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Abstract

Let P be a set of n points in general position in the plane. Let Xk(P ) denote the
number of empty convex k-gons determined by P . We derive, using elementary proof
techniques, several equalities and inequalities involving the quantities Xk(P ) and several
related quantities. Most of these equalities and inequalities are new, except for a few that
have been proved earlier using a considerably more complex machinery from matroid and
polytope theory, and algebraic topology. Some of these relationships are also extended
to higher dimensions. We present several implications of these relationships, and discuss
their connection with several long-standing open problems, the most notorious of which
is the existence of an empty convex hexagon in any point set with sufficiently many
points.

1 Introduction

Let P be a set of n points in general position in the plane. How many empty convex k-gons
must P always determine, for k = 3, 4, 5, . . .? The interest in this class of problems arose
after Horton had shown 20 years ago [17] that there exist sets of arbitrarily large size that
do not contain empty convex 7-gons (and thus no empty convex k-gons for any k ≥ 7). It is
still a notoriously hard open problem whether every set with sufficiently many points must
contain an empty convex hexagon. The size of the largest known set that does not contain
an empty convex hexagon is 29, as found by Overmars [22] (see also [23]). In this paper we
develop machinery that might be useful for tackling this problem.

In contrast, any set with sufficiently many points must contain many empty triangles,
convex quadrilaterals, and convex pentagons. Specifically, Bárány and Füredi [3] have
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shown that any n-point set must determine at least n2−O(n log n) empty triangles, at least
1
2n2−O(n log n) empty convex quadrilaterals, and at least ⌊n/10⌋ empty convex pentagons,
where the latter bound can be improved to ⌊(n− 4)/6⌋ (see [4]). The bound on the number
of empty convex pentagons follows from a result of Harborth [15], which shows that among
any 10 points there are 5 that form an empty convex pentagon. Three interrelated open
problems (see [4]) are to show that

(P3) the number of empty triangles is always at least (1 + c)n2, for some constant c > 0,

(P4) the number of empty convex quadrilaterals is always at least
(

1
2 + c

)

n2, for some
constant c > 0, and

(P5) the number of empty convex pentagons is always at least cn2, for some constant
c > 0.

In general, the lower bounds cannot be super-quadratic, as has been noted in several papers
[5, 8]. The construction with the best upper bounds is due to Bárány and Valtr [5]; it pro-
duces n-point sets with roughly 1.62n2 empty triangles, 1.94n2 empty convex quadrilaterals,
1.02n2 empty convex pentagons, and 0.2n2 empty convex hexagons. Both constructions in
[5, 8] use Horton’s construction as the main building block.

In this paper we obtain a variety of results concerning the number of empty convex
polygons in planar point sets (and of empty convex polytopes in higher dimensions). Our
first set of results consists of linear equalities in the numbers Xk(P ) of empty convex k-gons
in an n-element planar point set P , for k = 3, 4, 5, . . .. All these equalities involve the
alternating sums

M0(P ) =
∑

k≥3

(−1)k+1Xk(P ), and

Mr(P ) =
∑

k≥3

(−1)k+1 k

r

(

k − r − 1

r − 1

)

Xk(P ), for r ≥ 1,

and express these sums in closed form, relating them to certain geometric parameters of
the point set P . We refer to Mr(P ) as the r-th alternating moment of {Xk(P )}k≥3. The
coefficient of Xk(P ) in the expression for Mr(P ) is the number of ways to choose r elements
from a circular list of k elements, so that no two adjacent elements are chosen.1

For example, we show that

M0(P ) =
(n

2

)

− n + 1,

M1(P ) =
∑

k≥3

(−1)k+1kXk(P ) = 2
(n

2

)

− H(P ),

M2(P ) =
∑

k≥4

(−1)k+1 k(k − 3)

2
Xk(P ) = −T2(P ),

where H(P ) is the number of edges of the convex hull of P , and where T2(P ) is the number
of pairs of edges ab, cd, that are delimited by four distinct points of P , lie in convex position,

1This is known as Cayley’s problem; see, e.g., Exercise 2.3.23 in [21].
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and are such that the wedge bounded by their supporting lines and containing both of them
does not contain any point of P in its interior. See Figure 2(i).

In fact, our general bound can be written as follows. Set X0(P ) = 1, X1(P ) = n, and
X2(P ) =

(n
2

)

. Intuitively, this says that the empty set is regarded as an empty convex
0-gon, each point of P is regarded as an empty convex 1-gon, and each edge spanned by
P is regarded as an empty convex 2-gon. Define Tr(P ), for r ≥ 2, to be the number of
r-tuples of vertex-disjoint edges e1, . . . , er spanned by P that lie in convex position, and are
such that the region τ(e1, . . . , er), formed by the intersection of the r halfplanes that are
bounded by the lines supporting e1, . . . , er and containing the other edges, has no point of
P in its interior. See Figure 3. We also extend this definition by putting T0(P ) = 0 and
T1(P ) = H(P ). Then our equalities can be written in the form

M∗
r (P ) :=

∑

k≥2r

(−1)k
k

r

(

k − r − 1

r − 1

)

Xk(P ) = Tr(P ),

for each r ≥ 0. However, we will use the former set of expressions, because the resulting
analysis is somewhat more natural, and also because M0 and M1 have been used in previous
works. We note that although we will consider sets of points in general position, a more
delicate analysis can show that the same arguments are valid to sets of points in degenerate
position as well (see Section 6 for more details).

The first equality (for M0(P )), given in Theorem 2.1 (as well as its extension to higher
dimensions—see below), has been earlier obtained by Edelman and Jamison in their survey
on convex geometries [9] (cited as an unpublished result of J. Lawrence, and independently
proven by the authors), and it also follows from a more general recent result of Edelman et
al. [11]. The second equality (for M1(P )), given in Theorem 2.2 below, has been recently
obtained by Ahrens et al. [1], using tools from matroid/greedoid theory specific to the
convex geometry defined by point sets in the plane. Nevertheless, they use elementary
geometric arguments (different from those in the present note). (Actually, the quantity
M1 + n − 2

(n
2

)

, which, by Theorem 2.2, is equal to the number of points of P interior
to its convex hull, is known as Crapo’s beta invariant for convex geometries arising from
Euclidean point configurations in a d-dimensional space.) Ahrens et al. conjectured the
extension of Theorem 2.2 to higher dimensions, as formulated in Theorem 4.2 below, and
this was later proved by Edelman and Reiner [10], using tools from algebraic topology, and
independently by Klain [20], using the theory of valuations on lattices of high-dimensional
polytopes. It should be emphasized that the results by Ahrens et al., Edelman and Reiner,
and Klain also apply to point configurations which are not in general position. A short
discussion of this case is given in the concluding Section 6.

In contrast, our proofs are simple and elementary, and can be extended to derive the
entire system of equalities for all the moments Mr(P ). This is done in Theorem 2.3. A
similar proof technique applies also to point sets in higher dimensions, and we demonstrate
this extension in Theorems 4.1 and 4.2. (As just discussed, these theorems, which extend
Theorems 2.1 and 2.2 to higher dimensions, were already obtained in [9, 10, 20], with consid-
erably more complicated proofs.) However, the proof technique for higher-order moments
does not extend so far to higher dimensions. We have recently learned that Valtr, in an
unpublished work [26], has also proved Theorems 2.1 and 2.2 using arguments similar to
ours.

As far as we can tell, bounding T2(P ) (or, for that matter, Tr(P ) for any r ≥ 3) is a
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problem that has not been considered before, and we regard it as a significant by-product
of our paper, to highlight this problem and to provide compelling motivation for its study
(this motivation will be discussed in more detail later).

We show that T2(P ) ≤ n(n − 1) − 2H(P ) (Theorem 3.1). Our analysis shows that any
upper bound on T2(P ) of the form (1 − c)n2, for any fixed c > 0, would yield improved
bounds for all three open problems (P3)–(P5) mentioned above (although it does not seem
to imply the existence of an empty convex hexagon).

An even more interesting problem is to bound the number T ∗
2 (P ) of convex empty

quadrilaterals that cannot be extended into a convex empty pentagon by adding a vertex
from P . Note that a quadrilateral abcd is counted in T ∗

2 (P ) if and only if both pairs of
opposite edges are T2-configurations; see Figure 2(ii). We show that T ∗

2 (P ) ≤
(

n
2

)

−H(P ).
We also establish several inequalities that involve T ∗

2 (P ) and the Xk(P )’s, and use them to
show that any upper bound on T ∗

2 (P ) of the form
(

1
2 − c

)

n2, for any fixed c > 0, will yield
improved lower bounds for Xk(P ), for k = 3, 4, 5, 6, that are related to problems (P3)–(P5).
We also provide the worst-case lower bounds 3

4n2 − O(n) for T2(P ), and 1
4n2 − O(n) for

T ∗
2 (P ).

Next, we derive inequalities involving the quantities Xk(P ). The main group of inequal-
ities are related to the moments Mr(P ). They assert that all the tails of the series defining
Mr(P ) are non-negative, for any r ≥ 0. More precisely, we have

Xt(P ) − Xt+1(P ) + Xt+2(P ) − · · · ≥ 0,

tXt(P ) − (t + 1)Xt+1(P ) + (t + 2)Xt+2(P ) − · · · ≥ 0,

for any t ≥ 3, and

t

r

(

t − r − 1

r − 1

)

Xt(P ) −
t + 1

r

(

t − r

r − 1

)

Xt+1(P ) +
t + 2

r

(

t − r + 1

r − 1

)

Xt+2(P ) − · · · ≥ 0,

for r ≥ 2 and for any t ≥ 2r.

Combining these inequalities with the closed-form expressions for the full series, we
obtain equivalent inequalities involving prefixes of these series. For example, we obtain that
X3(P )−X4(P )+ · · ·−Xt(P ) ≤

(n
2

)

−n+1 when t ≥ 4 is even, and X3(P )−X4(P )+ · · ·+
Xt(P ) ≥

(

n
2

)

− n + 1 when t ≥ 3 is odd.

