
An Improved Bound for Joints in Arrangements of Lines inSpae�Sharona Feldmany Miha SharirzJune 23, 2003AbstratLet L be a set of n lines in spae. A joint of L is a point in R3 where at least threenon-oplanar lines meet. We show that the number of joints of L isO(n112=69 log6=23 n) =O(n1:6232), improving the previous bound O(n1:643) of Sharir [11℄.1 IntrodutionLet L be a set of n lines in spae. A joint of L is a point in R3 where at least threenon-oplanar lines `; `0; `00 of L meet. We denote the joint by the triple (`; `0; `00) (observingthat the same joint may be enoded by more than one suh triple).Let JL denote the set of joints of L, and put J(n) = max jJLj, taken over all sets L of nlines in spae. A trivial upper bound on J(n) is O(n2), but it was shown in [11℄, followinga weaker subquadrati bound in [5℄, that J(n) is only O(n23=14polylog(n)) = O(n1:643). Aneasy onstrution, based on lines forming an n1=2 � n1=2 � n1=2 portion of the integer grid,shows that jJLj an be 
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Figure 1: The lower bound onstrution for joints.
Figure 2: An elementary yle of lines in spae.be regarded as a degenerate ase of elementary yles. In fat, a slight random perturbationof the lines in L turns any joint inident to O(1) lines into an elementary yle with someonstant probability, implying that the number of joints is strongly related to the numberof elementary yles.Unfortunately, very little is known about the number of elementary yles. Chazelle etal. [5℄ obtained a bound of O(n9=5) for the speial ase of line segments (rather than lines)whose xy-projetions form a (distorted) grid. Reently, Aronov et al. [1℄ obtained a boundof O(n2�1=69+"), for any " > 0, on the number of triangular elementary yles (i.e., ylesformed by only three lines) for general line arrangements. Solan [13℄ and Har-Peled andSharir [9℄ have given algorithms that eliminate all (not neessarily elementary) yles of aset of lines in spae, by utting the lines at appropriate points. These algorithms run insubquadrati time, and ut the lines in a subquadrati number of points, provided that asubquadrati bound on the number of elementary yles is known.The problem of joints is onsiderably simpler, as witnessed by the muh sharper upperbound of [11℄, mentioned above. Still, it is a rather hallenging problem, open for 10 years,to tighten the gap between the upper and lower bounds. It is our hope that better insightsinto the joints problem would lead to tools that ould also be used to obtain subquadratibounds for elementary yles, and for many other problems that involve lines in spae.Reently, Sharir and Welzl [12℄ have shown that the number of inidenes between thepoints in JL and the lines in L is O(n5=3).In this paper we improve the upper bound on J(n) to O(n112=69 log6=23 n) = O(n1:6232).The proof proeeds by mapping the lines of L into points and/or hyperplanes in projetive2



5-spae, using Pl�uker oordinates [6℄. We then apply a two-stage deomposition proess,whih partitions the problem into subproblems, using uttings of arrangements of appro-priate subsets of the Pl�uker hyperplanes. We estimate the number of joints within eahsubproblem, and sum up the resulting bounds to obtain the bound asserted above. Theproof adapts and applies some of the tools used by Sharir and Welzl [12℄ and reently en-haned by Aronov and Sharir [3℄, related mainly to the onnetion between joints and regulispanned by the lines of L; see below for more details.2 The Upper Bound2.1 The toolboxWe begin by realling and developing some of the tools we need for our proof.Szemer�edi-Trotter bound [15℄. Given a set L of n lines and a set P of m points, bothin a ommon (2-dimensional) plane, we haveI(P;L) = O(n2=3m2=3 + n+m) : (1)(This bound is tight in the worst ase.) We use this bound to proveLemma 2.1. Let L be a set of n lines in spae. The number of planes that ontain at leastk lines of L is O�n2k3 + nk� ;and the number of ontainments between the lines of L and these planes isO�n2k2 + n� :Proof: Let H be a set of t planes and L a set of n lines in R3 . Draw a generi plane � inR3 that meets every plane in H at a line and meets every line in L at a point. The numberI(L;H) of ontainments between lines of L and planes of H is at most the number ofinidenes between the resulting n points and t lines in �. Applying the Szemer�edi-Trotterbound (1), the number of these inidenes, and thus I(L;H), isO(n2=3t2=3 + t+ n): (2)Now let H = H�k be the set of all planes that ontain at least k lines of L, and putt = jH�kj. We learly have I(L;H�k) � tk. Combining this with (2) yieldstk = O(n2=3t2=3 + t+ n);or t = O�n2k3 + nk� :Substituting this bound in (2), we obtainI(L;H�k) = O �n2k3 + nk�2=3 n2=3 + n2k3 + nk + n! = O n2k2 + n4=3k2=3 + n! ;3



