TThTTF  2esdacloy g0
- |y—%z\ *%(1+4sin2a) (14+7)(1 +4sin?a) —

Returning to the notation R, r,t,¢ of case (i), we note that ¢ (which, as above, can be assumed
to be nonnegative) is the distance from v to o,,, and is thus smaller than the distance from v to
pq’. The preceding calculations easily imply that this distance is attained at an interior point of pq’
(somewhere near its midpoint), so the distance is |vp|sin < rsin (1 +4sin? @). (To be precise, it
suffices to verify that rsin@(1 +4sin? a) < z, which follows easily by our choice of a and +.) Using

(2), we thus get
1

2 )
where the latter inequality follows by noting that 2R > z, and r/z = z/(2z) < 1/2. Hence, by our
choice of o and ~y, we have cos ¢ < 3/4, say.

We have thus shown that in this case the central angle of the cap of d,, inside o, is at least
2arccos 3/4, so p,¢',p', q form a configuration of type (2) with the appropriate ;.

This completes the proof of the lemma. O

Let X; denote the number of configurations of type 1, i.e., pairs (p,o) € PxC where p lies in the
interior of o, and let X9 denote the number of configurations of type 2, i.e., pairs (01,09) € C x C,
spanned by four distinct points of P, where oy cuts off the diametrical sphere 05 corresponding to
o9 a cap whose measure is at least 8y times that of ds.

Lemma 4.3 implies that X1 + X9 > m — ¢4n. This is proven by induction on m — c4n, similar
to the arguments in the preceding proofs. Specifically, the claim holds trivially for m — cgn < 0.
Suppose it holds for m — ¢yn < k — 1 and consider the case m — c¢yn = k > 0. Lemma 4.3 implies
that X1+ X9 > 0. If X; > 0, we take a type 1 configuration (p, o), and remove o from C, reducing
m by 1 and X; + X9 by at least 1, so the claim follows by induction, as above. If Xy > 0, we take
a type 2 configuration (o1, 09), remove o9 from C, and conclude by induction, as above.

Assume now that m > 2c¢c4n; otherwise, the lower bound of the theorem follows trivially. The
random sampling argument used above leads to the inequality X;p? + Xop* > mp® — cqnp, or

t
cos p < — % <sinf(1 + 4sin” @) +

X1p* 4+ Xaop® > mp — cqn,
for any 0 < p < 1. Choose p = 2¢4n/m (by assumption, p < 1), to obtain

4¢2n? 8c3n3
d i X, > cyn.
5 1 3 A2 2 Cd
m m

Hence, one of the terms in the left-hand side is at least cqn/2, implying that

m2 ’I’I’L3
or

either X; > X9 > ——.
et t= 8cqn 2= 16¢2n?
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In the former case, the pigeonhole principle implies that there exists p € P that lies in the interiors

2 2
m m
of at least g =0 <—> spheres of C. In the latter case, the pigeonhole principle implies that
n

2 2
Cqn
there exists 0,, € C whose corresponding diametrical sphere d,, forms configurations of type (2)
2 2
m, m
with at least M = Ton? = Q (—2> other spheres of C. Consider the caps that these spheres
cin n

cut off d,4. Since the measure of each of them is at least By times the measure of d,,, it follows
that there exists a point on d,, that lies in at least 83 M = Q(m?/n?) of these caps, and thus inside
Q(m?/n?) spheres of C. In both cases, the bound asserted in the theorem is established. As above,
the proof that the bound is tight in the worst case is delegated to Section 5. O

4.1 Lines Stabbing Discs in R?

Theorem 4.4 Let P be a set of n points in R? and let D be a set of m > en distinct (two-
dimensional) discs such that every disc in D contains a distinct pair of points of P on its boundary,

where ¢ is some appropriate positive constant. Then there exists a line that stabs Q(ZL—Z) discs of

D.