Another collection of inequalities involves the first three numbers X3(P ),X4(P ),X5(P ).
Many, but not all of them, are obtained as direct implications of the prefix inequalities
noted above. The most significant among them are

X4(P ) ≥ X3(P ) −
n2

2
− O(n), and

X5(P ) ≥ X3(P ) − n2 − O(n).

They provide a strong connection (stronger than the one noted in [4]) between the three
problems (P3)–(P5). In particular, the constants c in (P4) and (P5) are at least as large as
the constant in (P3). In addition, we derive similar inequalities that also involve T2(P ) and
T ∗

2 (P ), and show, as promised above, that any upper bound on T2(P ) of the form (1− c)n2

would solve the three problems (P3)–(P5), and that a similar improvement in the upper
bound for T ∗

2 (P ) would have similar implications.
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In spite of all the equalities and inequalities that we have derived in this paper, the
problems (P3)–(P5), as well as the problem of the existence of an empty convex hexagon,
remain open. Nevertheless, it is our hope that the techniques that we have developed will
eventually facilitate progress on these hard problems.

2 The Vector of Empty Convex Polygons and its Moments

Let P be a set of n points in the plane in general position. For each k ≥ 3, let Xk(P )
denote the number of empty convex k-gons spanned by P . Recall that the r-th alternating
moment of P , for any r ≥ 0, is defined as

M0(P ) =
∑

k≥3

(−1)k+1Xk(P ), and

Mr(P ) =
∑

k≥3

(−1)k+1 k

r

(

k − r − 1

r − 1

)

Xk(P ), for r ≥ 1.

In this section we derive explicit expressions for all these moments. To simplify our no-
tations, we will usually drop P from them, and write Xk(P ) simply as Xk, and Mr(P )
as Mr (and similarly for the other notations H(P ), T2(P ), etc.). The expressions for M0

(Theorem 2.1) and for M1 (Theorem 2.2) are already known [1, 9, 10, 20]. However, as
discussed in the introduction, the proofs in [1, 9, 10, 20] are considerably more involved and
do not use elementary combinatorial techniques. In contrast, our proofs are much simpler
and elementary. The expressions for the Mr with r ≥ 2 (Theorem 2.3) are new, with the
same elementary proof technique.

Theorem 2.1. M0 =
(

n
2

)

− n + 1.

Proof: We claim that any continuous motion of the points of P which is sufficiently generic
does not change the value of M0. By “sufficiently generic” we mean that the points of P
remain distinct and in general position during the motion, except at a finite number of
critical times where exactly one triple of points becomes collinear. Clearly, until such a
collinearity occurs, M0 does not change.

Suppose that p, q, r ∈ P become collinear, with r lying between p and q. The only
convex polygons spanned by P whose emptiness (or convexity) status may change are those
that have both p and q (and possibly also r) as vertices, either just before or just after the
collinearity. Let Q be such a convex k-gon that does not have r as a vertex. See Figure 1.
If Q was empty before the collinearity and r is about to enter Q, then Q stops being empty,
and the (k + 1)-gon Q′, obtained by replacing the edge pq of Q by the polygonal path prq,
which was convex and empty just before the collinearity, stops being convex. Since the sizes
of Q and of Q′ differ by 1, their combined contribution to M0 is 0 before the collinearity
and 0 afterwards, so they do not affect the value of M0. Symmetrically, if r is about to exit
Q and is the only point in Q before the collinearity, then Q becomes newly empty, and Q′

becomes newly convex and empty. Again, this does not affect the value of M0. There is no
other kind of events that may affect the value of M0 at this critical configuration.

We may thus obtain the value of M0 by computing it for the case where P is in convex
position. In this case, we have Xk =

(n
k

)

, for any k ≥ 3. Hence,

M0 =
(n

3

)

−
(n

4

)

+
(n

5

)

− · · · =
(n

2

)

− n + 1,
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p q
r

Q

p

Q

r

q

Figure 1: The continuous motion argument in the proof of Theorem 2.1.

as asserted. �

In other words, M0 does not depend on the shape of P but only on its size. The situation
is not as simple for higher-order alternating moments, although it is still reasonably under
control:

Theorem 2.2. M1 = 2
(n

2

)

− H, where H is the number of edges of the convex hull of P .

Proof: Fix a directed edge e = pq whose endpoints belong to P , and define, for each k ≥ 3,
Xk(e) to be the number of empty convex k-gons that contain e as an edge and lie to the
left of e. Define

M0(e) =
∑

k≥3

(−1)k+1Xk(e).

It is easy to see that
∑

e M0(e) = 3X3 − 4X4 + 5X5 − · · · = M1. This follows from the
observation that each empty convex k-gon Q is counted exactly k times in

∑

e M0(e), once
for each of its edges. Moreover, arguing as in the proof of Theorem 2.1, the value of M0(e)
depends only on the number of points of P that lie to the left of e. This follows by a similar
continuous motion argument, in which the points to the left of e move in a sufficiently
generic manner, without crossing the line supporting e, while the endpoints of e, as well as
the points on the other side of e, remain fixed. If there are m points to the left of e, then
when these points, together with p and q, are in convex position, they satisfy

M0(e) =
(m

1

)

−
(m

2

)

+
(m

3

)

− · · · ,

which is 1 if m > 0, and 0 if m = 0, that is, if e is a clockwise-directed edge of the convex
hull of P . Since the total number of directed edges spanned by P is 2

(n
2

)

, it follows that

M1 =
∑

e

M0(e) = 2
(n

2

)

− H,

as asserted. �

Theorem 2.3. Mr = −Tr, for any r ≥ 2.

Proof: The proof is similar to that of Theorem 2.2. Here we fix r edges e1, . . . , er that
are spanned by P , have distinct endpoints, and are in convex position. For each choice of
e1, . . . , er with these properties and for each k ≥ 2r, define Xk(e1, . . . , er) to be the number
of empty convex k-gons that contain e1, . . . , er as edges. Note that this definition is void
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(i) (ii)

a

c

b

d

a

b

cd

Figure 2: (i) A pair of edges (ab, cd) that is counted in T2: They lie in convex position and
define an empty wedge. (ii) A quadrilateral abcd that is counted in T ∗

2 : Both wedges are
empty.

for k < 2r. Note also that we do not have to consider e1, . . . , er as directed edges (as we
did in the proof of Theorem 2.2). Define

M0(e1, . . . , er) =
∑

k≥2r

(−1)k+1Xk(e1, . . . , er).

Then, arguing in complete analogy to the case of M1, it follows from the definition of Mr

that
∑

e1,...,er
M0(e1, . . . , er) = Mr, where the sum is over all unordered r-tuples of distinct

edges with distinct endpoints in convex position. This follows from the fact that each empty

convex k-gon Q, for k ≥ 2r, is counted exactly k
r

(

k−r−1
r−1

)

times in
∑

e1,...,er
M0(e1, . . . , er),

once for each (unordered) r-tuple of vertex-disjoint edges of Q.

Moreover, as above, the value of M0(e1, . . . , er) depends only on the number m of points
of P that lie in the region τ(e1, . . . , er), as defined in the introduction. Again, this follows
by a continuous motion argument, in which the points in τ(e1, . . . , er) move in a sufficiently
generic manner, without crossing any of the lines bounding this region, while the endpoints
of e1, . . . , er, as well as the points of P outside τ(e1, . . . , er), remain fixed. If m is positive,
placing at least one of these m points in the interior of the convex hull of e1, . . . , er shows
that M0(e1, . . . , er) = 0, and if m = 0 then M0(e1, . . . , er) = −1, because in this case we
have X2r(e1, . . . , er) = 1 and Xk(e1, . . . , er) = 0 for all other values of k. Hence

Mr =
∑

e1,...,er

M0(e1, . . . , er) = −Tr,

where Tr is as defined in the introduction. �

Remark: We can obtain closed-form expressions for any alternating sum of the form
∑

k≥3(−1)k+1Cr(k)Xk, where r is an integer, and Cr(k) is a polynomial of degree r in k,
by expressing any such series as a linear combination of M0,M1, . . . ,Mr. Alternating sums
for which the corresponding linear combination has only non-negative coefficients are of
particular interest, because of the inequalities that we will later derive in Section 5, which
will then yield similar inequalities for the new sums too.
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e1

e2 e3

τ(e1, e2, e3)

Figure 3: A T3-configuration.

Some initial implications. One can solve the linear equations for M0,M1,M2, so as to
eliminate X3,X4,X5, and obtain the following three expressions for X3,X4,X5:

X3 = 2(n2 − 6n + 5) + 3H − T2 +
∑

k≥6

(−1)k
(k − 4)(k − 5)

2
Xk,

X4 =
5

2
(n2 − 7n + 6) + 5H − 2T2 +

∑

k≥6

(−1)k(k − 3)(k − 5)Xk, (1)

X5 = n2 − 7n + 6 + 2H − T2 +
∑

k≥6

(−1)k
(k − 3)(k − 4)

2
Xk.

When X6 = 0 (and thus Xk = 0 for every k ≥ 6), the solution becomes

X3 = 2(n2 − 6n + 5) + 3H − T2,

X4 =
5

2
(n2 − 7n + 6) + 5H − 2T2, (2)

X5 = n2 − 7n + 6 + 2H − T2.

In this case, since X5 ≥ 0, we have

T2 ≤ n2 − 7n + 6 + 2H ≤ n2 − 5n + 6.

(We will shortly derive a similar bound for T2 that holds in general.) Substituting this in
the expressions for X3,X4, we obtain (using the trivial estimate H ≥ 3)

X3 ≥ n2 − 5n + 4 + H ≥ n2 − 5n + 7,

X4 ≥
1

2
(n2 − 7n + 6) + H ≥

1

2
(n2 − 7n + 12).

As mentioned in the introduction, similar lower bounds (with slightly worse lower-order
terms) have been obtained by Bárány and Füredi [3] for the general case.

Another immediate implication of Theorems 2.1 and 2.2 is the following equality, which
holds when X6 = 0.

