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ABSTRACT
Given a set L of n lines in R

3, let JL denote the set of all
joints of L; joints are points in R

3 that are incident to at
least three non-coplanar lines in L. We show that there are
at most O(n5/3) incidences between JL and L.

This result leads to related questions about incidences be-
tween L and a set P of m points in R

3: First, we associate
with every point p ∈ P the minimum number of planes it
takes to cover all lines incident to p. Then the sum of these
numbers is at most

O(m4/7n5/7 + m + n) .

Second, if each line forms a fixed given non-zero angle with
the xy-plane—we say the lines are equally inclined— then
the number of (real) incidences is at most

O(min{m3/4n1/2κ(m),m4/7n5/7} + m + n) ,

where κ(m) = (log m)O(α2(m)), and α(m) is the slowly grow-
ing inverse Ackermann function. These bounds are smaller
than the tight Szemerédi-Trotter bound for point-line inci-
dences in R

2, unless both bounds are linear. They are the
first results of that type on incidences between points and
1-dimensional objects in R

3. This research was stimulated
by a question raised by G. Elekes.
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1. INTRODUCTION
What is the maximum number of incidences between m

points and n lines in R
3? We can answer that question by

projecting the lines and points to some generic plane. In the
projection, incidences in space are preserved, and no new
ones are created. In this plane, we can apply the worst-case
tight bound of O(m2/3n2/3+m+n) for point-line incidences
in R

2—a classical result of Szemerédi and Trotter [15] (see
also [4, 14]). Hence, the same bound holds for point-line
incidences in R

3. Moreover, since we can choose all points
and lines in a common plane in R

3 to begin with, the tight
lower bound construction in the plane can be adopted right
away.
Problem Set-up. Here we ask the question of what hap-
pens when the lines and points are ‘truly in space.’ In par-
ticular, we want to give little (or no) weight to incidences
between a point and a set of lines that lie all in a common
plane. To make this more concrete, let L be a set of lines
in R

3. For p ∈ R
3, we denote by Lp the set of lines incident

to p, i.e., Lp := {` ∈ L|` 3 p}. We call p a joint of L, if Lp

contains at least three non-coplanar lines (i.e., not all lines
in Lp are contained in a single plane), and we let JL denote
the set of all joints of L. (Joints in line arrangements have
been investigated in [11], where a bound of O(|L|1.643) for
the number of joints was shown, thereby improving on the
previous bound of O(|L|1.75) in [3]. An easy construction
shows that the number of joints in a set of n lines can be
Ω(n3/2) [3, 10].) We let cp = cp(L), the plane-cover number1

of p, denote the minimum number of planes that contain all
lines in Lp. Note that p is a joint iff cp ≥ 2.

For P ⊆ R
3 a finite set of points, we set I(P,L) :=

∑

p∈P |Lp| and Ic(P, L) :=
∑

p∈P cp(L). For n := |L| and

m := |P |, our initial discussion entails a worst-case tight

bound of I(P, L) = O(m2/3n2/3 + m + n).

1As a side remark, for given L, p, and k ∈ N, deciding
whether cp(L) ≥ k is NP-complete: It is (linear time) equiv-
alent to deciding whether k lines can cover a given planar
set of n points, which has been shown to be NP-complete in
[16].



Upper Bounds. Our main result is

I(JL, L) = O(n5/3) (1)

(see Theorem 3.1). We use this bound to derive

Ic(P, L) = O(m4/7n5/7 + m + n) (2)

(see Theorem 4.1). Note that cp = d|Lp|/2e if no three lines
in Lp are coplanar. Hence, if no three lines in L through a
common point are coplanar, then

Ic(P, L) − 1

2
|P | ≤ 1

2
I(P, L) ≤ Ic(P, L) (3)

and, therefore, the bound in (2) is actually a bound for
I(P, L) under this precondition. In particular, no three lines
in any Lp are coplanar if all lines are equally inclined, that
is, each line in L forms a fixed given non-zero angle with the
xy-plane. In that specific situation we provide the further
improvement

I(P, L) ≤ 2Ic(P, L) =

O(min{m3/4n1/2κ(m),m4/7n5/7} + m + n) , (4)

where κ(m) = (log m)O(α2(m)), and α(m) is the slowly grow-
ing inverse Ackermann function (see Theorem 5.1). This
latter question about equally inclined lines was raised by
G. Elekes, and we are grateful to him for stimulating this
research.2

For n = o(m2), the bounds in (2) and (4) are smaller than
the tight Szemerédi-Trotter bound for point-line incidences
in R

2. For n = Ω(m2), all bounds are O(n). These are the
first results of that type on incidences between points and
1-dimensional objects in R

3.
Lower Bounds. We show that, for m, n ∈ N with m =
Ω(n3/4), there are sets P of m points and L of n equally
inclined lines in R

3, such that

I(P,L) = Ω(m2/3n1/2) (5)

(see Theorem 7.1). This bound is superlinear in (n+m) for

m satisfying m = ω(n3/4) and m = o(n3/2), and, along (3),
it is also a lower bound for Ic.

Finally, we consider a ‘competing’ way of defining non-
coplanar incidences, for sets L of arbitrary lines. For p ∈ R

3,
let sp = sp(L) be the number of distinct planes that contain
at least two lines in Lp, and let νp = νp(L) :=

√
sp. Define

Iν(P, L) :=
∑

p∈P νp(L). We show that cp = O(νp), and we
derive a worst case lower bound of

Iν(P, L) = Ω(m1/2n3/4) . (6)

This lower bound, however, does not apply to Ic, for which
we have no lower bounds other than the one implied by (5).
Tools. The analysis exploits the Szemerédi-Trotter bound
[15], the structure of reguli in 3-space (see, e.g., [13]), results
from extremal graph theory for forbidden complete bipartite
subgraphs (see, e.g., [9]), partition schemes from computa-
tional geometry (see, e.g., [4, 12]), and methods reminiscent
of those developed in [3, 11] for the analysis of joints in line
arrangements in space.