and the middle term is always dominated by the �rst or the third term, as is easily veri�ed.2Reguli (see [14℄). Two lines in R3 that are disjoint and not parallel are alled skew.Given three pairwise skew lines `1; `2; `3, the set � = �(`1; `2; `3) of lines interseting allthree lines is alled a regulus. All lines in � are pairwise skew. If `01; `02; `03 are in �, then�? = �(`01; `02; `03) onstitutes another regulus, that is independent of the hoie of the threelines in �. (Note that the three generating lines `1; `2; `3 of � do not belong to �, but ratherto �?.)S`2� ` = S`2�? ` is a ruled surfae (whih is a quadri|a hyperboloid of one sheet ora hyperboli paraboloid) in R3 , denoted by �� = ��(`1; `2; `3); � and �? are alled thegenerating families of �� and we say that �? is the omplementary regulus of �, and vieversa: (�?)? = �. Every point in �� is ontained in exatly one line from � and in exatlyone line from �?. For any line ` in R3 , either ` 2 � [ �? (i.e., ` � ��), or ` intersets �� inat most two points.It follows that the number of joints in L that lie on the surfae of any regulus � is atmost minfjL \ �j � jL \ �?j; 2jLjg:This follows from the observation that at most two of the lines that form suh a joint anlie in ��, and the third line must ross ��. This allows us to apply the following pruningproedure. We �x a parameter s, whose value will be determined later. As long as thereexists a regulus � that ontains more than s lines of L, we remove all these lines from L,and lose in this proess at most 2n joints. Repeating this step at most n=s times, we getrid of all \heavy" reguli and lose at most O(n2=s) joints.A similar prunning proess an be applied to planes that ontain more than s lines ofL. Here we use the fat that any plane an ontain at most n joints, beause any suh jointmust be inident to at least one line that is not ontained in the plane, and thus meets itin a single point.To reap, we may (and will) assume in what follows that no plane or regulus ontainsmore than s lines of L, and will add O(n2=s) to the overall bound for the number of joints.Inidenes between lines and reguli [3℄. Given a set L of m lines and a set R of nreguli in 3-spae, the number I(L;R) of inidenes between the lines of L and the reguli ofR (reall that we regard a regulus as a set of lines and not as the surfae that they span)satis�es I(L;R) = O(m4=7n17=21 +m2=3n2=3 + n+m) : (3)This has reently been shown by Aronov and Sharir [3℄. It extends and improves a weakerbound of O(m3=5n4=5 +m+ n) proved in [12℄ for a speial ase.We use this to prove:Lemma 2.2. Let L be a set of n lines in spae. The number of reguli that ontain at leastk lines of L is O� n3k21=4 + n2k3 + nk� ;4



and the number of inidenes between the lines of L and these reguli isO� n3k17=4 + n2k2 + n� :Proof: Let R�k denote the set of these reguli, and put t = jR�kj. The bound (3) impliesthat tk � I(L;R�k) = O(n4=7t17=21 + n2=3t2=3 + n+ t);and the rest of the analysis proeeds in omplete analogy with the proof of Lemma 2.1. 2Mapping into Pl�uker spae. Let L be a set of n lines in R3 . We may assume, withoutloss of generality, that no pair of lines in L are parallel. This an be enfored by anappropriate projetive transformation that maps L to another set of lines that does nothave parallel pairs, without hanging the inidene struture between the lines and theirjoints.We start by repliating the set of lines L into two sets, olor one set as blue, and theother as red. We bound the number of points at whih a red line and two blue lines, not inthe same plane, meet.1We map eah blue line ` to its Pl�uker hyperplane �`, and map eah red line ` into itsPl�uker point p`. Both points and hyperplanes lie in projetive 5-spae, and the points alllie in a 4-dimensional quadri surfae � known as the Pl�uker surfae. Two lines `; `0 2 Lmeet eah other if and only if p` lies on �`0 (and p`0 lies on �`). See [6℄ for more details onthis transformation.Cuttings. Let � be a set of n algebrai ars or urves in the plane, of onstant maximumdegree, and let 1 � r � n be a parameter. A (1=r)-utting of the arrangement A(�) of � isa partition of R2 into pairwise disjoint relatively open ells2 of dimensions 0,1,2, suh thateah ell is rossed by (i.e., interseted by, but not ontained in) at most n=r urves of .The size of the utting is the number of its ells. It has been shown (see [4, 8℄) that therealways exists a (1=r)-utting of size O(r2), whih is asymptotially optimal.The notion of uttings an be extended in an obvious manner to arrangements of surfaesin higher dimensions. In general, however, optimal or near-optimal bounds for the size ofthe uttings are harder to derive, and in most ases are not yet known. Still, in the aseof hyperplanes in Rd , there exist (1=r)-uttings, whose ells are simplies, of optimal sizeO(rd) [4℄. In our analysis, we repeatedly rely on a variant of this result, in whih we needto onstrut (1=r)-uttings for a four-dimensional ross-setion (within the Pl�uker surfae)of an arrangement of hyperplanes in projetive 5-spae; see below for more details.2.2 The primal partitioning stageWe onstrut a (1=r)-utting � of the arrangement of the set H of the Pl�uker hyperplanes,or, more preisely, of its ross setion within the Pl�uker surfae �. The utting is obtained1In the �rst deomposition stage the olors play no signi�ant role, but they will be more meaningful inthe seond deomposition stage, where eah subproblem will involve two di�erent subsets of L.2In the standard de�nition of a utting, the ells are required to have onstant desriptive omplexity,meaning that eah of them is de�ned by a onstant number of polynomial equalities and inequalities, involvingpolynomials of onstant maximumdegree. In our appliations, though, this additional property is not needed.5



by taking a random sample R of r hyperplanes of H, by triangulating eah ell of A(R), andby taking the ross setions within � of the resulting simplies. The atual onstrutionis somewhat more involved, and follows the tehnique of Chazelle and Friedman [4℄, whihuses additional samplings within some of the ells onstruted above.3 Omitting the routinedetails, we end up with a larger sample, whih we still denote by R, onsisting of O(r)hyperplanes, and yielding a utting that onsists of O(r4 log r) ells of onstant desriptiveomplexity (eah ell is the intersetion of some j-simplex, for 1 � j � 5, with �), so thateah ell is rossed by at most n=r blue Pl�uker hyperplanes. (The size of the utting is aonsequene of the Zone theorem of Aronov et al. [2℄, whih implies that the omplexity ofthe zone of � in A(R) is O(r4 log r), from whih it follows that the ells of A(R) that arerossed by � an be triangulated into O(r4 log r) simplies.) Moreover, by splitting ellsinto subells, if neessary, we may also assume that eah ell ontains at most n=(r4 log r)red Pl�uker points. (Reall that lower-dimensional ells may be ontained in many moreblue hyperplanes, but eah is rossed by at most n=r of them.)We now bound the number of red-blue-blue joints by applying a ase analysis on theloation, within the utting �, of the Pl�uker point of the red line in the joint.Verties of �. Consider a joint (`1; `2; `3), for `1; `2; `3 2 L, suh that p`1 is a vertex of �.The number of suh joints is at most the sumPv dv, where the sum is over the verties v of� and dv is the number of lines ` 2 L suh that �` passes through v. We denote the set ofthese lines as L(v). We may assume that v is a vertex formed as the transversal intersetionof � with four hyperplanes of R. Any other vertex of � will not oinide with a Pl�ukerpoint p`, for ` 2 L, provided that the triangulation is performed in a suÆiently generimanner.4We �x a hyperplane �`, for ` 2 L(v), and interset it with all hyperplanes of R and with�. Sine the four hyperplanes of R that form the vertex v interset there transversally,their ross setions within �`\� also interset transversally at v, so this point is a vertex ofthe 3-dimensional arrangement of these ross setions. The number of suh verties, within�` \�, is at most O(r3), for a total bound of O(nr3) on the number of joints at verties of�.Edges of �. Let  be an intersetion urve of three hyperplanes of R with �. (As in thease of verties, only