2X3 − X4 = 5M0 − M1 =
(3n − 10)(n − 1)

2
+ H. (3)
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Remarks. (1) One can also consider the elimination of X3,X4,X5,X6 from the four
equations for M0,M1,M2,M3. The resulting equations are:

X3 = 2(n2 − 6n + 5) + 3H − T2 + T3 +
∑

k≥7

(−1)k+1 (k − 4)(k − 5)(k − 6)

12
Xk,

X4 =
5

2
(n2 − 7n + 6) + 5H − 2T2 +

5

2
T3 +

∑

k≥7

(−1)k+1 (k − 2)(k − 5)(k − 6)

4
Xk, (4)

X5 = n2 − 7n + 6 + 2H − T2 + 2T3 +
∑

k≥7

(−1)k+1 (k − 1)(k − 4)(k − 6)

4
Xk,

X6 =
1

2
T3 +

∑

k≥7

(−1)k+1 k(k − 4)(k − 5)

12
Xk.

However, this does not lead to any further significant implication. In particular, so far
this approach does not appear to be productive for establishing the existence of a convex
empty hexagon (in any sufficiently large point set). However, since X6 ≥ 1

2T3, the following
inequality always holds:

∑

k≥7

(−1)k+1 k(k − 4)(k − 5)

12
Xk ≥ 0.

This is the tail of the series for M3, starting with the X7-term. This is a special case of a
general family of similar inequalities that we will derive in Section 5.

(2) The relation (3) provides a simple and fast one-sided test for the existence of an empty
convex hexagon in a given set P . That is, if the equality does not hold then P contains
an empty convex hexagon. Verifying the equality (3) can be done in time close to n4,
and perhaps further improvements are also possible. This may be a useful ingredient for a
program that searches for sets that do not contain an empty convex hexagon.

(3) As shown by Edelman et al. [11] (as a special case of a more general result), one can
construct a simplicial cell complex from the empty convex sets of any finite point set in R

d,
and show that this complex is homotopy equivalent to a point. This allows us to interpret
Theorem 2.1 as the Euler relation on that complex. This connection between convex empty
polygons spanned by a point set and simplicial complexes deserves further study.

3 An Upper Bound for T2 and Related Bounds

An upper bound for T2.

Theorem 3.1. T2 ≤ n(n − 1) − 2H.

Proof: Let au and bv be two segments with distinct endpoints a, b, u, v ∈ P and in convex
position, so that the clockwise order of their endpoints along their convex hull is either
a, u, b, v or a, v, b, u. Assume that this pair of edges forms an empty wedge, that is, (au, bv)
forms a T2-configuration. Assuming a generic coordinate system, we charge this configu-
ration to the diagonal (ab or uv) whose right endpoint is the rightmost among a, u, b, v.
Assume that this diagonal is ab and that a is its right endpoint, as illustrated in Figure 4.

9



au

v

b

Figure 4: A T2-configuration and the charged diagonal ab.

In the configuration depicted in the figure, ~au lies counterclockwise to ~ab, and ~bv lies
counterclockwise to ~ba. The segment ab can also be charged by configurations for which ~au
lies clockwise to ~ab, and ~bv lies clockwise to ~ba. We refer to the first type of configurations
as counterclockwise charges (of the configuration to ab), and to the second type as clockwise
charges.

We claim that a segment ab can receive at most one clockwise charge and at most one
counterclockwise charge by a T2-configuration of which it is the diagonal with the rightmost
right endpoint. In addition, segments ab that are edges of the convex hull of P cannot
receive any charge. The claim thus implies that

T2 ≤ 2
((n

2

)

− H
)

= n(n − 1) − 2H.

In the proof of the claim, we assume to the contrary that ab receives two, say, counterclock-
wise charges, and denote the two charging configurations as (au, bv), (au′, bv′). It is easily
verified that u 6= u′ and v 6= v′ (in fact it suffices to verify that either u 6= u′ or v 6= v′).

a

b

u′
H1

H2
v′

v

Figure 5: v has to lie in H1.

The halfplane H1 to the right of ~au′ has to contain v, because u′ and v lie to the left
of a, and H1 contains b. See Figure 5. Hence, the halfplane H2 to the right of ~bv′ cannot
contain v (or else v would lie in the wedge determined by au′ and bv′). Since H2 contains
a, v′ must lie in the wedge between ~ba and ~bv, and since v′ lies to the left of a, it must lie
in the wedge determined by au and bv, a contradiction. �
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Attempting to improve the bound. An attempt to strengthen Theorem 3.1 proceeds
as follows. Let ab be an edge that receives both a clockwise charge and a counterclockwise
charge as the diagonal with the rightmost endpoint in two respective T2-configurations
(au, bv), (au′, bv′). It is easily seen that, because of the properties of T2-configurations, au
and bv′ must cross each other (including the possibility that u = v′), and similarly for au′

and bv.

We obtain either the situation shown in Figure 6(a), in which a, v′, u, b, u′, v form a
convex hexagon, or the situation in Figure 6(b), in which a, v′, u, b, v and a, v′, b, u′, v are
convex pentagons, or the situations in Figure 6(c,d) discussed below.

Indeed, we first claim that the line ℓvv′ that supports vv′ separates a and b. This follows
since both v and v′ lie to the left of a and on different sides of ab. The only situation in
which ℓvv′ does not separate a and b is when the quadrilateral av′bv is not convex at b,
as shown in Figure 7. But then, since au and bv′ intersect, aubv would not be convex, a
contradiction that implies the claim.

b

u

u′

v′

v

v′

v

(a)

u′

b

u

(b)

a a
u

v

a

b

(c)

u

u′

v
b

a

(d)

Figure 6: The various cases in the refined analysis of T2.

a
u

v

v′

b

ℓvv′

Figure 7: Showing that ℓvv′ must separate a and b.

Now the situation depends on whether the line ℓuu′ that supports uu′ separates a and b.
If it does (as shown in Figure 6(a)) then we get a convex hexagon. If ℓuu′ does not separate
a and b (as shown in Figure 6(b)) then we get the above two convex pentagons. It is also
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possible that either u = v′ or v = u′ or both; see Figure 6(c,d). If both coincidences occur
(Figure 6(c)), aubv is an empty convex quadrilateral that cannot be extended to an empty
convex pentagon, so it forms a T ∗

2 -configuration. If only one of these coincidences occurs,
say u = v′ (Figure 6(d)), then aubu′v is a convex pentagon.

Although the convex hexagon in case (a), or the two convex pentagons in case (b),
or the single convex pentagon in case (d), need not be empty, we claim that they can be
replaced by empty ones. Consider for example the situation in Figure 6(a), reproduced
in Figure 8. Any point of P that is interior to av′ubu′v must lie in one of the triangles
∆(uxv′) and ∆(vyu′) (where x is the intersection point of the segments bv′ and au, and y
is the intersection point of bv and au′). Suppose that ∆(uxv′) does contain a point of P in
its interior, and consider the convex hull of all the points of P in the interior of ∆(uxv′),
including u and v′. Let u′′v′′ be any edge of that hull, other than v′u. Apply a symmetric
argument to ∆(vyu′) to obtain an edge u′′′v′′′ of the corresponding hull (assuming it to be
nonempty). It is now easy to check that av′′u′′bu′′′v′′′ is an empty convex hexagon, having
ab as a main diagonal and a as the rightmost vertex, and we charge our T2-configuration to
this hexagon. (The cases where one of the two hulls in ∆(uxv′) and ∆(vyu′) is empty, or
both are empty, are handled in exactly the same manner.)

y

u′

x

a

v′

v

b

u

Figure 8: Charging the configuration in case (a) to an empty hexagon.

In a completely analogous manner, any of the pentagons in cases (b) and (d), if nonempty,
can be replaced by an empty convex pentagon that has ab as a diagonal and a as the right-
most vertex.

This analysis allows us to “redirect” one of the clockwise and counterclockwise charges
made to ab, to the resulting empty hexagon, to the one or two resulting empty pentagons,
or to a T ∗

2 -configuration. Clearly, each empty hexagon is charged in this manner at most
once (because it has only one main diagonal that emanates from its rightmost vertex), each
empty pentagon is charged at most twice (once for each of the two diagonals that emanate
from its rightmost vertex), and each T ∗

2 -configuration is charged once. We thus conclude:

T2 ≤
(n

2

)

− H + 2X5 + X6 + T ∗
2 . (5)

An interesting consequence of (5) is the following result, obtained by plugging (5) into the
expression for X5 in (1):

12



Corollary 3.2.

X5 ≥
1

3

[

n2 − 13n + 12

2
+ 3H − X6 − T ∗

2 −
∑

k≥6

(−1)k+1 (k − 3)(k − 4)

2
Xk

]

.

In particular, if X7 = 0 then

X5 ≥
1

3

[

n2 − 13n + 12

2
+ 3H + 2X6 − T ∗

2

]

.

Thus, any upper bound for T ∗
2 that is significantly smaller than

(

n
2

)

(compare with (6)
below) would result in a quadratic lower bound for X5 for point sets with no empty convex
heptagons, such as the Horton sets. Later, in Section 5, we will obtain a similar result,
without having to assume that X7 = 0.

An easy upper bound (in view of the proof of Theorem 3.1) for T ∗
2 is

T ∗
2 (P ) ≤

1

2
T2(P ) ≤

(n

2

)

− H. (6)

As already mentioned, we will later show that improving the constant in the quadratic term
in this bound would lead to improved lower bounds involving X3,X4, and X5, and several
other implications. An observation that perhaps makes the analysis of T ∗

2 particularly
interesting is that T ∗

2 (P ) = 0 when P is a set of n ≥ 5 points in convex position. In other
words, in the situation where the parameters Xk(P ) attain their maximum values, T ∗

2 (P )
attains its minimum value 0.

Lower bounds. Figure 9 depicts a set P of an even number n of points for which T ∗
2 (P ) =

1
4(n − 2)2 and T2(P ) = 1

2(n − 2)2 + 1
4(n − 4)(n − 6) = 3

4n2 − 9
2n + 8: There are 1

4(n − 2)2

quadrilaterals spanned by a pair of edges, one on the lower hull of the points on the upper
curve and one on the upper hull of the points on the lower curve. Each such quadrilateral
gives rise to one T ∗

2 -configuration and to two T2-configurations. In addition, each chain has
n
2 − 1 edges, and every vertex-disjoint pair of them yields a T2-configuration, for a total of

2 ·

( n
2 − 2

2

)

=
1

4
(n − 4)(n − 6)

additional T2-configurations.