2Elekes was actually interested in a similar problem formu-
lated in the complex space, whose interpretation in the reals
involves incidences between points and helices of a certain
kind in three dimensions. The case of equally inclined lines
is the simpler real version of Elekes’ problem.

The derivation of the second bound for equally inclined
lines uses a totally different approach. It transforms the
sets P and L to a planar configuration involving points and
circles, where circles are tangent to each other at the given
points, and where the goal is to bound the number of such
tangencies. This is handled using recent tools developed for
arrangements of circles in [1, 8].

2. PREREQUISITES
We recall some of the tools we need for our proofs. On

the way, we show that many lines in a common plane or in
a common regulus are counter-productive to having many
incidences between the lines and their joints.
Szemerédi-Trotter Bound [15]. Given a set L of n lines
and a set P of m points, both in a common (2-dimensional)
plane, we have3

I(P,L) = O(n2/3m2/3 + n + m) . (7)

Now let L be an arbitrary set of n lines in R
3, and Lπ be the

subset of all lines from L that lie in some given plane π. Set
nπ := |Lπ | and mπ := |JL∩π|. Note that mπ ≤ |L\Lπ | ≤ n,
since every point p ∈ JL∩π needs a line ` with p ∈ ` ∈ L\Lπ ,
to ensure that p is indeed a joint, and ` cannot serve this
purpose for any other point in π. Hence, the number of
incidences between JL ∩ π and L is at most

|L \ Lπ| + I(JL ∩ π, Lπ)

≤ n + O(m2/3
π n2/3

π + mπ + nπ)

= O(n2/3n2/3
π + n) ,

and so

I(JL, L) ≤ I(JL\Lπ , L \ Lπ) + O(n2/3n2/3
π + n),

since all joints of L outside π remain joints in L \ Lπ.
Reguli (see [13]). Two lines in R

3 that are disjoint and
not parallel are called skew. Given three pairwise skew lines
`1, `2, `3, the set, σ = σ(`1, `2, `3), of lines intersecting all
three lines is called a regulus. All lines in σ are pairwise
skew. If `′1, `

′
2, `

′
3 are in σ, then σ⊥ = σ(`′1, `

′
2, `

′
3) consti-

tutes another regulus, that is independent of the choice of
the three lines in σ. (Note that the three generating lines,
`1, `2, `3, of σ do not belong to σ, but rather to σ⊥.)
⋃

`∈σ ` =
⋃

`∈σ⊥ ` is a ruled surface (which is a quadric)

in R
3, denoted by σ∗ = σ∗(`1, `2, `3); σ and σ⊥ are called

the generating families of σ∗ and we say that σ⊥ is the
complementary regulus of σ, and vice versa: (σ⊥)⊥ = σ.
Every point in σ∗ is contained in exactly one line from σ
and in exactly one line from σ⊥. For any line ` in R

3, either
` ∈ σ ∪ σ⊥ (i.e., ` ⊆ σ∗), or ` intersects σ∗ in at most two
points.

It follows that if P ⊆ σ∗ and L is any set of n lines, then

I(P,L) ≤ 2(|P | + n),

by the following argument: Any point-line incidence (p, `)
is associated with p, if ` ∈ σ ∪ σ⊥, and it is associated
with `, otherwise. In this way every point and every line is
associated with at most two incidences.

3This bound is worst case tight: Choose P as the set of
vertices of an M × M grid of points in the plane, for M =
b√mc, and L as a set of n distinct lines that maximize the
number of incidences with P ; see [5].



If, moreover, all points in P are joints of L then

I(P,L) ≤ 6n, (8)

since then every point in P must be incident to at least
one line not in σ ∪ σ⊥, and each such line is incident to at
most two points in P , implying that |P | ≤ 2n. It follows
that if Lσ is the set of all lines from L in a regulus σ or its
complementary regulus σ⊥, then

I(JL, L) ≤ I(JL\Lσ , L \ Lσ) + 6n .

Forbidden Subgraphs. If a simple finite bipartite graph
G = (U

.∪V, E), E ⊆ U × V , contains no (isomorphic copy
of the) complete bipartite graph K3,2 with the independent
part of size 3 in U , then (see, e.g., [9, Theorem 9.5])

|E| = O(|U | · |V |2/3 + |V |) (9)

|E| = O(|V | · |U |1/2 + |U |) .

Let us see a simple application of that result from extremal
graph theory. Let L be a set of n lines in R

3, and let R be
a family of reguli.4 Then the number of pairs (`, σ) ∈ L×R
with ` ∈ σ—the number of incidences between L and R, if
you like—is bounded by O(n · |R|2/3 + |R|), since three lines
in L are contained in at most one common regulus σ ∈ R.

3. JOINT-LINE INCIDENCES
This section is dedicated to the proof of the main theorem,

with a discussion of some immediate implications.Theorem 3.1. For any set L of n lines in R
3, we have

I(JL, L) = O(n5/3).

Let L be a set of n lines in R
3. For convenience, we assume

that no two lines in L are parallel. We may do so since this
property can be attained by an appropriate projective trans-
formation, without affecting incidences and coplanarities.