Proof: Let {di,...,d,,} be the discs in D. Consider the set S = {s1,...,s;,} of m spheres, where
s; is the sphere whose center is the center of d; and whose radius is the radius of d;, fori =1,...,m
(namely, s; the smallest sphere that encloses d;). By Theorem 4.1, there is a point w € R? that
lies inside Q(’:—;) spheres of S. Denote by S’ the subset of spheres of S containing w, and denote
by D' the corresponding subset of discs of D. Next, we choose a random line [ passing through w
by picking the orientation of the line randomly and uniformly from the unit sphere of directions.
It is easy to see that the probability that the line | stabs a disc d; € D’ is at least some absolute
constant 8 > 0. Indeed, consider the (not necessarily circular) cone with apex at w formed by the
union of all lines passing through w and through a point on the boundary of d;. Let ¢; denote the
center of d;. Since w lies inside s;, this cone has the property that any plane through the line c;w
cuts the cone in a wedge with angle > 7/2. Hence the set of directions on S? that cause d; to be
stabbed is a convex cap k with an interior point o with the property that every great circle through
o cuts k in an arc whose length is at least m/2. This is easily seen to imply the claim. This implies
that the expected number of discs in D’ stabbed by [ is at least 8 times the size of D’. Hence there
must exist a line (through w) that stabs these many discs of D’. This completes the proof of the
theorem. As above, the proof that the bound is tight in the worst case is delegated to Section 5. O

5 Upper Bounds

As already asserted, the bounds in Theorem 2.1, Theorem 3.9, Theorem 3.10 and Theorem 4.1 are
asymptotically tight in the following strong sense:

Theorem 5.1 (i) For any two positive integers m and n, with m > n, and for any dimension
d > 2, there is a set P of n points in R? and a set D of m distinct spheres such that every sphere
in D is a diametrical sphere of some pair of points in P, and such that any point (not necessarily
from P) is covered by at most O(m?/n?) spheres in D. (i) For any m > n, there is a set P
of n points in R? and a set D of m distinct discs, such that every disc in D passes through a

distinct triple of points in P, and such that any point (not necessarily from P) is covered by at
most O(m3/? n3/?) discs in D.
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Proof: (i) Let s be some integer between 1 and n which will be determined later. Construct a
collection of n/s clusters, each containing s points (we assume for simplicity, that s divides n).
Place the clusters far apart in such a way that no diametrical sphere, defined by a pair of points
from the same cluster, intersects any diametrical sphere defined by a pair of points from any other
cluster. For each cluster we take all (;) possible diametrical spheres generated by pairs of points
in the cluster. We want the number of spheres, which is (5) -n/s = (s — 1)n/2, to be equal to m.
So we chose s = 2m/n + 1. Since a point can belong to at most (;) spheres, we have that every
point in the plane is covered by at most O(m?/n?) spheres.

For (ii), we have a similar construction, except that in each cluster we take all possible discs
through triples of points from the same cluster, and that we place the clusters far apart to ensure

that no two discs, constructed within two different clusters, intersect each other. We have a total

of (3) - n/s discs. Choosing s = Sry/li2am/n O(m'/2/n'/?), the number of discs is m. Since no

point is covered by more than (9) = 0(s%) discs, we obtain the desired upper bound. (As stated,

3
the constructions do not apply to all values of m and n. However, by slightly modifying the choice
of S and the construction itself, we can extend the bound for all values of m and n.) O

Remark 5.2 Tightness of Theorem 4.4 can be shown by a similar construction involving n points
in R and m diametrical discs, each of which pass through a pair of the given points. The n/s
clusters should be arranged such that no line stabs more than two clusters (namely, the set of discs
stabbed by any given line belong to at most two clusters). This is easily done by taking n/s points
in convex position(say, on a unit sphere) and replacing each such point p with a cluster of s points
all of which are "very close” to p. Hence, no line stabs more than two clusters and therfore at most
2- (5) discs. Choosing, as above s =2m/n + 1 we have that any line can stab O(m?/n?) discs.

6 Axis-Parallel Rectangles

Let P be a set of n points in the plane. For simplicity we assume that no pair of points have the
same z-coordinate or the same y-coordinate. Let R be a set of m axis-parallel rectangles, each
having two points of P as opposite vertices.

Lemma 6.1 If m > 4nlogn then either (a) there exists a rectangle in R that contains a point of
P in its interior, or (b) there exist two rectangles Ry, Ry € R, spanned by four distinct points of
P, such that a vertex of one of them lies in the interior of the other.