Figure 9: Lower bounds for T2 and T ∗
2 .
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4 Higher Dimensions

We next show that Theorems 2.1 and 2.2 can be extended to point sets in any dimension
d ≥ 3.

Let P be a set of n points in R
d in general position. For each k ≥ d+1, let Xk = Xk(P )

denote the number of empty convex k-vertex polytopes spanned by P ; these are convex
polytopes with k vertices, all belonging to P , such that their interiors contain no point of
P . Similarly to the planar case, define the r-th alternating moment of P , this time only for
r = 0, 1, to be

M0 = M0(P ) =
∑

k≥d+1

(−1)k+d+1Xk,

M1 = M1(P ) =
∑

k≥d+1

(−1)k+d+1kXk.

It is not clear what is the most natural way of defining higher-order moments in d-space.
Besides, so far our analysis does not extend to higher-order moments.

Theorem 4.1. M0 =
(n

d

)

−
(

n
d−1

)

+ · · · + (−1)d−1n + (−1)d.

Proof: As in the planar case, we claim that any continuous motion of the points of P which
is sufficiently generic does not change the value of M0. By “sufficiently generic” we mean
here that the points of P remain distinct and in general position during the motion, except
at a finite number of critical times where d + 1 points get to lie in a common hyperplane
(but do not lie in any common lower-dimensional flat), and no other point lies on this
hyperplane. Clearly, until such a criticality occurs, M0 does not change.

Suppose that p1, p2, . . . , pd+1 ∈ P get to lie in a common hyperplane h0. By Radon’s
theorem, there exists a partition of the set P0 = {p1, . . . , pd+1} into two nonempty subsets
A∪B, so that conv(A)∩conv(B) 6= ∅. Suppose first that neither A nor B is a singleton. We
claim that in this case the set of empty convex polytopes spanned by P does not change,
except that the face lattices of some of these polytopes may change. This follows from the
observation that, unless A or B is a singleton, P0 is in convex position within h0, since no
point lies in the convex hull of the other d points.

So assume, without loss of generality, that pd+1 becomes interior to the (d− 1)-simplex
σ spanned by p1, . . . , pd. Let K be a convex polytope spanned by P , some of whose vertices
belong to P0. It can be checked that the only case where the emptiness or convexity of K
can be affected by the critical event is when all the points p1, . . . , pd are vertices of K, and,
with the possible exception of pd+1, it contains no other point of P . Assume that pd+1 is not
a vertex of K. Let K ′ denote the polytope obtained by adding pd+1 to K as a vertex, and
by replacing σ by the d simplices that connect pd+1 to the facets of σ. Then, if pd+1 crosses
the relative interior of σ into (respectively, out of) K then K stops (respectively, starts)
being empty. Moreover, if K starts being empty, then so does K ′ (which has just become
convex), and if K stops being empty, then K ′ stops being convex altogether. In either case,
we obtain two convex polytopes that differ in one vertex, which are simultaneously added
to the set of empty convex polytopes or simultaneously removed from that set. In either
case, M0 does not change.

14



Since M0 does not change during such a continuous motion, it suffices to calculate its
value when P is in convex position. Thus

M0 =

(

n

d + 1

)

−

(

n

d + 2

)

+

(

n

d + 3

)

− · · · =

(n

d

)

−

(

n

d − 1

)

+ · · · + (−1)d−1n + (−1)d,

as asserted. �

In other words, as in the planar case, M0 does not depend on the shape of P but only
on its size. Next, we generalize Theorem 2.2 to the higher-dimensional case.

Theorem 4.2. For a set P of n points in R
d in general position, we have

M1 = d
(n

d

)

− (d − 1)

(

n

d − 1

)

+ . . . + (−1)d+1n + I,

where I is the number of points of P that are interior to the convex hull of P .

Proof: Fix an oriented (d−1)-simplex f = p1p2 . . . pd spanned by P , and define Xk(f), for
each k ≥ d + 1, to be the number of empty convex k-vertex polytopes that contain f as a
facet and lie in the positive side of f . Define

M0(f) =
∑

k≥d+1

(−1)k+d+1Xk(f).

Arguing as in the proof of Theorems 2.1 and 4.1, the value of M0(f) depends only on the
number of points of P that lie in the positive side of f . This follows by a similar continuous
motion argument, in which the points in the positive side of f move in a sufficiently generic
manner, without crossing the hyperplane supporting f , while the vertices of f , as well as
the points in the negative side of f , remain fixed. If there are m points in the positive side
of f then, when they lie in convex position together with the vertices of f , they satisfy

M0(f) =
(m

1

)

−
(m

2

)

+
(m

3

)

− · · · ,

which is 1 if m > 0, and 0 if m = 0, that is, if f is a negatively-oriented facet of the convex
hull of P .

We perform a sufficiently generic continuous motion of the points of P , and keep track
of the changes in the value of M1 as the points move. We claim that the value of M1 − I
does not change during the motion.

Clearly, the set of empty convex polytopes of P does not change until some d+1 points
of P , say, p1, . . . , pd+1, get to lie in a common hyperplane h. Arguing as in the proof of
Theorem 4.1, the set of empty convex polytopes in P changes only if one of the points, say
pd+1, lies in the interior of the (d− 1)-simplex f defined by p1, . . . , pd. Observe that as long
as this does not happen, I also remains unchanged. Hence, consider a critical event of the
above kind, and assume that pd+1 crosses f from its negative side to its positive side. As
argued in the proof of Theorem 4.1, the only convex k-vertex polytopes whose emptiness
or convexity status may change at this criticality are those that have p1, . . . , pd as vertices.
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Let K be such a k-vertex polytope which does not have pd+1 as a vertex. Then f must be
a facet of K, for otherwise K would contain pd+1 in its interior both before and after the
crossing of f by pd+1.

If K was empty before the crossing, then K must lie in the positive halfspace determined
by f , and it stops being empty after the crossing. Moreover, in this case K ′, as defined in
the proof of Theorem 4.1, was an empty convex (k + 1)-polytope before the crossing, and
stops being convex after the crossing, so it is no longer counted in M1 after the crossing.
Therefore, K causes each of Xk and Xk+1 to change by −1 , and thus causes M1 to change
by −((−1)k+d+1k + (−1)k+d+2(k + 1)) = (−1)k+d+1.

If K becomes empty after the crossing, then K lies in the negative halfspace determined
by f . Observe that K contained pd+1 in its interior before the crossing, and thus was not
empty then. Moreover, K ′ is a newly generated empty convex (k + 1)-polytope after the
crossing. Therefore, K causes each of Xk and Xk+1 to change by +1 , and thus causes M1

to change by ((−1)k+d+1k + (−1)k+d+2(k + 1)) = (−1)k+d.

It follows that the crossing causes the value of M1 to change by M0(f
+) − M0(f

−),
where f+ = f and f− is the oppositely oriented copy of f , and where both M0(f

−) and
M0(f

+) are calculated with respect to P \ {pd+1}.

If pd+1 is an internal point of conv(P ), both before and after the crossing, then there are
points of P \ {pd+1} on both sides of f , so that both M0(f

−) and M0(f
+) are 1, implying

that M1 remains unchanged by the crossing, and clearly so does I. Hence M1 − I remains
unchanged.

If pd+1 was an extreme point of conv(P ) before the crossing, then there are points of
P \ {pd+1} only on the positive side of f or on f itself. Hence we have M0(f

−) = 0 and
M0(f

+) = 1 and so M1 increases by 1. However, I also increases at the same time by 1
since pd+1 becomes an interior point after the crossing (we ignore the easy case where P
is a simplex in R

d). Therefore, M1 − I remains unchanged in this case too. A completely
symmetric analysis handles the case where pd+1 becomes an extreme point of P after the
crossing.

It is easy to check that if the points of P are in convex position then I = 0 and

M1 = d
(

n
d

)

− (d − 1)
(

n
d−1

)

+ . . . + (−1)d+1n. This completes the proof of the theorem. �

Remarks: (1) An interesting open problem is to extend Theorems 4.1 and 4.2 to higher-
order moments. The current proof technique does not seem to yield such an extension.

(2) Consider the following variant of the problem, in which Xk(P ) is the number of empty
convex polytopes spanned by P that have k facets (rather than k vertices). Can one obtain
equalities similar to those in Theorems 4.1 and 4.2 for this setup? In the plane, any polygon
with k vertices also has k edges (facets), and vice versa. In three dimensions, assuming
general position, the number of facets is always 2k − 4, where k is the number of vertices.
Hence, Theorems 4.1 and 4.2 extend easily to the case where we count k-facet empty convex
polytopes. However, in higher dimensions, the connection between the number of vertices
and the number of facets of a convex polytope is much less constrained; see, e.g., [27].
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5 Inequalities Involving the Xk’s

In this section we derive a variety of inequalities that involve the parameters Xk(P ). The
main collection of inequalities involves tails and prefixes of the series that define the moments
M0,M1, . . .. For simplicity of presentation, we first consider inequalities related to M0 and
M1, and then study the general case involving Mr, for r ≥ 2.

5.1 Head and tail inequalities for M0 and M1

Theorem 5.1. For any finite point-set P in general position in the plane, and for each
t ≥ 3, we have

Xt(P ) − Xt+1(P ) + Xt+2(P ) − · · · ≥ 0, (7)

tXt(P ) − (t + 1)Xt+1(P ) + (t + 2)Xt+2(P ) − · · · ≥ 0,

with equality holding, in either case, if and only if Xt(P ) = 0.