edges of � ontained in suh urves are of interest, if the triangulation issuÆiently generi. Note also that we onsider here full intersetion urves, eah onsistingof many edges of �.) Let `1; `2; `3 be the three orresponding lines of L. Suppose �rst thatthese lines are pairwise skew and thus form a regulus �. Let ` 2 L be suh that p` 2 .Then ` lies in �� (and belongs to �). Let (`; `0; `00) be a joint that involves `. It is impossiblethat both �`0 ; �`00 fully ontain , beause then `0; `00 would belong to �? and thus wouldnot meet at all. Hene, say, �`0 rosses , and `0 rosses ��, in at most two points. In otherwords, we an harge the joint under onsideration to one of these rossing points of `0 with��. The number of suh rossings is at most 2n for eah regulus �, for a total of O(nr3)joints.3It might be simpler to digest the following analysis by ignoring the Chazelle-Friedman re�nement. Thiswill only a�et the polylogarithmi fator appearing in the overall bound.4E.g., eah ell an be triangulated into simplies, all emanating from some ommon generi point in therelative interior of the ell. 6
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Figure 3: The pair of planes orresponding to an edge of �.Suppose next that two of the lines, say `1; `2, meet eah other. Thus they de�ne aommon plane h and a ommon point q. If the third line `3 lies in h or passes through qthen the intersetion �`1 \�`2 \�`3 is two-dimensional, as is easily seen, so these three linesdo not de�ne an edge of �. Hene `3 meets h at a single point q0 6= q. It follows that anyline ` with p` 2  either lies in h and passes through q0, or passes through q and through`3, and thus lies in the plane h0 spanned by q and `3. See Figure 3. In other words, anyjoint on ` lies in h[ h0, and at least one of the three lines forming the joint must ross h orh0 at the joint. There are at most 2n suh rossing points, so the number of joints in thisase is at most 2n, for a total of O(nr3) joints.2-Faes of �. Let ' be an intersetion 2-surfae of two hyperplanes of R with � (again,only 2-faes of � that lie in suh 2-surfaes are of interest, and we onsider full intersetion2-faes rather than individual 2-faes), and let `1; `2 be the two orresponding lines of L.Suppose �rst that `1; `2 pass through a ommon point q, and thus lie in a ommon planeh. Then any line � with p� 2 ' either lies in h or passes through q. We an thus view' as the union of two sub-surfaes 'q; 'h, where 'q (resp., 'h) is the lous of all (pointsrepresenting) lines passing through q (resp., lying in h).Let (`; `0; `00) be a joint where p` 2 'q. We may assume that p` does not lie on any edgeof � that is ontained in ', beause suh points have already been aounted for. If �`0 ,say, fully ontains 'q then `0 must pass through q (sine it touhes every line that passesthrough q), and thus the joint in question must be the point q itself. The overall numberof suh joints is only O(r2). We may thus assume that both �`0 and �`00 ross 'q.Similarly, let (`; `0; `00) be a joint where p` 2 'h. If �`0 , say, fully ontains 'h then `0must lie in h. In this ase, the joint must lie in h. As we have already noted, h ontains atmost n joints, so the overall number of joints of this kind is at most O(nr2). We may thusassume that both �`0 and �`00 ross 'h.Thus, in either ase, we are left with subproblems, eah assoiated with a 2-fae � of �(the surfae ' is now deomposed bak into its onstituent 2-faes), suh that � ontains atmost n=(r4 log r) red Pl�uker points and is rossed by at most n=r blue Pl�uker hyperplanes;the problem assoiated with � onsiders red-blue-blue joints where the red point lies in �and both blue hyperplanes ross � . The number of subproblems is O(r4 log r). We willhandle these subproblems in the seond dual stage of the analysis|see below.7