By the discussion in the previous section, removing a set
L′ of all k lines in a given plane or regulus will decrease the
number of joint-line incidences by O(n2/3k2/3 + n) at most.
If we repeat this pruning step, as long as we can find a set L′

as above of size k >
√

n′, where n′ is the current number of
lines that had survived the pruning, then this can be done
at most j = O(

√
n) times before we have exhausted all lines.

Since, for k1 + k2 + · · · + kj ≤ n,

j
∑

i=1

k
2/3
i ≤ j1/3

(

j
∑

i=1

ki

)2/3

≤ j1/3n2/3 = O(n5/6) ,

we end up with a set of lines that has at most O(j1/3n4/3 +

jn) = O(n3/2) fewer joint-line incidences than the original
set. Consequently, as we are heading for a bound that is
Ω(n3/2), we can assume that every regulus or plane contains
at most

√
n lines of L.

Good and Bad Triples. Let ` ∈ L, and put µ(`) :=
|JL ∩ `|. For every p ∈ JL ∩ ` there is a set Kp ⊆ Lp \ {`}
of two lines from L that form a non-coplanar triple with `;
we fix some Kp = Kp(`) for every point p ∈ ` and set L` =
⋃

p∈JL∩` Kp. Clearly, |L`| = 2µ(`). Consider an unordered

triple {p1, p2, p3} of joints on `. We call it good, if there are

4Here it is important that a regulus consists only of one of
the two generating families of lines of a ruled surface!

three pairwise skew lines `i ∈ Kpi , i = 1, 2, 3, and we call it
bad, if there are three lines `i ∈ Kpi , i = 1, 2, 3, that lie in
a common plane. We claim that any triple of joints on ` is
good or bad.5

Indeed, put Kpi = {`(1)i , `
(2)
i }, for i = 1, 2, 3, and re-

fer to Figure 1. If {p1, p2, p3} is not good, then, among

{`(1)1 , `
(1)
2 , `

(1)
3 }, two lines, say `

(1)
1 , `

(1)
2 are coplanar. Then

`
(1)
1 and `

(2)
2 are skew. Consider the triple {`(1)1 , `

(2)
2 , `

(1)
3 }. If

`
(1)
3 is coplanar with `

(1)
1 then the three lines {`(1)1 , `

(1)
2 , `

(1)
3 }

are coplanar. Otherwise, `
(1)
3 is coplanar with `

(2)
2 , so `

(2)
3

is skew to `
(2)
2 . Since the triple {`(1)1 , `

(2)
2 , `

(2)
3 } cannot be

pairwise skew, by assumption, it follows that `
(1)
1 and `

(2)
3

are coplanar, so again we obtain a triple {`(1)1 , `
(1)
2 , `

(2)
3 } of

coplanar lines.

p1

p2

p3

`

`
(1)
1

`
(2)
1

`
(1)
2

`
(2)
2

`
(1)
3

`
(2)
3

Figure 1: A triple of joints along ` and the corre-
sponding sets Kpi .

We fix some large constant t ∈ N and analyze triples of
joints on lines ` ∈ L, for which µ(`) > t

√
n. Other lines can

accumulate at most O(n3/2) incidences with JL. We cannot
completely discard them, though, since that may invalidate
some joints and thus many more joint-line incidences than
those on such a ‘light’ line may get lost this way. However,
we do not need to consider them among the ‘base lines’ ` in
the ongoing analysis.
Good triples on a heavy line in L. Fix a line ` ∈ L with
µ = µ(`) > t

√
n. Every good triple {p1, p2, p3} of joints on

` has at least one triple `1, `2, `3 of pairwise skew lines, with
`i ∈ Kpi , for i = 1, 2, 3. Put σ = σ(`1, `2, `3), and associate
σ with {p1, p2, p3}; note that ` ∈ σ. Different choices of
triples may generate the same regulus. In fact, a regulus
ζ that contains k lines of L` may cause its complementary
regulus ζ⊥ to be generated up to

(

k
3

)

times.
Let Nk = Nk(`) denote the number of reguli containing

exactly k lines in L`, and let N≥k = N≥k(`) denote the
number of reguli with at least k lines in L`. Then, by con-
struction,

TG(`) ≤
∑

k≥3

(

k

3

)

Nk , (10)

where TG(`) is the number of good triples on `. In the
next stages of the proof we show that (a) almost all triples
in JL ∩ ` are good, and (b) the number of distinct reguli
generated by the above process is Ω(µ3).Claim 3.2. N≥k = O

(

µ3

k5
+

µ

k

)

.

5In fact, it can be both—that’s the way life goes.



Proof: Let R be any set of reguli that contain `. Because
of the first bound in (9) and the discussion following it, the
number of pairs (`′, σ) with `′ ∈ L`, σ ∈ R, and `′ ∈ σ⊥

is at most O(|L`||R|2/3 + |R|). Next, in order to improve
on this bound, we represent the lines in L` as points in an
appropriate 3-dimensional parametric space (where a line
λ ∈ L` is parametrized, e.g., by the point λ ∩ `, and by its
orientation, as a point on the unit sphere S

2), and the reguli
of R as curves in that space, where the curve corresponding
to a regulus σ is the locus of all (points representing) lines
that belong σ⊥. The explicit form of such a curve can be
easily worked out; under the above parametrization, these
curves are algebraic curves of constant maximum degree. We
then project this configuration onto some generic 2-plane.
We obtain a set L∗

` of 2µ points and a set R∗ of |R| curves
in the plane. We wish to bound the number of incidences
between these points and curves.

