Pruning Planes in Megiddo's 3-Dimensional LP algorithm

Geometric Optimization

April 22, 2002

We recall the situation studied in class: We have constraints of the form $z \geq a_{i} x+b_{i}+c$ or $z \leq a_{i} x+b_{i}+c$ (let's ignore other types of constraints for now), and we want to find the minimum z^{*} of the z-coordinates of points in the feasible region K.

We have a decision procedure that compares z^{*} with any given value z_{0}. It does so by running a " 1 -dimensional LP" algorithm on a line $y=y_{0}$ within the plane $z=z_{0}$, determining whether the given halfspaces, when restricted to this line, have a nonempty solution.

Figure 1: Example

We want to consider a generic simulation of this procedure on the unknown plane $z=z^{*}$ and on the unknown line $y=y^{*}$ within this plane, which contains the lowest point of K. (If we assume general position, this is the only feasible point on this line and plane).

Let us assume that we have a generalization of our decision procedure that can also determines on which side of an arbitrary plane the optimum lies. (I skip here details of such a procedure - not too hard to fill in.)

Consider a halfspace, say $z \geq a_{i} x+b_{i}+c_{i}$. Its intersection with the line $z=z^{*}, y=y^{*}$ is the ray

$$
z^{*} \geq a_{i} x+b_{i} y^{*}+c_{i} .
$$

Assuming that $a_{i}>0$, we get the ray

$$
x \leq \frac{-b_{i} y^{*}+z^{*}-c_{i}}{a_{i}} .
$$

Recall that we have to compute the maximum of the left endpoints of all rightward-directed such rays, and the minimum of the right endpoints of all leftward-directed rays. To do

Figure 2: Example
this with a parallel algorithm, we simply compare pairs of left endpoints, and pairs of right endpoints, $n / 2$ pairs in total. Each such comparison compares two expressions of the form

$$
\frac{-b_{i} y^{*}+z^{*}-c_{i}}{a_{i}}: \frac{-b_{j} y^{*}+z^{*}-c_{j}}{a_{j}}
$$

which amounts to determining the sign of some linear expression

$$
\alpha_{i j} y^{*}+\beta_{i j} z^{*}+\gamma_{i j} .
$$

If we project this onto the $y z$-plane, we obtain a collection of lines $\alpha_{i j} y+\beta_{i j} z+\gamma_{i j}=0$, and we need to determine the side of each of them that contains the optimum $\left(y^{*}, z^{*}\right)$.

Figure 3: Example

Here Megiddo uses the following trick.
(a) Find the median of the slopes of these lines. Rotate the $y z$-plane, so that half of these lines have positive slopes and half have negative slopes.
(b) Pair the lines, so that in each pair we have one line with a positive slope, and one with a negative slope. Find the intersection points of these pairs of lines. (We have $n / 4$ points.)

Figure 4: Example

Figure 5: Example
(c) Find the median z_{m} of the z-coordinates of the intersection points. Test whether z^{*} is larger or smaller than z_{m}. Suppose, without loss of generality, that $z^{*}>z_{m}$.
(d) Find the median y_{m} of the y-coordinates of those intersection points, whose z-coordinate lie on the other side of z_{m} (in the current case, on the side $z<z_{m}$). Test whether y^{*} is larger or smaller than y_{m} (using the generalized decision procedure that we have assumed above). Suppose, without loss of generality, that $y^{*}>y_{m}$.
(e) Now look at the points whose z - and y-coordinates both lie in the 'wrong' sides; that is, $z<z_{m}$ and $y<y_{m}$. Let p be such a point, the intersection of ℓ^{+}with a positive slope and of ℓ^{-}with a negative slope. Observe that we know which side of ℓ^{-}contains the optimum (it is the top-right side). Since ℓ^{-}itself was a line with the propert that for each point $\left(y^{*}, z^{*}\right)$ on it, the values of two endpoints of two specific rays on the line $y=y^{*}$ in the plane $z=z^{*}$ coincide, it follows that we now know that one of these endpoints must lie to the left of the other at the optimum value $\left(y^{*}, z^{*}\right)$, so we can delete one of the rays without affecting the result of the generic decision procedure.

Note that, after step (c) we have $n / 8$ points and after step (d) we have $n / 16$ points. In step (e), for each of these remaining points, we throw away one halfspace. So we managed to delete $n / 16$ constraints, and we can stop the whole process and restart it from scratch with the remaining $15 n / 16$ constraints.

Figure 6: Example

Altogether, everything can be implemented in linear time, so the whole algoroithm also takes linear time (as we argued for the 2-dimensional case in the basic course).

Figure 7: Example