Finally, suppose that `1 and `2 are skew. Consider a joint (`; `0; `00), where p` 2 '.Neither of the hyperplanes �`0 , �`00 an fully ontain ', beause then the orresponding linewould have to be inident to every line that meets `1 and `2, whih is learly impossible.Hene, in this ase we obtain, as above, a olletion of subproblems, eah assoiated witha 2-fae � of � (a subfae of '), suh that � ontains at most n=(r4 log r) red Pl�ukerpoints and is rossed by at most n=r blue Pl�uker hyperplanes. As above, the number ofsubproblems is O(r4 log r), and they are all handled in the seond dual stage of the analysis.3-Faes of �. Let p` be a point in the relative interior of some 3-fae of �, ontained inthe intersetion of � with some hyperplane �`1 in R (only suh 3-faes are of interest). Anyhyperplane inident to p`, with the exeption of �`1 , rosses eah of the two adjaent ellsof �. We an thus assign p` to either of these ells, and ount the joints on ` as part of thesubproblem assoiated with that ell (losing in the redution a total of at most n joints).Thus no speial treatment is needed for points on 3-faes of �. Alternatively, we an regardeah 3-fae � as yielding a subproblem of its own, involving the (at most n=(r4 log r)) redpoints that it ontains and the (at most n=r) blue hyperplanes that ross it. The numberof subproblems is O(r4 log r) and they are handled in the subsequent dual stage.Cells of �. As in the ase of 2-faes and 3-faes, eah ell � of � generates a subprobleminvolving the at most n=(r4 log r) red Pl�uker points in � and the at most n=r blue Pl�ukerhyperplanes that ross � . There are O(r4 log r) subproblems of this kind.2.3 The dual partitioning stageLet � be a ell of �; we inlude here also the ases where � is a 2-fae or a 3-fae of �,and only hyperplanes that ross � are onsidered. Let L� be the set of all lines ` 2 Lsuh that p` 2 � , and let L0� be the set of all lines ` 2 L suh that �` rosses � ; we havejL� j � n=(r4 log r) and jL0� j � n=r. We \dualize" the problem, by mapping the lines of L�to (red) Pl�uker hyperplanes and lines of L0� to (blue) Pl�uker points in projetive 5-spae.Reall that we onsider here joints (`1; `2; `3) where `1 2 L� , `2; `3 2 L0� . Sine both `2; `3are mapped to (distint) points, the triple interation of `1; `2; `3 is not loalized at any pointof this dual parametri 5-spae. We therefore do not onsider at all any triple interationat this stage. Instead, we harge the joint in question simply to the inidene between p`2and �`1 , or to the inidene between p`3 and �`1 . Clearly, this ount is a (probably gross)overestimate of the number of joints under onsideration.5We onstrut a (1=r)-utting �0� of the ross setion within � of the hyperplanes �`,for ` 2 L� , using, as above, a generi triangulation of the arrangement A(R� ), for anappropriate sample R� of O(r) of these hyperplanes. As above, the size of �0� is O(r4 log r),and we may assume that eah of its ells � 0 ontains at most (n=r)=(r4 log r) = n=(r5 log r)blue Pl�uker points p`, for ` 2 L0� , and is rossed by at most (n=(r4 log r))=r = n=(r5 log r)red Pl�uker hyperplanes �`, for ` 2 L� .We proeed to bound the number of inident pairs (p`2 ; �`1), for `2 2 L0� , `1 2 L� ,applying a ase analysis on the loation of p`2 in �0� .5Arguably, this is one of the weak spots of our analysis. Any method of `preserving' the triple interationsat joints would likely lead to an improved bound on J(n).8



Verties of �0� . Consider a joint (`1; `2; `3) where `1 2 L� , `2; `3 2 L0� , suh that p`2 , say,is a vertex of �0� . As in the primal stage, the number of suh joints is at most the sumPv dv, taken over the verties v of �0� , where dv is the number of red lines ` 2 L� suhthat �` passes through v. We denote the set of these lines as L(v)� . As in the primal stage,only verties v inident to four hyperplanes of R� that meet there transversally need to beonsidered.We �x a hyperplane �` for ` 2 L(v)� and interset it with all hyperplanes of R� and with�. Sine the four hyperplanes of R� that form the vertex v interset there transversally,their ross setions within �` \ � also interset transversally at v, so that this point isa vertex of the 3-dimensional arrangement of these ross setions. The number of suhverties, within �` \�, is at most O(r3), for a total of O(r3 � nr4 log r ), whih, multiplied bythe number of ells � , yields a bound of O(nr3) on the number of joints at verties of theuttings �0� .Regulus edges of �0� . This is the most intriate part of our analysis. Let  be anintersetion urve of three hyperplanes of R� with �, representing three respetive lines`1; `2; `3 (again, only suh urves are of interest). Suppose �rst that these lines are pairwiseskew, so that they form a regulus �. Let M� (resp., M 0�) denote the number of lines ` ofL� (resp., of L0� ) that are ontained in �? (resp., in �); in 5-spae these are lines