We choose some parameter r, to be determined below, and
construct a (1/r)-cutting of the plane (see [4, 6]) into O(r2)
pseudo-trapezoidal cells, each crossed by at most |R|/r pro-
jected ‘reguli-curves’. (Such a cutting exists, since the pro-
jections of the curves representing the reguli are algebraic of
constant maximum degree; see, e.g., [6].) Moreover, by fur-
ther splitting cells of the cutting, as necessary, we may also
assume that each cell contains at most µ/r2 projected points
(lines of L`) in its interior. Applying the initial weaker
bound, the number of incidences within the interior of a
cell of the cutting is

O

(

µ

r2

(

|R|
r

)2/3

+
|R|
r

)

,

which, summed over all cells, is

O

(

µ|R|2/3

r2/3
+ |R|r

)

.

Using standard methods (as in [4]), one can show that this
also bounds the number of incidences involving points that
lie on the boundaries of the cells of the cutting. We now
choose r = µ3/5/|R|1/5. This number is between 1 and

|R|, unless µ < |R|1/3 or µ > |R|2. In the former case,
the weaker bound is O(|R|). In the latter case, applying
the second bound of (9), the number of incidences is O(µ).
If r lies in the required range, the above bound becomes
O(µ3/5|R|4/5), so our incidence bound is always

O(µ3/5|R|4/5 + µ + |R|) .

Apply this bound to the set R of reguli with at least k gen-
erating lines in L`. Since the number of incidences (`′, σ⊥),
with `′ ∈ L`, σ ∈ R, is at least k|R| in this case, it follows
that

k|R| = O(µ3/5|R|4/5 + µ + |R|) ,

from which the bound on N≥k = |R| follows readily. 2

We can now derive a bound for the following partial sum
(where we clearly have t < µ1/2)

∑

k≥t

(

k

3

)

Nk =

(

t

3

)

N≥t +
∑

k>t

(

k − 1

2

)

N≥k

= O





µ3

t2
+

bµ1/2c
∑

k=t

µ3

k3
+

kmax
∑

k=bµ1/2c+1

µk



 ,

where kmax is the maximum number of lines of L` that ap-
pear in a single complementary regulus. By our pruning
assumption, we have kmax ≤ √

n < µ/t and so

∑

k≥t

(

k

3

)

Nk = O

(

µ3

t2
+ µk2

max

)

= O

(

µ3

t2

)

.

Recall (10) to conclude

TG(`) =
∑

k<t

(

k

3

)

Nk + O

(

µ3

t2

)

. (11)

There are very few bad triples. Let TB(`) denote the
number of bad triples in JL ∩ `. Let {p1, p2, p3} be such a
bad triple; there is a plane π that contains lines `i ∈ Kpi ,
for i = 1, 2, 3. Different choices of triples {p1, p2, p3} may
yield in this manner the same plane. In fact, if π is a plane
containing k lines of L`, it may be encountered up to

(

k
3

)

times.
Let Mk = Mk(`) denote the number of planes containing

exactly k lines in L`, and let M≥k = M≥k(`) denote the
number of planes with at least k lines in L`. Since no two
planes in question have a common line other than ` itself, it
follows that M≥k ≤ 2µ/k. Then, by construction,

TB(`) ≤
∑

k≥3

(

k

3

)

Mk =
∑

k≥3

(

k − 1

2

)

M≥k

= O





k̃max
∑

k=3

kµ



 = O(µk̃2
max) ,

where k̃max ≤ √
n < µ/t is the maximum number of lines of

L` on any single plane. Hence, TB(`) = O(µ3/t2). So if t
is chosen to be a sufficiently large constant, it follows from
TB(`) + TG(`) ≥

(

µ
3

)

that

TG(`) = Ω(µ3) . (12)

The final stage of the proof. The bounds (12) and (11)
imply that

µ3 = O(t3)
∑

k<t

Nk .

Since t is a constant, the number of distinct reguli generated
by triples of points along `, as above, is Ω(µ3).

Let L′ denote the set of all lines ` ∈ L with µ(`) > t
√

n,
and let R be the set of all reguli containing at least 3 lines
of L. Clearly, |R| = O(n3) and, for every ` ∈ L′, there are
Ω(µ(`)3) distinct reguli σ in R with ` ∈ σ.

On the one hand, from what we have just shown, it follows
that Ω

(
∑

`∈L′ µ(`)3
)

is a lower bound for the number of
pairs (`′, σ) with `′ ∈ L′, σ ∈ R, and `′ ∈ σ. On the other
hand, the forbidden subgraph argument (see (9)) yields an

upper bound of O(|L′||R|2/3 + |R|) = O(n3) for the number
of such pairs. Now, using Hölder’s inequality,

∑

`∈L′

µ(`) ≤
(

∑

`∈L′

µ(`)3
)1/3

· |L′|2/3 = O(n5/3),

thus completing the proof of the theorem. 2

Immediate implications. It is interesting to note that one
can ‘distill’ from the preceding proof the following result,
reminiscent of Beck’s theorem for lines in the plane [2].



Corollary 3.3. Let ` be a fixed line in 3-space, and let
L be a set of n lines incident to `, which meet ` at n/2
distinct points, such that each of these points is incident to
two lines of L, and such that any such pair of lines do not
form a coplanar triple with `. Then there exists a constant
c > 0 such that one of the following properties hold:

(i) There exists a regulus generated by at least cn lines of
L.

(ii) There exists a plane containing at least cn lines of L.

(iii) There exist at least cn3 distinct reguli generated by the
lines of L.