Proof: We assume that case (a) does not arise, and argue that case (b) must then occur. Either
at least half of the rectangles in R are such that their bottom-left and top-right vertices are in P,
or at least half of them are such that their bottom-right and top-left vertices are in P. Without
loss of generality, assume that the former case arises, and remove from R all other rectangles. We
now have |R| > 2nlogn. For each point a € P, let R} (resp., R, ) denote the set of all rectangles
in R having a as their bottom-left (resp., top-right) vertex. Since we have assumed that case (a)
does not occur, no rectangle in R} fully contains another such rectangle, so these rectangles can
be ordered in increasing order of the z-coordinate, which is the same as the decreasing order of the
y-coordinate, of their top-right corners (all of which are points of P). In a fully symmetric manner,
the rectangles in R, can be ordered in the same two coinciding orders.

Call a rectangle R € R left-separated if either R is the first in the ordered sequence R}, or
the preceding rectangle in that sequence is such that its width (z-span) is at least twice as small as
the width of R. Similarly, we call a rectangle R € R, right-separated if either R is the last in the
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sequence R, or the next rectangle in that sequence is such that its width is at least twice as small
as the width of R. Clearly, the number of rectangles that can be right-separated or left-separated
in the respective sets R}, R, is at most 2logn, so the number of such rectangles, over all points
a € P, is at most 2n logn.

Since |R| is larger than this bound, R contains at least one rectangle that is neither left-
separated nor right-separated. Let a,b € P denote, respectively, the bottom-left and top-right
vertices of R. Let R’ (resp., R") denote the rectangle preceding (resp., succeeding) R in the
sequence R (resp., R, ). Clearly, R' and R" are spanned by four distinct points of P, and the
top-left vertex of R"” lies in the interior of R’ (and the bottom-right vertex of R’ lies in the interior
of R"); see Figure 8 O

R’

Figure 8: A non-separated rectangle R and the two adjacent rectangles R', R” that realize case (b)
of the lemma.

Let X; denote the number of configurations of the form (R, a), where R € R and a € P are such
that a lies in the interior of R. Let X3 denote the number of configurations of the form (R, R'),
where R, R’ € R are two rectangles that are spanned by four distinct points of P and are such that
a vertex of R’ lies in the interior of R. We refer to configurations of the former (resp., latter) type
as type I (resp., type II) configurations.

Lemma 6.1 implies the following inequality

X1+ X9 >m —4nlogn. (5)

We apply (5) to a random subset of the given points and rectangles, where each point in P is chosen
independently with probability p, and a rectangle is chosen when its two spanning P-points are
chosen. Let n',m/, X|, X!, denote, respectively, the expected number of points, rectangles, type I
configurations, and type II configurations in the sample. We have

X] + X5 >m' —4n'logn.

As is easily checked, we have

n' =np, m =mp®, X|=X1p®, X)= Xy
Hence,
X1p% + Xop* > mp® — dnplog n.

8nlogmn

We assume that m > 8nlogmn, and choose p = . Suppose first that X; > X9p. Then we

have
2X1p* > mp? — dnplogn = dnplogn,
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or

2nlogn m?
'S 32nlogn’
2
m
By the pigeonhole principle, there exists a point a € P that participates in at least 92 loa type
n?logn

I configurations, that is, a lies in at least that many rectangles of R.
Suppose next that X; < X9p. Then we have

2Xop* > mp? — 4nplogn = 4nplogn,

or

2nlogn m3

2T 256n2logn

Again, by the pigeonhole principle, there exists a rectangle R € R that participates as the second
2

component of at least type II configurations. This implies that one specific vertex of

612 1log%n

R lies in the interior of at least rectangles of R.

512n2 log? n
We have thus shown:

Theorem 6.2 Let P be a set of n points in the plane, so that no pair of points have the same

xz-coordinate or the same y-coordinate. Let R be a set of m > 8nlogn axis-parallel rectangles, each

having two points of P as two opposite vertices. Then there exists a point v € R? that is contained
2

in the interior of at least rectangles of R.

512n2log? n

Theorem 6.2 also holds when the points in P may have common z-or y-coordinates, except that
in this case the stabbing point may lie on the boundary of some of the stabbed rectangles.

We note that a different proof of Theorem 6.2, based on certain one-dimensional selection
lemmas, is given in [7]. Our proof can also be easily extended to axis-parallel boxes in any dimension,
yielding an alternative proof of a similar extension obtained in [7]. We omit here the easy details
of this extension.