Recalling Theorems 2.1 and 2.2, an equivalent formulation of the theorem is given by

Theorem 5.2. For any finite point-set P in general position in the plane, we have, for
each t ≥ 3 odd,

X3(P ) − X4(P ) + X5(P ) − · · · + Xt(P ) ≥
(n

2

)

− n + 1, (8)

3X3(P ) − 4X4(P ) + 5X5(P ) − · · · + tXt(P ) ≥ 2
(n

2

)

− H,

and for each t ≥ 4 even,

X3(P ) − X4(P ) + X5(P ) − · · · − Xt(P ) ≤
(n

2

)

− n + 1, (9)

3X3(P ) − 4X4(P ) + 5X5(P ) − · · · − tXt(P ) ≤ 2
(n

2

)

− H,

with equality holding, in either case, if and only if Xt+1(P ) = 0.

We will prove the latter Theorem 5.2. The proof is based on the following lemma.

Lemma 5.3. Let p, q ∈ P be two distinct points, and let e = ~pq be the directed segment that
they span. Assume that there is at least one point of P to the left of e. For each k ≥ 3, let
Xk(e) denote the number of empty convex k-gons that are contained in the closed halfplane
to the left of e, and have e as an edge. Then X3(e) − X4(e) + · · · − Xt(e) ≤ 1, if t ≥ 4 is
even, and X3(e)−X4(e) + · · ·+ Xt(e) ≥ 1, if t ≥ 3 is odd. Moreover, in both cases equality
holds if and only if Xt+1(e) = 0.

Proof: First, we have shown in the proof of Theorem 2.2 that the “infinite” sum X3(e) −
X4(e) + X5(e) − · · · = 1 (for edges e with at least one point of P to their left). Therefore,
if Xt+1(e) = 0, then Xj(e) = 0 for all j ≥ t + 1, and the equality in the lemma follows.

We prove the lemma by induction on t. For t = 3 we have X3(e) ≥ 1 because there is at
least one point of P to the left of e. Moreover, if X3(e) = 1, then X4(e) = 0, for otherwise
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the two vertices of an empty convex quadrilateral “sitting” on e would give rise to two empty
triangles sitting on e. The converse argument, that X4(e) = 0 implies X3(e) = 1, will follow
from the treatment of general values of t, given below. Since the induction argument relates
Xt to Xt−2, we also need to establish the lemma for t = 4, which will be done shortly, after
preparing the required machinery.

Let t ≥ 4, and assume that the lemma holds for all t′ < t. Let P+
pq = {y1, . . . , ym} denote

the set of all points yi of P that lie to the left of e, and are such that the triangle pqyi is
empty (note that m = X3(e)). Observe that if K is an empty k-gon that lies to the left of
e and has e as an edge, then the other vertices of K must belong to P+

pq. It is easy to see
that the set P+

pq is linearly ordered so that yi ≺ yj if yj lies in the right wedge with apex yi

formed by the lines pyi and qyi (i.e., yj lies to the right of the directed lines ~pyi and ~qyi).
We assume without loss of generality that the points of P+

pq are enumerated as y1, . . . , ym

in this order. See Figure 10.

p q

yi yj

Wij

e

yi+1

yj−1

Figure 10: The region Wij

Note first that for any i < m, pyiyi+1q is a convex empty quadrilateral. Hence we have
X4(e) ≥ X3(e) − 1. In particular, this establishes the inequality asserted in the lemma for
t = 4. If X4(e) = X3(e) − 1 then we must have X5(e) = 0, for otherwise we can obtain at
least one additional empty convex quadrilateral, involving non-consecutive vertices yi, yj ,
from an empty convex pentagon “sitting” on e; see Figure 11.

qp

yj
yi

e

Wij

yk

Figure 11: An empty convex pentagon yields an empty convex quadrilateral pyiyjq, with
yi, yj non-consecutive.
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For each 1 ≤ i < j ≤ m, let Wij denote the open region formed by the intersection of
the three halfplanes lying respectively to the right of ~pyi and to the left of ~yiyj and ~qyj.
See Figure 10. Let K be any empty convex k-gon which lies to the left of e and has e as
an edge. If K is not a triangle, let yi (respectively, yj) be the vertex of K that is adjacent
to p (respectively, to q). Clearly, pyiyjq forms an empty convex quadrilateral. Moreover,
the other vertices of K belong to P+

pq, lie in Wij, and together with yi, yj they form an
empty convex (k − 2)-gon. The converse is also true, namely, if pyiyjq is an empty convex
quadrilateral, then there is a one-to-one correspondence between empty convex k-gons in
which yi, p, q, yj are consecutive vertices (in counterclockwise order), and empty convex
(k − 2)-gons formed by points of P+

pq ∩ Wij and having yi, yj as (consecutive) vertices. As
a matter of fact, in this case the points of P+

pq that are contained in Wij are precisely

yi+1, . . . , yj−1. Indeed, Wij = W
(R)
i ∩W

(L)
j \Q, where W

(R)
i is the right wedge with apex yi

formed between the lines pyi and qyi, W
(L)
j is the left wedge with apex yj formed between

the lines pyj and qyj, and Q is the quadrilateral yipqyj; see Figure 10. The claim is then
immediate from the definition of the linear order and from the fact that Q is empty.

For each pair of indices i < j, let X
(i,j)
k denote the number of empty convex k-gons

whose vertices belong to P+
pq ∩ Wij and that have yi, yj as vertices. Put Fij = X

(i,j)
3 −

X
(i,j)
4 + · · · + (−1)t−1X

(i,j)
t−2 . Then

X5(e) − X6(e) + X7(e) + · · · + (−1)t+1Xt(e) =
∑

i,j

Fij , (10)

where the sum extends over all i < j such that the quadrilateral pyiyjq is empty.

Case 1: t is even.

By induction hypothesis, if P+
pq ∩ Wij is nonempty, then Fij ≤ 1. If P+

pq ∩ Wij = ∅ then
Fij = 0, by definition.

There are exactly X4(e) pairs yiyj such that the quadrilateral pyiyjq is empty and
convex. Among these, exactly X4(e)− (X3(e)− 1) are such that i < j − 1; this follows from
the fact, already noted above for the case t = 4, that all quadrilaterals pyiyi+1q are empty,
for i < m. Note that, for an empty quadrilateral pyiyjq, i < j − 1 if and only if P+

pq ∩Wij is
nonempty. Hence, the left-hand side of (10) is at most the number of empty quadrilaterals
pyiyjq with i < j − 1; that is, it is at most X4(e) − (X3(e) − 1).

Before continuing, we note that this argument implies that when X4(e) = 0 we must
have X3(e) = 1, which is the missing ingredient in the proof of the lemma for t = 3. Note

also that if X5(e) = 0 then X
(i,j)
3 = 0 for every i < j for which pyiyjq is empty. Hence the

only such empty quadrilaterals are those with i = j − 1. By the preceding argument, this
implies that X4(e) = X3(e) − 1, which is the missing ingredient in the proof for t = 4.

Hence, we have
X3(e) − X4(e) + X5(e) − · · · − Xt(e) ≤

X3(e) − X4(e) + (X4(e) − (X3(e) − 1)) = 1.

If equality holds, then Fij = 1 whenever P+
pq ∩ Wij is nonempty and pyiyjq is empty. By

the induction hypothesis, X
(i,j)
t−1 = 0 for all such i, j. If P+

pq ∩ Wij is empty, then clearly

X
(i,j)
t−1 = 0. Therefore, X

(i,j)
t−1 = 0 for every i < j for which pyiyjq is empty. This, in turn,
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implies that Xt+1 = 0 (since the existence of an empty convex (t+1)-gon of this kind would

imply that X
(i,j)
t−1 > 0 for some i and j of this kind).

Case 2: t is odd.

By induction hypothesis, if P+
pq ∩ Wij is nonempty, then Fij ≥ 1. Hence, in complete

analogy to Case 1,
X3(e) − X4(e) + X5(e) − · · · + Xt(e) ≥

X3(e) − X4(e) + (X4(e) − (X3(e) − 1)) = 1.

The case of equality is handled in the same way as in Case 1. �

We next proceed to prove Theorem 5.2 (and Theorem 5.1), in two steps.

Proof of the M0-inequalities in Theorem 5.2: First, observe that, by Theorem 2.1, if
Xt+1 = 0 then equality holds in our theorem.

Let K be an empty convex k-gon. Let p be the lowest vertex of K, and let a, b be the
vertices of K adjacent to p. The triangle pab is clearly empty, and the (k− 1)-gon obtained
from K by removing the vertex p is contained in the wedge Wpab whose apex is p and which

is delimited by the rays ~pa and ~pb. See Figure 12. The converse is also true, namely, there
is a one-to-one correspondence between the empty convex k-gons whose lowest vertex is p,
and the empty convex (k − 1)-gons that have two consecutive vertices a, b that lie above
p, so that their remaining vertices are contained in the wedge Wpab and pab is an empty
triangle.

p

a

∆
b

K

Wpab = W∆

Figure 12: Shaving off the lowest triangle from an empty convex k-gon.

For each empty triangle ∆ = pab, let X
(∆)
k denote the number of empty convex k-gons

contained in W∆ = Wpab, having the upper edge of ∆ as an edge, and separated from

p by that edge. Put F (∆) = X
(∆)
3 − X

(∆)
4 + · · · + (−1)tX

(∆)
t−1 . Then, by the one-to-one

correspondence that we have just argued, −X4 +X5−X6 + · · ·+(−1)t+1Xt = −
∑

∆ F (∆).

Case 1: t is odd.

We apply Lemma 5.3 to P ′ = P ∩W∆, for each empty triangle ∆ such that W∆ contains
at least one point of P in its interior, using the clockwise-directed top edge of ∆ as the
edge e in the lemma. We thus conclude that F (∆) ≤ 1 for any such triangle ∆. We claim
that there are exactly 1 + 2 + 3 + · · · + (n − 2) =

(

n
2

)

− n + 1 empty triangles ∆ such that
W∆ does not contain any additional point of P . Indeed, sort the points of P in decreasing
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y-order, and enumerate them as p1, . . . , pn in this order. Fix a point pi, and sort the higher
points p1, . . . , pi−1 in angular order about pi. The empty triangles ∆ with pi as their lower
vertex and with W∆ ∩ P = ∅, are precisely those whose other two vertices are consecutive
points in this angular order, and their number is thus i− 2. Summing over all i = 3, . . . , n,
we obtain the claim. Then we have

X3 − X4 + X5 − X6 + · · · + Xt = X3 −
∑

∆

F (∆) ≥

X3 − |{∆ | ∆ empty and W∆ not empty}| =
(n

2

)

− n + 1.