Returning to our measures of incidences, we have:Corollary 3.4. For any sets P of m points and L of n
lines in R

3, Ic(P, L) = m + O(n5/3) and Iν(P, L) = m +

O(n5/3).

Proof: Each point p with cp(L) = 1 contributes 1 to Ic(P, L).
The set P ′ of remaining points are joints of L. Since we have
Ic(P

′, L) ≤ I(P ′, L), the corollary follows for Ic, and, simi-
larly, also for Iν . 2

Clearly, we can also conclude that |JL| = O(n5/3), which

improves a bound of O(n7/4) obtained in [3], but is infe-

rior to a later improvement in [11] to O(n23/14 log31/14 n) =
O(n1.643). It is a challenging open problem to further im-
prove this bound on the number of joints, probably close
to O(n3/2), which is the best known lower bound for the
number of joints.

4. INCIDENCES COUNTED BY
PLANE-COVER NUMBERSTheorem 4.1. For any sets P of m points and L of n

lines in R
3, Ic(P, L) = O(m4/7n5/7 + m + n).

The bound is linear in m for m > n5/3, in agreement with
Corollary 3.4. For smaller values of m, we improve the
bound using the following partitioning scheme.

Project the points of P and the lines of L onto some
generic plane π, and dualize the configuration within π,
mapping points to lines and lines to points, while preserving
incidences between them. We thus get a set P ∗ of m lines
and a set L∗ of n points. Construct a (1/r)-cutting of that
dual plane (see [4]), for some parameter r to be fixed later.
We obtain O(r2) cells, each crossed by at most m/r lines of
P ∗. By further cutting the cells into subcells, as necessary,
we may also assume that the interior of each cell contains
at most O(n/r2) points of L∗ (while their number remains
O(r2)).

A crucial property of our Ic(P, L) is that it is subadditive
under partitioning. That is, if L = L1 ∪ L2 then cp(L) ≤
cp(L1) + cp(L2), which follows trivially by definition, and
hence

Ic(P, L) ≤ Ic(P, L1) + Ic(P, L2).

Hence we obtain, taking also into account the O(mr) real
incidences that involve lines whose dual points lie on cell
boundaries (as follows from the analysis in [4]),

Ic(P, L) = O(mr) + O(r2) · O
(

m

r
+
( n

r2

)5/3
)

= O

(

mr +
n5/3

r4/3

)

.

We choose r = n5/7/m3/7 to balance the two terms. We

have to make sure that 1 ≤ r ≤ m, that is, n1/2 ≤ m ≤
n5/3. If m > n5/3 then we have Ic(P, L) = O(m). If m <

n1/2 then, using the Szemerédi-Trotter bound on the number
of incidences between points and lines in the plane (which
also holds for points and lines in three dimensions), we have
Ic(P, L) ≤ I(P, L) = O(n). Otherwise, r lies in the required

range, and we get Ic(P, L) = O(m4/7n5/7). Hence, putting
together the various bounds, the assertion of Theorem 4.1
follows. 2

Remark: Corollary 3.4 (and Theorem 3.1) bound the num-
ber of real incidences involving the joints of L, but this is
not the case for Theorem 4.1. The reason is that, in the
proof of this theorem, a point p in the set JL may lose, un-
der the partitioning scheme used there, the property that its
incident lines are not all coplanar (that is, of being a joint).
To make this remark more concrete, consider the following
construction. Let P be a set of n points in the xy-plane,
and let L0 be a set of n lines in that plane, such that the
number of (real) incidences between L0 and P is Θ(n4/3)
(see,. e.g., [5]). Let L1 be an additional set of z-vertical
lines passing through the points of P , and put L = L0 ∪L1.
Each point of P is a joint of L. However, the bound in The-
orem 4.1, namely O(n4/7 ·n5/7) = O(n9/7) � Θ(n4/3), does
not indeed apply to the real incidence count, for the reason
stated above. (As a matter of fact, for these sets of points
and lines, we have Ic(P, L) = O(n), as is easily verified.)

5. EQUALLY INCLINED LINESTheorem 5.1. For a given angle θ ∈ (0, π/2), let L be
a set of n lines in R

3, each forming an angle of θ with
the xy-plane. Let P be a set of m points in R

3. Then
I(P, L) = O(min{m3/4n1/2κ(m),m4/7n5/7}+m+n), where

κ(m) = (log m)O(α2(m)), and α(m) is the slowly growing
inverse Ackermann function.

The bound of O(m4/7n5/7 + m + n) is taken care of by
Theorem 4.1, because no three lines of L passing through a
common point can be coplanar, so we can confine ourselves
to the derivation of the other bound. By an appropriate
scaling of the z-axis, we may assume that θ = π/4. We map
the given configuration into the xy-plane as follows. A line
` ∈ L is projected vertically to a line `∗ in the xy-plane, on
which we mark the point w(`) of intersection between ` and
the plane. A point p = (a, b, c) ∈ P is mapped to the circle
p∗ with center (a, b) and radius c. See Figure 2.

Note that p lies on ` if and only if the following two con-
ditions are satisfied:

(i) The line `∗ passes through the center of the circle p∗.

(ii) The circle p∗ passes through the point w(`).

Note that in this case `∗ and p∗ are orthogonal to each
other. In particular, if the line ` ∈ L is incident to points
p1, p2, . . . , ps then the circles p∗

1, p
∗
2, . . . , p∗

s are all tangent
to each other at the common point w(`).

Let I denote the number of incidences between P and L.
We may assume that each line of L is incident to at least
t := I/(an) points, for some constant a ≥ 2, because all the
other lines contribute less than I/a to the total incidence
count, and we may simply ignore them.