for whih�` ontains  (resp., p` lies in ). We need to bound the number of inident pairs of lines(`; `0) 2 L� � L0� , suh that p`0 2 . We do not inlude in this ount lines `0 2 L0� whosepoints p`0 are verties of �0� , sine they have already been aounted for. We distinguishbetween the ase where �` ontains  and the ase where �` rosses .Consider �rst the ase where �` ontains , so ` 2 �?. A trivial upper bound on thenumber of joints under onsideration (or, rather, the number of inident pairs (`; `0), asabove) is M� �M 0�. Our next steps proeed by ase analysis on the values of M� and M 0�,whih uses two threshold values s; t that we will speify later, where s is the parameterused in the proess of pruning away heavy reguli and planes, applied at the beginning ofthe analysis.(a)M� � t: In this ase we bound the number of joints by tP� M 0�, where the sum extendsover all reguli � with this property. Sine, in 5-spae,M 0� ounts points that lie on the urvesrepresenting the reguli and eah point is ounted only one (sine we exlude verties ofthe utting), the above sum is at most tn=r. Summed over all ells � , this yields an overallbound of O(nr3t log r) joints (whih already dominates the bounds O(nr3) obtained for theverties of the dual uttings, as well as for the verties and edges of the primal utting).6(b) M� > t: By the initial pruning proess, we may assume that M 0� � s. In this ase weuse Lemma 2.2 to onlude that the number of reguli � for whih M� > t (for the �xed ell�) is at mostO0B�� nr4 log r�3t21=4 + � nr4 log r�2t3 + nr4 log rt 1CA = O� n3r12t21=4 log3 r + n2r8t3 log2 r + nr4t log r� ;6This is one of the two `weak spots' in our analysis|see the disussion at the end of the paper.9



and the sum P� M�, over these reguli �, isO� n3r12t17=4 log3 r + n2r8t2 log2 r + nr4 log r� :Multiplying by s and by the number of ells � , we obtain the boundO� n3sr8t17=4 log2 r + n2sr4t2 log r + ns�on the number of joints under onsideration.Consider next the ase where �` rosses . We split  into the edges of the uttingthat it is omprised of, and repeat this for all urves  that represent reguli. This yieldsa olletion of O(r4 log r) subproblems, eah assoiated with an edge � 0 of �0� , suh that � 0ontains at most n=(r5 log r) blue Pl�uker points of L0� and is rossed by at most n=(r5 log r)red Pl�uker hyperplanes of L� . Any joint under onsideration is an intersetion point of twolines, one mapped into one of these Pl�uker points and the other into one of these Pl�ukerhyperplanes. Hene the number of these joints is at most O((n=(r5 log r)) � (n=(r5 log r))) =O(n2=(r10 log2 r)). The overall bound on the number of joints of this kind, summed overall suh edges � 0 of �0� , and over all ells � of the primal utting, isO�(r4 log r)2 � n2r10 log2 r� = O�n2r2� :Non-regulus edges of �0� . Suppose next that two of the lines that de�ne the intersetionurve, say `1; `2, meet eah other. Thus they de�ne a ommon plane h and a ommon pointq. If the third line `3 2 L� lies in h or passes through q then the intersetion �`1\�`2\�`3\�is two-dimensional, so these three lines do not de�ne an edge of �0� . Hene `3 meets h ata single point q0 6= q. It follows (f. Figure 3) that any line ` with p` 2  either lies in hand passes through q0, or it passes through q and through `3, and thus lies in the plane h0spanned by q and `3. In other words, any joint on ` lies in h [ h0. We an deompose into two suburves h, h0 , where h (resp., h0) onsists of all points p` for whih ` lies inh and passes through q0 (resp., lies in h0 and passes through q).We next repeat the preeding analysis, handling planes instead of reguli, whih makesit somewhat simpler.7 Let then  = h [ h0 be an intersetion urve of three hyperplanesof R� , representing lines `1; `2; `3 that form a pair of planes h; h0, as above. We fous onone of the suburves, say h. Let Mh (resp., M 0h) denote the number of lines ` of L� (resp.,of L0� ) that are ontained in h; in 5-spae these are lines for whih �` ontains h (resp., p`lies in h). We need to bound the number of inident pairs of lines (`; `0) 2 L� � L0� , forwhih p`0 2 h. We do not inlude in this ount lines `0 2 L0� whose points p`0 are vertiesof �0� , sine they have already been aounted for. As in the ase of reguli, we distinguishbetween the ase where �` ontains h and the ase where �` rosses h.Consider �rst the ase where �` ontains h. A trivial upper bound on the number ofjoints under onsideration isMh �M 0h. Our next steps proeed by ase analysis on the valuesof Mh and M 0h, whih uses the same two threshold values s; t as for the ase of reguli.7It also yields smaller bounds, as we shall see, so this part of the analysis does not really a�et the �naloverall bound. 10