If equality holds, then F (∆) = 1 for every empty triangle ∆ with W∆ nonempty. By

Lemma 5.3 (applied to P ′ = P ∩ W∆), X
(∆)
t = 0 for any such ∆. Clearly, X

(∆)
t = 0 for an

empty triangle ∆ with W∆ empty. Therefore, X
(∆)
t = 0 for every empty triangle ∆, which

implies that Xt+1 = 0 (since every empty convex (t + 1)-gon gives rise to an empty triangle

∆ with X
(∆)
t > 0).

Case 2: t is even.

Applying Lemma 5.3 for each empty triangle ∆ such that W∆ contains at least one
additional point, as in the case where t is odd, we conclude that F (∆) ≥ 1 for any such
triangle ∆. As in Case 1, there are exactly

(n
2

)

− n + 1 empty triangles ∆ such that W∆

does not contain any additional point of P . Then

X3 − X4 + X5 − X6 + · · · + Xt = X3 −
∑

∆

F (∆) ≤

X3 − |{∆ | ∆ empty and W∆ not empty}| =
(n

2

)

− n + 1.

The case of equality is handled in the same way as in Case 1. �

Proof of the M1-inequalities of Theorem 5.2: First, observe that if Xt+1 = 0, then
Theorem 2.2 implies that equality holds.

Let p, q ∈ P be two distinct points and let e = −→pq be the directed segment that they
span. Let Xk(e) denote, as in Lemma 5.3, the number of empty convex k-gons which have
e as an edge and are to the left of e.

As in the proof of Theorem 2.2, it is easy to see that

3X3 − 4X4 + 5X5 − · · · + (−1)t+1tXt =

∑

e

(

X3(e) − X4(e) + X5(e) − · · · + (−1)t+1Xt(e)
)

.

Case 1: t is odd.

By Lemma 5.3, X3(e) − X4(e) + · · · + Xt(e) ≥ 1, if there is at least one point of P to
the left of e, or in other words, if e is not an edge of the convex hull of P (with P lying to
its right). If e is such a hull edge, then of course X3(e) − X4(e) + · · · + Xt(e) = 0. Hence,

3X3 − 4X4 + 5X5 − · · · + (−1)t+1tXt =

∑

e

(X3(e) − X4(e) + X5(e) − · · · + Xt(e)) ≥ 2
(n

2

)

− H.
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If equality holds, then X3(e) − X4(e) + . . . + Xt(e) = 1 for every edge e which is not an
edge of the convex hull of P . By Lemma 5.3, Xt+1(e) = 0 for these edges. It follows that
Xt+1(e) = 0 for every edge e and consequently Xt+1 = 0.

Case 2: t is even.

By Lemma 5.3, X3(e) − X4(e) + . . . − Xt(e) ≤ 1, if e is not an edge of the convex hull
of P (with P lying to its right). Otherwise the sum is 0. The proof now proceeds exactly
as in the case of odd t, except that the direction of the inequalities is reversed. �

5.2 Head and tail inequalities for general Mr

Theorems 5.1 and 5.2 can be extended to sums related to higher order moments. Specifically,
we have:

Theorem 5.4. For any finite point-set P in general position in the plane, for any r ≥ 2
and for any t ≥ 2r, we have

∑

k≥t

(−1)k+t k

r

(

k − r − 1

r − 1

)

Xk(P ) ≥ 0,

with equality holding if and only if Xt(P ) = 0. Alternatively,

t
∑

k=2r

(−1)k
k

r

(

k − r − 1

r − 1

)

Xk(P ) ≤ Tr, for t ≥ 2r + 1 odd, and

t
∑

k=2r

(−1)k
k

r

(

k − r − 1

r − 1

)

Xk(P ) ≥ Tr, for t ≥ 2r even,

with equality holding, in either case, if and only if Xt+1(P ) = 0.

The proof uses an appropriate extension of Lemma 5.3 that involves r edges instead of
one. To make it easier to follow the analysis, we first give the extension to r = 2 edges, use
it to prove the theorem for this special case, and then analyze the general case.

The case r = 2.

Lemma 5.5. Let e1 = ab and e2 = cd be a fixed pair of edges with endpoints a, b, c, d ∈ P ,
such that e1 and e2 are in convex position, with their endpoints lying in counterclockwise
order a, b, c, d, and such that they span an empty convex quadrilateral Q. Assume further
that the wedge τ(e1, e2) bounded by the lines supporting e1 and e2 and containing these
edges, has at least one point of P in its interior. For each k ≥ 4, let Xk(e1, e2) denote the
number of empty convex k-gons that have e1 and e2 as edges. Then

X4(e1, e2) − X5(e1, e2) + · · · + Xt(e1, e2) ≥ 0, for t ≥ 6 even, and

X4(e1, e2) − X5(e1, e2) + · · · − Xt(e1, e2) ≤ 0, for t ≥ 5 odd.

For t = 4, the sum is 1. Moreover, equality holds, in either case, if and only if Xt+1(e1, e2) =
0.
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Proof: As shown in the proof of Theorem 2.3, the “infinite” sum X4(e1, e2)−X5(e1, e2)+· · ·
is 0 (when τ(e1, e2) is nonempty). Hence if Xt+1(e1, e2) = 0 then equality holds (in either
case).

Let τcb denote the portion of τ(e1, e2) that lies to the left of ~cb, and let τad denote
the portion of τ(e1, e2) that lies to the left of ~ad. See Figure 13. Put Pcb = P ∩ τcb and
Pad = P ∩ τad.

a b

c
d

Q
τad τcb

τ(e1, e2)

Figure 13: The structure in the proof of Lemma 5.5.

For any convex k-gon K that has e1 and e2 as edges, its vertices are a, b, c, d, j points of
Pcb, for some 0 ≤ j ≤ k− 4, that, together with b and c, span an empty convex (j + 2)-gon,
and k−4−j points of Pad that, together with a and d, span an empty convex (k−j−2)-gon.
Conversely, any pair of an empty convex (j +2)-gon K1, whose vertices are b, c and j points
of Pcb, and an empty convex (k− j− 2)-gon K2, whose vertices are a, d and k− j − 4 points
of Pad, are such that K1 ∪ Q ∪ K2 is an empty convex k-gon.

Borrowing the notations of Lemma 5.3, we thus have

Xk(e1, e2) =

k−4
∑

j=0

Xj+2(cb)Xk−j−2(ad),

where Xj+2(cb) is computed only with respect to the points in Pcb, and similarly for
Xk−j−2(ad). We use here the convention that X2(e) = 1 for any edge e; that is, we regard
e as an empty convex 2-gon. Hence

St :=

t
∑

k=4

(−1)kXk(e1, e2) =

t
∑

k=4

(−1)k
k−4
∑

j=0

Xj+2(cb)Xk−j−2(ad)

=

t−4
∑

j=0

[

(−1)j+2Xj+2(cb)

t
∑

k=j+4

(−1)k−j−2Xk−j−2(ad)

]

.

We replace k by k′ + j + 2, and then replace j by j′ − 2, to obtain

St =
t−4
∑

j=0

[

(−1)j+2Xj+2(cb)

t−j−2
∑

k′=2

(−1)k
′

Xk′(ad)

]

=
t−2
∑

j′=2

[

(−1)j
′

Xj′(cb)

t−j′
∑

k′=2

(−1)k
′

Xk′(ad)

]

.

By assumption, at least one of the sets Pcb, Pad is nonempty. Without loss of generality,
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assume that Pad 6= ∅. By Lemma 5.3, we have

t−j′
∑

k′=2

(−1)k
′

Xk′(ad)











≥ 0 t − j′ ≥ 4 is even,

≤ 0 t − j′ ≥ 3 is odd,

= 1 t − j′ = 2.

Suppose now that t ≥ 6 is even. Then the parity of t − j′ is the same as that of j′. This
is easily seen to imply that all terms in the main sum (on j′) are non-negative, and hence
St ≥ 0, as asserted. Using a fully symmetric argument, one shows that St ≤ 0 when t ≥ 5
is odd. (We note that for t = 4 the sum is always 1.)

If St = 0 then all terms in the main sum (on j′) are 0. Suppose to the contrary
that Xt+1(e1, e2) 6= 0. Then there exists 2 ≤ j′ ≤ t − 1 such that Xj′(cb)Xt+1−j′(ad) >
0. If j′ ≤ t − 2 then the j′-th term in the sum is positive, because Xj′(cb) > 0 and
∑t−j′

k′=2(−1)k
′
Xk′(ad) > 0; the latter inequality follows from Lemma 5.3, since Xt+1−j′(ad) >

0. Hence the total main sum is positive, a contradiction. The case j′ = t − 1 is handled by
interchanging the roles of cb and ad, as it is easy to check.

This completes the proof of the lemma. �

Proof of Theorem 5.4 for r = 2: As above, it suffices to prove only the head inequalities.
Here the coefficients are 1

2k(k−3), so we write them as such. As in the proof of Theorem 2.3,
we have

t
∑

k=4

(−1)k
k(k − 3)

2
Xk(P ) =

∑

e1,e2

t
∑

k=4

(−1)kXk(e1, e2).

Case 1. t ≥ 5 is odd. By Lemma 5.5,
∑t

k=4(−1)kXk(e1, e2) ≤ 0, when the wedge formed
by e1 and e2 contains at least one point of P in its interior. If this is not the case, then
(e1, e2) is a T2-configuration, and the sum is equal to 1. Hence,

t
∑

k=4

(−1)k
k(k − 3)

2
Xk(P ) ≤ T2,

as asserted.

Case 2. t ≥ 6 is even. By Lemma 5.5,
∑t

k=4(−1)kXk(e1, e2) ≥ 0, when (e1, e2) is not a
T2-configuration, and is 1 otherwise. Hence,

t
∑

k=4

(−1)k
k(k − 3)

2
Xk(P ) ≥ T2,

as asserted.