6.1 An upper bound

We next show that the polylogarithmic factors appearing in the lower bounds of Theorem 6.2
cannot be totally eliminated to yield the bound 2(m?/n?). Specifically, we show:

Theorem 6.3 For arbitrarily large n and m, satisfying cnlogn < m < (g), for an appropriate
constant c, there exist sets P of n points and R of m rectangles spanned by the points of P, so that

mQ

72) rectangles of R.

no point in R? lies in more than O
n?log %=

Proof: We construct sets P and R whose respective sizes n and m are defined in terms of two
integer parameters k and j. Let k be a fixed integer. We construct P and R recursively, starting
with an arbitrary set Py of ng = k points in general position, and with the set Ry of all axis-parallel
rectangles spanned by pairs of points of Py. We have my = |Rg| = (’;)

Suppose that we have already constructed P; and R, for some j > 0. We construct Pj;; and
Rjy1 as follows.
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(i) Take two distinct copies P]-(l),P]-(Q) of Pj, keep Pj(l) intact, and shift P]-(Q) horizontally so that

the z-spans of the two copies are pairwise disjoint. Create two corresponding copies Rgl) , RS-Q)
of R]

(ii) Next, shift the copy Pj(2) (and, accordingly, also the copy 7'\’,§2)) slightly upwards in the vertical
direction, so that if point a lies below point b in P; then both copies of a lie below both copies
of b.

(iii) For each pair of points a,b € P;, such that a lies below b, and there are at most k& — 2 points
of P; in the (open) horizontal strip spanned by a and b, create a rectangle whose opposite

vertices are the first copy of a and the second copy of b. (Thus, each point of Pj(]), except for
the k — 1 top ones, participates in k such rectangles.)

(iv) Take Pji; to be the union of P]-(]) and P]-(Q), and take R, to be the union of Rgl) and RgQ),

together with all the additional rectangles created at the preceding step.

See Figure 9.

i o

b

a
Figure 9: The recursive step of the construction (shown with & = 2).

Put n; = |Pj| and m; = |R;|. We have

k
njp1 = 2nj, mjp1 = 2'm,j + knj — <2> .

The term (¥) accounts for the fewer numbers of rectangles spanned by the very top points of P-(l).
5 gles sp y y top p f
We thus have, as is easily verified by induction on j,

; )+ 1)kn,; k

Let &; denote the maximum number of rectangles in R; that have nonempty intersection. We have

50 S (S)u
k
i1 <&+ ( ; 1)- (6)
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Indeed, let v be any point in the plane. The z-spans of Pj(l) and of Pj(2) are disjoint, and the
z-coordinate of v can belong to at most one of them, say to that of PY. Then v can be contained

j
(1)

;> and in rectangles created at step (iii).
The number of rectangles of the latter kind is at most (’H;): v can only lie in rectangles spanned
by the i-th point of Pj(]) below v (in their y-order) and the ¢-th point of Pj(Q) above v, where
1+ /¢ < k+1, and the number of such pairs is at most (k;“]). This establishes the recurrence (6),
whose solution is easily seen to be

only in rectangles belonging to the corresponding set R

m; + (5)
’I”Lj )

g<i(“3) <w+n-

For any choice of k and j, we obtain an instance of the problem with n = n; points and m = m,
rectangles. It is easily seen that, by varying k and j, we can have m; vary between ©(n;logn,)
(choose k =1 for this extreme case) and (—)(n?) (choose j = 1). An easy calculation shows that

which implies that

k=0 —+].
n log -

Hence, the maximum number of rectangles with a nonempty intersection is at most

k 2
0 <_m> _of—m™ )
n n?log 2
as asserted. O

7 Open Problems

e Section 4 deals with point selection bounds for spheres spanned by pairs of points of a finite
set of points in IR, Tt would be interesting to generalize the technique used there, to obtain
non-trivial bounds for spheres spanned by j-tuples of points (where j is a fixed integer between
3 and d). In addition, it would be nice to find a simpler proof of Lemma 4.3

e It would be interesting to tighten the polylogarithmic gap between the lower and upper bounds
described in Section 6.
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