(a)Mh � t: In this ase we bound the number of joints by tPhM 0h, where the sum extendsover all planes h with this property. Sine, in 5-spae, M 0h ounts blue points (representinglines in L0� ) that lie on the orresponding urves h, and eah point is ounted only one(sine we exlude verties of the utting), the above sum is at most tn=r. Summed over allells � , this yields an overall bound of O(nr3t log r).(b) Mh > t: The pruning proess allows us to assume that M 0h � s. In this ase we useLemma 2.1 to onlude that the number of planes h for whih Mh > t (for the �xed ell �)is at most O0B�� nr4 log r�2t3 + nr4 log rt 1CA = O� n2r8t3 log2 r + nr4t log r� ;and the sum PhMh, over these planes h, isO� n2r8t2 log2 r + nr4 log r� :Multiplying by s and by the number of ells � , we obtain the boundO� n2sr4t2 log r + ns� (4)on the number of joints under onsideration.Consider next the ase where �` rosses h. As in the ase of reguli, we split h into theedges of the utting that it is omprised of, and repeat this for all urves h. This yields aolletion of O(r4 log r) subproblems, eah involving at most n=(r5 log r) blue Pl�uker pointsof L0� and at most n=(r5 log r) red Pl�uker hyperplanes of L� . Arguing as above, the overallnumber of joints under onsideration is at most O(n2=r2).2-Faes of �0� . The analysis follows losely that for the 2-faes of the primal utting �.Spei�ally, let ' be an intersetion 2-surfae of two hyperplanes of R� with �, and let`1; `2 be the two orresponding lines of L� . Suppose �rst that `1; `2 pass through a ommonpoint q, and thus lie in a ommon plane h. Then any line ` with p` 2 ' either lies in h orpasses through q. We an thus view ' as the union of two surfaes 'q; 'h, where 'q (resp.,'h) is the lous of all (points representing) lines passing through q (resp., lying in h).Let (`; `0; `00) be a joint where ` 2 L� , `0; `00 2 L0� , and, say, p`0 2 'q. We may assumethat p`0 does not lie on any edge of �0� that is ontained in ', beause suh points havealready been taken are of. If �` fully ontains 'q then ` must pass through q, and thus thejoint in question must be the point q itself. The overall number of suh joints is only O(r2),for an overall bound of O(r6 log r). We may thus assume that ` does not pass through q,and that �` rosses 'q.Similarly, let (`; `0; `00) be a joint as above, where p`0 2 'h. If �` fully ontains 'h then` must lie in h. In this ase, the joint must lie in h. We then proeed exatly as in theanalysis of non-regulus edges of �0� . (In ase (a) of the analysis, the sumPhM 0h is at mostn=r, sine it ounts lines of L0� without multipliity, as we ignore the orresponding Pl�ukerpoints that lie on edges of �0� .) This yields the same bounds as in ases (a) and (b) of thenon-regulus edges, i.e., a total bound of O � n2sr4t2 log r + ns+ nr3t log r� for the number ofjoints of this kind. We may thus assume that �` rosses 'h.11



Thus, in either ase, we are left with subproblems, eah assoiated with a 2-fae � 0 of �0�(the surfae ' is now deomposed bak into its onstituent 2-faes), suh that � 0 ontains atmost n=(r5 log r) blue Pl�uker points of L0� and is rossed by at most n=(r5 log r) red Pl�ukerhyperplanes of L� . Arguing as in the ase of edges, we obtain O(r4 log r) subproblems ofthis kind, implying, as above, that the overall number of joints under onsideration is atmost O(n2=r2).Finally, suppose that `1 and `2 are skew. Consider a joint (`; `0; `00), where, say, p`0 2 '.The hyperplane �` annot fully ontain ', beause then the line ` would have to be inidentto every line that meets `1 and `2, whih is learly impossible. Hene, in this ase we obtain,as above, a olletion of O(r4 log r) subproblems, eah assoiated with a 2-fae � 0 of �0� (asubfae of '), suh that � 0 ontains at most n=(r5 log r) blue Pl�uker points and is rossedby at most n=(r5 log r) red Pl�uker hyperplanes. As above, the overall number of jointsunder onsideration is O(n2=r2).Cells of �0� . Eah ell � 0 of �0� is rossed by