Case 3. t = 4. In this case we need to show that 2X4 ≥ T2, which is obvious, since each
T2-configuration (e1, e2) spans an empty convex quadrilateral, and each such quadrilateral
can be obtained from at most two T2-configurations.

If equality holds then
∑t

k=4(−1)kXk(e1, e2) = 0 for every pair (e1, e2) that is not a
T2-configuration. By Lemma 5.5, Xt+1(e1, e2) = 0 for every such pair of edges, and of
course Xt+1(e1, e2) = 0 also for pairs that are T2-configurations. This implies, as above,
that Xt+1(P ) = 0, and thus completes the proof of the theorem for r = 2. �
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The general case. We now turn to the case of arbitrary r ≥ 2, and begin with extending
Lemma 5.5:

Lemma 5.6. Let r ≥ 3, and let e1, e2, . . . , er be r vertex-disjoint edges that are spanned
by P , lie in convex position, and span an empty convex (2r)-gon Q. Assume further that
the region τ(e1, . . . , er), as defined in the introduction, has at least one point of P in its
interior. For each k ≥ 2r, let Xk(e1, . . . , er) denote the number of empty convex k-gons
that have e1, . . . , er as edges. Then

X2r(e1, . . . , er) − X2r+1(e1, . . . , er) + · · · + Xt(e1, . . . , er) ≥ 0, for t ≥ 2r + 2 even, and

X2r(e1, . . . , er) − X2r+1(e1, . . . , er) + · · · − Xt(e1, . . . , er) ≤ 0, for t ≥ 2r + 1 odd.

The sum is equal to 1 for t = 2r.
Moreover, equality holds, in either case, if and only if Xt+1(e1, . . . , er) = 0.

Proof: The “infinite” sum X2r(e1, . . . , er)−X2r+1(e1, . . . , er)+· · · is 0 (when τ = τ(e1, . . . , er)
is nonempty), as shown in the proof of Theorem 2.3. Hence, if Xt+1(e1, . . . , er) = 0 then
equality holds (in either case).

Assume without loss of generality that e1, . . . , er appear in the clockwise order along
the boundary of Q (or along the boundary of τ). For each i, let Wi denote the connected
component of τ \Q that has an endpoint of ei and an endpoint of ei+1 (where er+1 is taken
to be e1) on its boundary. Let ēi denote the edge of Wi that also bounds Q. (In other
words, the edges of Q are e1, ē1, e2, ē2, . . . , er, ēr, in clockwise order.) Put Pi = P ∩ Wi, for
i = 1, . . . , r. See Figure 14.

Q

e1

ē1

e2

ē2

e3
ē3

τ

W1

Figure 14: The structure in the proof of Lemma 5.6.

For any convex k-gon K that has e1, . . . , er as edges, its vertices are the 2r endpoints
of the edges e1, . . . , er, and k − 2r additional points that are grouped in r disjoint subsets
V1, . . . , Vr, where Vi is a subset of Pi of size ji ≥ 0, such that it forms an empty convex
(ji + 2)-gon with the endpoints of ēi. We have

∑r
i=1(ji + 2) = k. Conversely, for any choice

of sets Vi with the above properties, the union of these sets, together with the endpoints of
the ei’s, is the vertex set of an empty convex k-gon that has e1, . . . , er as edges.

As in Lemma 5.5, we thus have (where we replace the preceding quantities ji + 2 by ji)

Xk(e1, . . . , er) =
∑

j1≥2,...,jr≥2

j1+···+jr=k

r
∏

i=1

Xji
(ēi),
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where, as in Lemma 5.5, Xji
(ēi) is computed only with respect to the points in Pi (we

orient ē1 so that Pi lies in the half-plane to its left), and where we use the convention that
X2(e) = 1 for any edge e. Hence

St :=

t
∑

k=2r

(−1)kXk(e1, . . . , er) =

t
∑

k=2r

(−1)k
∑

j1≥2,...,jr≥2

j1+···+jr=k

r
∏

i=1

Xji
(ēi).

We now proceed by induction on r. We have already established the lemma for r = 2.
Assume then that r ≥ 3, and that the lemma holds for all r′ < r. We can rewrite St as

St =

t
∑

k=2r

k−2r+2
∑

jr=2

[

(−1)jrXjr(ēr) · (−1)k−jr

∑

j1≥2,...,jr−1≥2

j1+···+jr−1=k−jr

r−1
∏

i=1

Xji
(ēi)

]

=
t−2r+2
∑

jr=2

(−1)jrXjr(ēr) ·

[ t
∑

k=jr+2r−2

(−1)k−jr

∑

j1≥2,...,jr−1≥2

j1+···+jr−1=k−jr

r−1
∏

i=1

Xji
(ēi)

]

We replace k in the expression in the brackets by k′ + jr, so this expression becomes

t−jr
∑

k′=2r−2

(−1)k
′

∑

j1≥2,...,jr−1≥2

j1+···+jr−1=k′

r−1
∏

i=1

Xji
(ēi),

which, by the induction hypothesis, is non-negative for t − jr ≥ 2r even, non-positive for
t − jr ≥ 2r − 1 odd, and 1 for t − jr = 2r − 2.

Suppose now that t ≥ 2r + 2 is even. Then the parity of t− jr is the same as that of jr.
Hence all terms in the main sum (on jr) are non-negative, and hence St ≥ 0, as asserted.
Using a fully symmetric argument, one shows that St ≤ 0 when t ≥ 2r + 1 is odd, and we
note that for t = 2r the sum is always 1.

The proof that equality implies that Xt+1(P ) = 0 is carried out exactly as in the
preceding proofs, and we omit the details. This completes the proof of the lemma. �

Proof of Theorem 5.4 for arbitrary r: As above, it suffices to prove only the head
inequalities. As in the proof of Theorem 2.3, we have

t
∑

k=2r

(−1)k
k

r

(

k − r − 1

r − 1

)

Xk(P ) =
∑

e1,...,er

t
∑

k=2r

(−1)kXk(e1, . . . , er).

Case 1. t ≥ 2r + 1 is odd.

By Lemma 5.6,
∑t

k=2r(−1)kXk(e1, . . . , er) ≤ 0, when τ(e1, . . . , er) contains at least one
point of P in its interior. If this is not the case, then (e1, . . . , er) is a Tr-configuration, and
the sum is equal to 1. Hence,

t
∑

k=2r

(−1)k
k

r

(

k − r − 1

r − 1

)

Xk(P ) ≤ Tr,

as asserted.
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Case 2. t ≥ 2r + 2 is even.

By Lemma 5.6,
∑t

k=2r(−1)kXk(e1, . . . , er) ≥ 0, when (e1, . . . , er) is not a Tr-configuration,
and is 1 otherwise. Hence,

t
∑

k=2r

(−1)k
k

r

(

k − r − 1

r − 1

)

Xk(P ) ≥ Tr,

as asserted.

Case 3. t = 2r. In this case we need to show that 2X2r ≥ Tr, which is obvious, since each
Tr-configuration (e1, . . . , er) spans an empty convex (2r)-gon, and each such polygon can
be obtained from at most two Tr-configurations.

This completes the proof of the theorem for arbitrary r ≥ 2. �

5.3 Inequalities involving X3, X4, and X5

Inequalities for X4. One important application of Theorem 5.2 is for t = 4, which yields
the following pair of inequalities:

X3(P ) − X4(P ) ≤
(n

2

)

− n + 1,

3X3(P ) − 4X4(P ) ≤ n(n − 1) − H,

or, equivalently,

X4(P ) ≥ max

{

X3(P ) −
(n

2

)

+ n − 1,
3

4
X3(P ) −

n(n − 1) − H

4

}

. (11)

As mentioned in the introduction, Bárány and Füredi [3] have shown that

X3(P ) ≥ n2 − O(n log n).

It follows from (11) that this lower bound implies the lower bound

X4(P ) ≥
1

2
n2 − O(n log n).

This was also established in [3], but the explicit inequalities relating X3 to X4 that are given
above make the connection between the two lower bounds more direct. Note also that the
first term in (11) dominates (if at all) the second term when X3(P ) ≥ (n − 1)(n − 4) + H.
In view of the lower bound in [3], the second term in (11) dominates only in a small range
of values of X3, between n2 − O(n log n) and (n − 1)(n − 4) + H.

Inequalities for X5. In the formulation of the following theorem, we introduce a new
quantity H ′ = H ′(P ), which is defined as follows. For each p ∈ P , let P+

p denote the set of
all points of P that lie above (the horizontal line through) p, and let C+

p denote the convex
hull of P+

p . Then H ′ is equal to the number of points p ∈ P for which the two tangents
from p to C+

p meet it at two consecutive vertices. See Figure 15.
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p

C+
p

r
q

Figure 15: A point p counted in H ′.

Theorem 5.7.

X5(P ) ≥ max

{

X3(P ) − (n − 2)(n − 3) − H ′,
3

5
X3(P ) −

n(n − 1) − H

5
−

2

5
T2

}

.

Proof: We start with the proof of the first inequality. For each convex empty pentagon Q
spanned by P we generate an empty triangle, whose vertices are the lowest vertex p of Q
and the two vertices of Q not adjacent to p; see Figure 16.

p

r

q

Figure 16: Charging an empty pentagon to an empty triangle.

Clearly, each empty convex pentagon generates a unique empty triangle. However, not
all empty triangles are generated in this manner: Let ∆ = pqr be an empty triangle spanned
by P , so that p is its lowest vertex and r lies to the right of ~pq. Associate with ∆ the wedge
w(∆), consisting of the points that lie above (the horizontal line passing through) p and to
the right of the directed line ~qr. The triangle ∆ is contained in w(∆) and partitions it into
three subregions: ∆ itself, the portion ∆L lying to the left of ~pq, and the portion ∆R lying
to the right of ~pr; see Figure 17.

p

q

r
∆∆L

∆R
w(∆)

Figure 17: An empty triangle ∆ and the partition of its associated wedge.
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It follows that ∆ is not generated from an empty pentagon if and only if either ∆L or
∆R is empty.