We have thus reduced the problem to either of the two
following problems:



p

`

p∗

`∗

w(`)

Figure 2: Mapping points and equally-inclined lines
to the xy-plane.Problem 5.2. Let C be a given finite set of circles and
Q a finite set of points in the plane, where each point is
equipped with a direction. Let T (C,Q) be the number of
pairs (c, q), for c ∈ C, q ∈ Q, such that q lies on c and c
is orthogonal to q’s direction (so, as above, all circles that
form such pairs with the same point q are tangent to each
other at q).

(i) Obtain a bound for T (C,Q).

(ii) Given C as above and an integer parameter k, obtain
an upper bound for T (C,Q≥k), where Q≥k is the set of
all points at which at least k circles of C are tangent
to each other (with the direction associated with such a
point being the radial direction of all tangent circles).

We prefer to tackle Problem 5.2(ii); as will be shown, this
is sufficient for obtaining the bound of Theorem 5.1. Let
C be a set of m circles in the plane. A pencil π of weight
ωπ = j corresponds to a point u, and a direction d, so that
exactly j circles of C pass through u and are orthogonal to d
at u (so they are all tangent to each other at u). The pencil
itself is the collection of these circles.

We seek an upper bound on the sum of the weights of
any set Π of pencils, for which ωπ ≥ k for each π ∈ Π. We
obtain this bound as follows.

Let P be the set of points in R
3 that are mapped to the

circles of C; |C| = |P | = m. Project the points of P on some
generic plane h, so that no two points are projected to the
same point. Apply to the projected set P̃ the partitioning
theorem of Matoušek [7], which, for a given parameter r ≤ m

(that will be specified shortly), yields a partitioning of P̃ into

q = O(r) subsets, call them P̃1, P̃2, . . . , P̃q, each consisting
of at least two points and at most m/r points, so that no
line (in the plane of projection h) crosses (i.e., intersects but

does not fully contain) the convex hulls of more than cr1/2

sets, for some absolute constant c > 0. Let Ci denote the
subset of C consisting of circles whose representing points
are projected to points in P̃i, for i = 1, 2, . . . , q.

As shown by Aronov and Sharir [1], and later slightly im-
proved in [8], a set of N circles in the plane can be cut into

O(N3/2κ(N)) arcs, where κ(N) is as defined above, so that
each pair of arcs intersect at most once. We adapt the anal-
ysis of [1] to the case at hand, which is highly degenerate

due to the multitude of tangencies. Since a tangency is a
degenerate case of a double intersection, it follows from the
analysis of [1, 8] that if ξ circles are tangent to each other at
some common point q, then the cutting procedure will have
to make at least ξ − 1 cuts of the circles at q. This can be
seen either by specializing the analysis of [1, 8] to the case
of tangencies, or by applying a random small perturbation
to the circles, thereby turning each multiple tangency into
a small region, inside which many pairs of the formerly tan-
gent circles have double intersections; in that case, it follows
that the number of cuts that would be required within each
such small region have to be proportional to the number of
circles that participate in the tangency.

We apply this cutting to each subset Ci, thereby cutting
the circles of C into

O(r) · O((m/r)3/2κ(m/r)) = O(m3/2κ(m)/r1/2)

arcs, so that any two arcs, that come from circles in the
same subset Ci, intersect at most once, and their relative
interiors are not tangent to each other.

Consider a pencil π ∈ Π consisting of j ≥ k circles. Let
Ci be a subset that contains at least two circles of π. Then,
as just argued, all the circles of π that belong to Ci, with
the possible exception of at most one circle, will be cut by
the above process at the pencil point.

Consider next those subsets Ci that contain only one arc
of π. The points that represent these circles in 3-space all
lie on the line ` that projects onto the axis of the pencil,
passes through the point of the pencil, and forms an angle
of θ degrees with the xy-plane. The projection ˜̀ of ` onto
the plane h meets the convex hulls of the corresponding sets
P̃i. If ˜̀ fully contains the convex hull of such a P̃i, then
all circles corresponding to points in this set belong to the
pencil, implying that |P̃i| = 1, contrary to the properties of

the construction. Hence, ˜̀ properly crosses the convex hull
of each of these sets, so the number of such sets, and thus
their overall contribution to the size of the pencil, is at most
cr1/2.

We choose r so that cr1/2 = k/2. This implies that the
total number of circles of π is at most 4 times larger than the
number of circles that have been cut by the above process
at the pencil point. Summing this over all pencils of Π, and
recalling that no cutting point on a circle is ‘charged’ more
than once, we conclude that the overall weight of the pencils
in Π is at most

O(m3/2κ(m)/r1/2) = O(m3/2κ(m)/k) .

We now apply this bound in our setup, with k = t =
I/(a|L|). We note that the above partition makes sense only

when 1 ≤ r ≤ m = |P |, i.e., when 2c ≤ k ≤ 2c
√

|P |, or when

2ac|L| ≤ I ≤ 2ac
√

|P ||L|. Note that the incidence graph be-
tween C and Q≥k does not contain any K2,2 as a subgraph,
so, by the extremal graph theoretic bounds [9] that we have

already exploited, we always have I = O(|P |1/2|L| + |P |).
If |L| ≤

√

|P | then I = O(|P |), so we may assume that

|L| ≥
√

|P |, in which case I = O(|P |1/2|L|). In other words,
either I = O(|P | + |L|) or, by appropriately choosing the
constant a in the definition of k, we may assume that k lies
in the required range. In this case, we obtain the inequality

I =
O(|P |3/2κ(|P |)|L|)

I
,



from which we obtain6

I = O(|P |3/4|L|1/2κ(|P |)).