at most n=(r5 log r) red Pl�uker hyperplanes�`, for ` 2 L� , and ontains at most n=(r5 log r) blue Pl�uker points p`, for ` 2 L0� . Hene,similar to the analysis of edges and 2-faes, the number of joints that involve lines ` withp` 2 � 0 is at most n2=(r10 log2 r). Summing these bounds over all ells � 0 and � , we obtainan overall number of O(n2=r2) joints.3-Faes of �0� . We argue here in muh the same way as in the primal deomposition. Letp`0 , where `0 2 L0� , be a blue point in the relative interior of some 3-fae of �0� , ontained in�` \ �, for some ` 2 L� . Any hyperplane inident to p`0 , with the exeption of �`, rosseseah of the two adjaent ells of �0� . We an thus assign p`0 to either of these ells, andount the joints on `0 of the type we seek as part of the subproblem assoiated with thatell. This exludes the joint formed (if at all) by `0 and `. The overall number of suh jointsis O(r4 log r � nr ) = O(nr3 log r). (Alternatively, we may proeed as in the ases of edges,2-faes and ells, and obtain diretly the same bound of O(n2=r2) joints.)Putting it all together. Adding the bounds obtained in the preeding analysis steps,we obtain a grand total ofO�n2s + nr3t log r + n3sr8t17=4 log2 r + n2r2 + n2sr4t2 log r + ns+ r6 log r�joints. We now hooser = n13=69log3=23 n; s = r2 = n26=69log6=23 n; t = nr5 log n = n4=69log8=23 n;to obtain that the overall number of joints is O(n112=69 log6=23 n). (This hoie of parametersequalizes the �rst four terms in the above bound; the last three terms are dominated by the�rst four.)We thus obtain the main result of this paper:Theorem 2.3. The number of joints of a set of n lines in 3-spae is O(n112=69 log6=23 n) =O(n1:6232). 12



2.4 DisussionThere are two natural onjetures onerning J(n). The �rst (in view of the best knownlower bound) is that J(n) = �(n3=2). The seond, and somewhat weaker onjeture, isthat J(n) � O(n8=5). There are several informal reasons for the seond onjeture. Forexample, observe that the two stages of deomposition end up with about r8 subproblems,eah involving about n=r5 lines, whih leads to a reurrene relation, whose basi solutionis about n8=5. (Of ourse, the subproblems are di�erent from the original one, sine jointsare `lost' there. Still, the general harateristis of the deomposition suggest this bound.)We strongly believe that at least the seond onjeture is true. There are two weakspots in our analysis. The �rst is the handling of regulus-edges of the dual uttings. Wean handle well reguli that ontain many lines of L0� , but it seems that we handle the `lighter'reguli in a suboptimal manner. At any rate, the term that the analysis of these light reguliyields, namely O(nr3t log r) is one of the auses for our bound to be weaker than O(n8=5).The seond ause is the way we handle the subproblems at the seond partitioning stage:We bound there the number of relevant joints simply by the produt of the sizes of the twoorresponding sets of lines. We suspet that this is a gross overestimate, and that sharperbounds an be obtained using a more areful analysis.AknowledgmentsThe authors wish to thank Boris Aronov for many helpful disussions on the problem. Inpartiular, the present proof of Lemma 2.1 was suggested by him. The ompanion note [3℄arose from these disussions.Referenes[1℄ B. Aronov, V. Koltun and M. Sharir, Cutting triangular yles of lines in spae, Pro.35th Annu. ACM Sympos. Theory Comput. (2003), 547{555.[2℄ B. Aronov, M. Pellegrini and M. Sharir, On the zone of a surfae in a hyperplanearrangement, Disrete Comput. Geom. 9 (1993), 177{186.[3℄ B. Aronov and M. Sharir, A note on inidenes in higher dimensions, manusript, 2003.[4℄ B. Chazelle and J. Friedman, A deterministi view of random sampling and its use ingeometry, Combinatoria 10 (1990), 229{249.[5℄ B. Chazelle, H. Edelsbrunner, L. Guibas, R. Pollak, R. Seidel, M. Sharir and J.Snoeyink, Counting and utting yles of lines and rods in spae, Comput. Geom. TheoryAppl. 1 (1992), 305{323.[6℄ B. Chazelle, H. Edelsbrunner, L.J. Guibas, M. Sharir, and J. Stol�, Lines in spae:Combinatoris and alogorithms, Algorithmia 5 (1996), 428{447.[7℄ K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl, Combinatorial om-plexity bounds for arrangements of urves and spheres, Disrete Comput. Geom. 5 (1990),99{160. 13
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