We estimate the size of the set EL of triangles ∆ for which ∆L is empty; analyzing the set
of triangles for which ∆R is empty is done in a fully symmetric fashion. Fix a point p ∈ P ,
and consider the set E(p) of edges qr spanned by P such that pqr ∈ EL. Note that both q
and r lie above p. We view E(p) as the edge set of a graph on the set P+

p of points that lie
above p, and claim that E(p) does not contain any cycle. Indeed, suppose to the contrary
that E(p) did contain a cycle, and let q be the vertex in the cycle such that ~pq forms the
smallest angle with the positive x-direction. Since q is the rightmost point of this cycle, E(p)
contains two edges qu, qv emanating from q, such that both pu and pv lie counterclockwise
to pq, with, say, qu lying clockwise to qv. See Figure 18. But then either the triangle
∆ = pqu or its associated left region ∆L would contain v, contrary to the definition of E(p).
Hence E(p) is a forest, and so it contains at most |P+

p | − 1 edges. Consequently, the overall

number of triangles ∆ for which ∆L = ∅ is at most
∑n

k=3(k − 2) =
(n−1

2

)

. Symmetrically,

the number of triangles ∆ for which ∆R = ∅ is also at most
(n−1

2

)

. Therefore, the number
of empty triangles that are not generated from an empty pentagon in the manner prescribed
above is at most (n − 1)(n − 2).

q

p

v

u∆L

∆

Figure 18: E(p) does not contain a cycle.

We can improve the bound further by noting that we have doubly counted empty trian-
gles ∆ for which both ∆L and ∆R are empty. We can obtain a lower bound for the number
of such triangles, as follows. Let ∆ = pqr be such a triangle, where p is the lowest vertex.
In the notation preceding the theorem, qr is an edge of C+

p , with the property that the
line through qr separates p from C+

p . The converse is also easily seen to hold: Any edge
qr of C+

p with this property gives rise to a doubly counted triangle pqr. These edges qr
are precisely those that lie along the boundary of C+

p between the two contact points of
the tangents from p to C+

p . By definition, the number of such edges is at least two, unless
p is counted in H ′, in which case this number is 1. Hence, the overall number of doubly
counted triangles is at least 2(n− 2)−H ′. Then, the total number of triangles that are not
generated from an empty pentagon is at most

(n − 1)(n − 2) − 2(n − 2) + H ′ = (n − 2)(n − 3) + H ′,

It thus follows that X5 ≥ X3 − (n − 2)(n − 3) − H ′, as asserted.

We next prove the second inequality of the theorem. For each empty convex pentagon
Q spanned by P we generate five empty triangles, whose vertices are obtained by removing
a pair of nonadjacent vertices of Q (as in Figure 16).
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A triangle ∆ may be generated in this manner in at most three different ways, in each of
which the generating empty convex pentagon has a different pair of edges of ∆ as diagonals.
We associate each of these possibilities with the vertex v of ∆ that is common to the two
edges, and refer to the pair (∆, v) as a pointed triangle.

Clearly, there exist pointed triangles (∆, v) for which such an extension is impossible.
Let p, q be the two other vertices of ∆, so that v lies to the left of the directed line ~pq.
Let P+

pq denote the subset of the points of P that lie in the halfplane to the left of the line
~pq. Then (∆, v) admits no extension into an empty convex pentagon if and only if v is an
extreme point of P+

pq such that the triangle pqv is empty. Let t = tpq denote the number of
such points v. First note that if P+

pq is nonempty then t ≥ 1 and if P+
pq is empty then t = 0.

Moreover, if t > 1 then these points form a chain of consecutive vertices of the convex hull
of P+

pq, and for each of the t − 1 pairs (u, v) of consecutive vertices among them, (p, q, u, v)
is a T2-configuration. See Figure 19.

qp

u v

Figure 19: Pointed triangles with edge pq that cannot be extended to an empty convex
pentagon.

There are n(n − 1) ordered pairs p, q, and H of them satisfy tpq = 0 (these are the
directed edges of the convex hull of P that contain P on their right side). Each of the
remaining pairs defines at least one pointed triangle that admits no extension, and any
additional such triangle can be charged to a T2-configuration, where any such configuration
is charged exactly twice. This implies that the number of ‘bad’ pointed triangles is at most
n(n − 1) − H + 2T2, and this is easily seen to imply the second part of the theorem. �

Some implications. (i) Theorem 5.4 implies, for r = 2, that 2X4(P )− 5X5(P ) ≤ T2(P ).
Combining this inequality with (5), we obtain

2X4 − 5X5 ≤
(n

2

)

− H + 2X5 + X6 + T ∗
2 .

Substituting the lower bound of [3] for X4, we obtain

n2

2
≤ 7X5 + X6 + T ∗

2 + O(n log n).

Hence, any improved upper bound on T ∗
2 of the form (1

2 − c)n2 would imply that

7X5 + X6 ≥ cn2 − O(n log n).

Hence, it would imply that every sufficiently large set either contains quadratically many
empty convex pentagons, or quadratically many empty convex hexagons.
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(ii) Curiously, plugging the lower bound of [3] for X3 into Theorem 5.7, and using Theo-
rem 3.1, we do not obtain a quadratic lower bound for X5(P ). Still, any improvement of
the coefficient of the quadratic term in the upper bound for T2 would lead to a quadratic
lower bound for X5.

(iii) Any improvement of the coefficient of the quadratic term in the lower bound for X3

would lead to an improvement, by the same amount, of the quadratic lower bounds for X4

and X5. These explicit relations are more quantitative than what has been earlier observed
by Bárány and others [2].

(iv) Comparing the above inequalities with the explicit expressions for X3 and X5 given in
(1), we obtain the following corollaries:

∑

k≥6(−1)k(k − 4)Xk ≥ H − H ′ − 2,
∑

k≥6(−1)kk(k − 4)Xk ≥ 0.

The first inequality implies that, when H > H ′ + 2, P contains an empty convex hexagon.

Note that these inequalities are tail inequalities in the series for M1−4M0 and 2M2−M1,
respectively. Because these linear combinations involve negative coefficients, they cannot be
deduced from the tail inequalities derived in Sections 5.1 and 5.2 (cf. the remark following
Theorem 2.3).

6 Discussion and Open Problems

This paper raises several new open problems and also leaves unsolved several old ones.

One problem is to generalize the formulas for the moments Mr, for r > 1, to dimension
d > 3. One of the difficulties here is that the number of facets of a convex simplicial polytope
with k vertices in Rd, is not determined by k. Nevertheless, we believe that a solution to
this problem is possible, using techniques similar to those that we have introduced.

Two other interesting open problems involve the parameters T2 and T ∗
2 . The main

questions here are: (i) Is it true that T2 < (1− c)n2, for some constant c > 0? (ii) Is it true
that T ∗

2 < (1 − c)n2/2, for some constant c > 0? As we have seen earlier, an affirmative
answer to any of these problems leads to sharper lower bounds on the number of empty
triangles, convex quadrilaterals, and convex pentagons determined by a set of n points in
general position in the plane.

Clearly, the main open problem that our analysis so far still has not settled is whether
every set of sufficiently many points in general position in the plane contains an empty
convex hexagon. The other main open problems are to improve the constants in the lower
bounds on the number of empty triangles, convex quadrilaterals, and convex pentagons, as
discussed earlier in detail.

We note that the results in this paper can be generalized to the case where the set P
of points is not in general position, so that more than two points may be collinear. In this
case, we define Xk(P ) to be the number of k-tuples of points of P that lie in strictly convex
position and the intersection of their convex hull with P consists of exactly these k points.
In this case, it is important to consider X2 explicitly as well, since it may be different from
(n

2

)

.
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It is easy to see, for example, that Theorem 2.1 remains true verbatim. Indeed, assume
that during the continuous motion a point x becomes collinear between two other points a
and b. It is easily seen that the emptiness and convexity status of a polygon Q can change if
and only if ab newly becomes (or used to be) an edge of Q. An inspection of this situation
shows that the alternating sum M∗

0 remains unchanged. Here we also have to include X2

in the analysis, to cater to situations where an empty triangle xab is destroyed, say, during
the collinearity, but so is the empty segment ab.

Another important class of problems concerns the number of k-lines spanned by a set
P of n points in the plane, that is, lines that contain exactly k points of P . Denote these
numbers by tk(P ), or just tk, for short. The goal is to obtain linear equalities and inequalities
involving these numbers. This setup is somewhat similar to the one studied in this paper,
because we can regard a k-line as a degenerate form of an empty convex k-gon.

For example, one always has, trivially,
∑

k≥2

(

k
2

)

tk =
(n

2

)

, and there is in fact a variant

of the continuous motion argument that proves this equality. Furthermore,
∑

k≥2 tk is the
total number of lines spanned by P , and

∑

k≥2 ktk is the total number of incidences between
these lines and the points of P .

There are several known important inequalities. The first is Melchior’s inequality [7]:

t2 ≥ 3 + t4 + 2t5 + 3t6 + · · · , if tn = 0,

which is a simple consequence of the Euler formula. The second is Hirzebruch’s inequality
[16]:

t2 +
3

4
t3 ≥ n + t5 + 3t6 + 5t7 + · · · , if tn = tn−1 = tn−2 = 0,

whose only known proof uses difficult tools from enumerative algebraic geometry.

A simple application of the Szemerédi–Trotter theorem [24] on the number of point-line
incidences implies an interesting tail inequality:

tk + tk+1 + tk+2 + · · · ≤ 16.875
n2

(k − 1)3
for k < n1/3, n > n0(k),

which is asymptotically best possible (here n0(k) is an absolute constant which depend only
on k).

Related inequalities are the Erdős–Purdy inequalities [13], which state that if tn = 0,
then max(t2, t3) ≥ n − 1, and max(t2, t3) ≥ ti, for all i. Several additional inequalities are
derived there too.

One of the goals for future research is to develop continuous motion proofs of the above
inequalities on the parameters tk. We also hope that this approach might be useful for the
famous “orchard”-type problems, originated by Sylvester [7]: what is the maximum number

torchard
k (n) of k-lines in a set of n points in the plane that does not contain k + 1 collinear

points? Some partial results on this problem can be found in [6, 12, 14, 18].

Acknowledgments
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