Taking into account also the case I = O(|P | + |L|), we thus
obtain

I(P, L) = O(|P |3/4|L|1/2κ(|P |) + |P | + |L|) .

Remark: It has been conjectured in [1, 8] that the number
of cuts needed to eliminate all tangencies (or, more generally,
all ‘lenses’) in a collection C of circles in the plane is only

O(|C|4/3). Any improvement towards this bound would of
course lead to a similar improvement in Theorem 5.1.

6. AN ALTERNATIVE INCIDENCE COUNT
Recall the definition of the alternative measure of non-

coplanar incidences, via the function νp(L) =
√

sp, where sp

is the number of all planes spanned by at least two lines of
Lp. In this section we analyze νp and its relation to cp. We
note two properties of νp: (i) νp majorizes cp, and (ii) νp is
not subadditive, which makes it unsuitable for analysis that
uses any partitioning scheme, as the one used in the proof
of Theorem 4.1. Nevertheless, the two measures yield the
same weaker asymptotic bound, given in Theorem 3.1 and
Corollary 3.4.Lemma 6.1. cp(L) = O(νp(L)).

Proof: Fix p and consider the set Lp of lines of L incident to
p. By slicing Lp by some generic plane not passing through
p, the problem reduces to the following: Given a set S of
points in the plane, let c(S) denote the minimum number
of lines that cover S, and let ν(S) denote the square root of
the number of distinct lines spanned by at least two points
of S. We need to show that c(S) = O(ν(S)).

If all points of S are collinear then c(S) = ν(S) = 1, so
assume that S is not contained in a single line.

We use Beck’s theorem [2]: There is an absolute constant
b > 0 such that if no line contains more than b|S| points of
S then the number of lines spanned by S is at least b|S|2. In

the latter case, ν(S) ≥
√

b|S|. On the other hand, if there
is a line ` containing at least b|S| points of S, and not all
points of S lie on `, then there exist at least b|S| distinct
lines spanned by S—those connecting the points on ` to a
single point not lying on `. In this case, ν(S) ≥

√
b|S|1/2.

Suppose that there exists a line ` containing at least b|S|
points of S. Remove b|S| of these points from S, and use
` as one of the covering lines in the definition of c(S). Let
S′ be the set of remaining points. If there exists a line `′

containing at least b|S′| points of S′, remove these points,
add `′ to the set of covering lines, and keep repeating this
step as long as possible, Suppose j such steps are executed,
and let S(j) denote the set of remaining points. Note that
j = O(log |S|). We have

c(S) ≤ j + c(S(j)) .

If |S(j)| = O(log |S|) then

c(S) = O(log |S|) = O(|S|1/2) = O(ν(S)) .

6Here the constant in the exponent of the expression for κ(·)
is halved, but the asymptotic form of the expression remains
the same.

Otherwise, by Beck’s Theorem, ν(S) ≥ ν(S(j)) = Ω(|S(j)|).
Hence,

c(S) ≤ O(log |S|) + |S(j)| = O(|S(j)|)
= O(ν(S(j))) = O(ν(S)) .

2

Observation: It does not always hold that νp(L ∪ L′) ≤
νp(L) + νp(L

′).
Indeed, suppose that all the lines of L lie in one common

plane π, and all the lines of L′ lie in another common plane
π′. Then νp(L) + νp(L

′) = 2, but νp(L ∪ L′) ≈
√

|L| · |L′|.

7. LOWER BOUNDSTheorem 7.1. For m, n ∈ N with m2/3 ≤ n ≤ m4/3,
there are sets P of m points and L of n equally inclined
lines in R

3, such that I(P, L) = Ω(m2/3n1/2).

Fix an even positive integer M , and let G0 be the (2M +
1) × (2M + 1) × (2M + 1) grid {i ∈ Z | − M ≤ i ≤ M}3.
Let θ be the angle satisfying cos θ = 1/

√
3. We seek vectors

(a, b, c) ∈ G0\{(0, 0, 0)} such that the angle between (a, b, c)
and ∆ := (1, 1, 1) is θ. We will then rotate the coordinate
frame so that ∆ becomes upward vertical. Then all these
vectors will be mapped to vectors that form an angle of θ
with the z-axis (and thus π/2 − θ with the xy-plane).

We thus require that

(a, b, c) · (1, 1, 1)√
a2 + b2 + c2 ·

√
3

=
1√
3

⇔ (a + b + c)2 = a2 + b2 + c2

⇔ ab + ac + bc = 0 . (13)

One can show that, up to permutation and change of signs,
a triple (a, b, c) that satisfies (13) and its elements do not
have a common divisor must have the form

(

ξ(ξ + η), η(ξ + η), −ξη

)

,

for some pair of relatively prime numbers ξ, η, satisfying
1 ≤ |η| < ξ. To make sure that the triples satisfying (13)
lie in G0, we only consider triples generated by pairs with
1 ≤ η < ξ ≤

√
M/2.

Take a line λ at direction (ξ(ξ + η), η(ξ + η),−ξη), and
make it pass through a grid point in [−M/2, M/2]3. Then
λ passes through Θ(M/(ξ(ξ + η))) points of G0. We pass
such a line (for a fixed pair ξ, η) through each grid point in
[−M/2, M/2]3. Then each distinct line appears Θ(M/(ξ(ξ+
η))) times. Hence, the number of distinct lines, for fixed ξ, η,
is Θ(M2ξ(ξ + η)), and the total number of incidences that
these lines have with the points of G0 is Θ(M3). Denote the
set of these lines by L(ξ, η).

Suppose we wish to construct a configuration involving a
set L of n lines and a set P of m points. We take P to be
the set of vertices of G0, after rotating the coordinate frame
as prescribed above. Hence we take M = Θ(m1/3). We then
put

L =
⋃

{L(ξ, η) | 1 ≤ η < ξ ≤ t, (ξ, η) = 1},

for some parameter t that we will fix momentarily. We have
(where ϕ(ξ) denotes Euler’s function that counts the number



of integers smaller than ξ and relatively prime to it)

I(P, L) = Θ(M3) ·
t
∑

ξ=1

ϕ(ξ) = Θ(M3t2) = Θ(mt2),

and

|L| = Θ





t
∑

ξ=1

∑

η<ξ, (ξ,η)=1

M2ξ(ξ + η)





= Θ

(

t
∑

ξ=1

M2ξ2ϕ(ξ)

)

= Θ(M2t4) = Θ(m2/3t4).

Hence we take t = n1/4/m1/6. Note that the construction

only works when 1 ≤ t ≤
√

M = m1/6, which is equivalent
to m1/6 ≤ n1/4 ≤ m1/3, or to m2/3 ≤ n ≤ m4/3. Assuming
that n lies indeed in this range, and with this choice of t,
we get I(P, L) = Θ(m2/3n1/2). We thus have the bound in
Theorem 7.1. 2

Note that this bound is indeed superlinear when m2/3 �
n � m4/3.Theorem 7.2. For m, n ∈ N with m2/3 ≤ n ≤ m2, there
are sets P of m points and L of n lines in R

3, such that
Iν(P, L) = Ω(m1/2n3/4).

Let m and n be as in the theorem. Construct a set P of
m points and a set L of n lines in 3-space. We take P to
be the set of points of the integer lattice whose coordinates
are all between 1 and m1/3. The lines of L are constructed
as follows. We fix an integer parameter t, and for each r =
1, 2, . . . , t, we consider the collection L(r) of the lines

y =
ξ

r
(x − x0) + y0, z =

η

r
(x − x0) + z0,

where 1 ≤ ξ, η < r are both relatively prime to r, 1 ≤ x0 ≤ r
and 1 ≤ y0, z0 ≤ 1

2
m1/3. We take L =

⋃

r≤t L(r). The
number of lines in L is

m2/3

4

t
∑

r=1

rϕ2(r) = Θ(m2/3t4) .

Hence, if we choose t to be proportional to n1/4/m1/6, we
can make the size of L equal to n.

The number of incidences between the lines of L and the
points of P is

I(P, L) =
m2/3

4

t
∑

r=1

rϕ2(r) ·
⌊

m1/3

2r

⌋

= Θ(m)
t
∑

r=1

ϕ2(r)

= Θ(mt3) = Θ(m1/2n3/4) .

For this construction to make sense, we need t = n1/4/m1/6

to be between 1 and m1/3; that is, we should have n1/2 ≤
m ≤ n3/2, which, indeed, is the assumed range. We have
thus obtained a set P of m points and a set L of n lines that
satisfy I(P, L) = Ω(m1/2n3/4). We next show that this is
also a lower bound for Iν(P, L).

Let p ∈ P , and let Lp denote the set of lines incident to
p; without loss of generality, assume that p is the origin. It
suffices to show that the number of distinct planes spanned
by pairs of lines in Lp is Ω(|Lp|2).

By intersecting the lines of Lp with the plane π : x = 1,
we obtain a collection Sp of M = |Lp| points in π, so that

Sp = {(1, ξ/r, η/r) | 1 ≤ r ≤ t, 0 ≤ ξ, η < r,

(ξ, r) = (η, r) = 1} .

Our goal is to show that the number of distinct lines that
they determine is Ω(M2). Let Λ denote the collection of
these lines.Lemma 7.3. The maximum number of points of Sp on a
line in Λ is O(M2/3).

Proof: Let λ ∈ Λ, let h be the plane spanned by p and
λ, and let h+ denote its unit normal vector. Each line ` ∈
Lp that passes through a point in Sp ∩ λ is orthogonal to
h+. If ` is represented by the triple (ξ, η, r), then we have
h+ · (r, ξ, η) = 0. In other words, each point of Sp ∩λ can be
represented by a point of the 3-dimensional integer lattice
that lies in a fixed plane Q (through the origina) and has
L∞-norm at most t.

We claim that the number of such points is O(t2). Indeed,
denote the set of those representing points by D. For each
point w ∈ D, let σw be a ball of radius 1/2 centered at w.
Clearly, all these balls have pairwise-disjoint interiors and
they are all contained in a cylinder whose height is 1 and
whose base is a disk of radius t

√
3. Hence the size of D is

at most

3πt2

π/6
= O(t2) = O(M2/3),

as claimed. 2

Theorem 7.2 is now an immediate consequence of Beck’s
theorem (as stated in the proof of Lemma 6.1 above), applied
to Sp. 2

Remark: Note that, in the range m ≤ n3/2, assumed in
both theorems, the bound in Theorem 7.2 is larger than
that in Theorem 7.1. Unfortunately, in the construction in
the proof of Theorem 7.2, cp(L) is much smaller than |Lp|:
Since Sp is the union of (subsets of) t grids, each of size at
most t × t, it can be covered by O(t2) lines. Hence, for this
construction, we have

Ic(P, L) = O(mt2) = O(n1/2m2/3),

which is the same as the lower bound of Theorem 7.1 for the
number of incidences between points and equally-inclined
lines.
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