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(ii)Q ajx+ bjy � 1(i)PFigure 1: (i) The polygon P ; (ii) The polygon Q and a largest copy of P inside QThe geometric setup of the problem is as follows. We observe, following Baird [2], thatsimilar placements of P can be parameterized nicely by referring to an arbitrarily chosenreference point p 2 P . A placement � is represented by a quadruple (s; t; u; v), where (u; v)is a translation of p in the plane, and s = � cos �, t = � sin �, where P is rotated by � andscaled by �, around p. Let P� denote the similar copy of P corresponding to the placement�. The standard placement puts p at the origin, with � = 1, � = u = v = 0. Thus if(x; y) is a vertex of P in the standard placement, its position at the placement (s; t; u; v) is(sx � ty + u; tx + sy + v). Such a placement of P lies fully within Q if and only if everyvertex (xi; yi) of P lies in every halfspace ajx+ bjy � 1 containing Q and bounded by theline supporting an edge of Q; see Figure 1. That is, the placement (s; t; u; v) must satisfythe following system of mn linear inequalities:aj(sxi � tyi + u) + bj(txi + syi + v) � 1or Li;j : (ajxi + bjyi)s+ (�ajyi + bjxi)t+ aju+ bjv � 1 :In other words, the space C of all similar placements of P inside Q is a 4-dimensionalconvex polyhedron formed by the intersection of mn halfspaces. This already implies thatthe combinatorial complexity of C is O(m2n2), and that it can be constructed in O(m2n2)time [11]. However, we will improve this bound in what follows, exploiting the fact that Cis highly degenerate.In order to �nd the largest similar copy of P inside Q, we need to �nd a point of Cthat maximizes s2 + t2 = �2. Unfortunately, maximizing a convex function over a convexpolyhedral domain is not an LP-type problem (in the setup of [8], where a linear-timerandomized solution for such problems is described), so it appears that the algorithm ofchoice is to examine each vertex of C and select the one with the largest value of s2+ t2 (themaximum of such a convex function is clearly attained at a vertex of C). Moreover, since2



s2+ t2 depends only on s and t, it su�ces to project C onto the st-plane, and examine onlythe vertices of that projection.The main result of the paper isTheorem 1 (a) The total number of vertices of C is O(mn2), and they can all be computedin time O(mn2 log n).(b) The vertices of the projection of C onto the st-plane can all be computed in timeO(mn2 logn).Remark. Although part (b) follows immediately from part (a), we will give a direct proofof (b), which is somewhat simpler and provides more geometric insight into the structureof the problem.Proof of Theorem 1: We prove both parts by applying the standard duality transformthat maps a point (�1; �2; �3; �4) to the hyperplane �1s+ �2t+ �3u+ �4v = 1 and vice versa.We denote the coordinates in the dual space by s�; t�; u�; v�. For 1 � i � m and 1 � j � n,let wi;j denote the point dual to the hyperplane bounding the halfspace Li;j , i.e.,wi;j = (ajxi + bjyi; �ajyi + bjxi; aj ; bj):The convex hull of the points in fwi;j j 1 � i � m; 1 � j � ng, denoted by D, is thedual polytope of C. It is easy to verify that all the points wi;j are extreme points of D(or, equivalently, that all the hyperplanes bounding the halfspaces Li;j contain facets of C).Note that, for each �xed j corresponding to an edge of Q, the convex hull Gj of fwi;jgmi=1is a similar copy of P that lies in the 2-plane �j : u� = aj , v� = bj . The dual polytopeD, then, is the convex hull of n similar copies of P , placed in parallel 2-planes in 4-space.Each facet of D corresponds to a placement � of P inside Q such that P� � Q and thereare at least four vertex-edge incidences between the vertices of P� and the edges of Q.We begin with the proof of part (b). We exploit the well-known fact that projectionin the primal is slicing in the dual. In more detail, let C2 denote the projection of C ontothe st-plane u = 0, v = 0, as e�ected by the mapping (s; t; u; v) 7! (s; t; 0; 0). Then a line�s+�t = 1 in the st-plane is a supporting line of C2 if and only if the hyperplane �s+�t = 1is a supporting hyperplane of C in IR4. This is equivalent, in the dual, to having the point(�; �; 0; 0) belong to the boundary of D. Thus, computing C2 is equivalent to computingthe cross section D2 of D with the 2-plane u� = 0, v� = 0.Our strategy for computing D2 is �rst to compute D3, the cross-section of D with thehyperplane u� = 0, and then to slice D3 with the plane v� = 0. Since it is trivial to intersecta three-dimensional polytope with a plane, in time proportional to the complexity of thepolytope, we only consider the construction of D3.Without loss of generality, we can assume that none of the aj 's is 0. Then each ofthe polygons Gj lies outside the hyperplane u� = 0. Hence, any vertex w of D3 must be3



an intersection of u� = 0 with an edge of D, connecting two vertices of a pair of distinctpolygons, Gi and Gj , where Gi lies above u� = 0 and Gj lies below. Moreover, w must alsobe a vertex of the intersection of the convex hull of Gi[Gj with u� = 0. So we can constructD3 by taking the convex hull, in IR4, of every pair of polygons Gi, Gj , intersecting all ofthese sub-hulls with u� = 0, and then taking the convex hull of the resulting intersections.Let us consider the geometry of one such sub-hull. The two parallel 2-planes u� =ai; v� = bi and u� = aj ; v� = bj lie in the common 3-plane Fi;j de�ned by(bj � bi)u� + (ai � aj)v� + (biaj � bjai) = 0and so does the sub-hull determined byGi; Gj. The three-dimensional geometry of conv(Gi[Gj) in Fi;j is as shown in Figure 2. GiGjFigure 2: Convex hull of parallel polygonsThe intersection of Fi;j with u� = 0 is the 2-planeu� = 0; v� = (biaj � bjai)=(ai � aj)which is also parallel to the two polygons Gi; Gj. Slicing the convex hull of the two parallelpolygons with a parallel plane, we get a third parallel polygon Gi;j which is the Minkowskisum of appropriately scaled copies of Gi and Gj . This polygon has at most 2m vertices,and it is easy to compute directly from the vertices of Gi and Gj . Note that Gi;j lies inboth Fi;j and in u� = 0.The 3-polytope D3 in u� = 0 is the convex hull of all these polygons Gi;j . Thereare O(n2) such polygons, each with at most 2m vertices, so the total complexity of D3 isO(mn2) (which of course is also a consequence of the bound for the overall complexity ofD, as asserted in part (a) and proven below).The algorithm is simply to form the polygons Gi;j , take their three-dimensional convexhull, and intersect it with v� = 0. Since the Minkowski sum of two convex polygons can becomputed in linear time [7], we spend O(mn2) time in computing the polygons Gi;j . Their4



convex hull can be computed in O(mn2 logn) time, using the divide-and-conquer algorithmof [10] (which has now only O(logn) recursive levels, because we start with the alreadyavailable polygons Gi;j). Hence, the total running time is O(mn2 logn).This completes the proof of part (b). Note that in practical terms, the implementationof this algorithm is a straightforward setup followed by a three-dimensional convex hullcomputation, which can be performed e�ciently with publicly available software. 1We now return to the proof of part (a). We �rst consider the facets of D whose sup-porting hyperplanes are parallel to the 2-plane u� = 0; v� = 0. The equation of such ahyperplane hF of a facet F has the form �u� + v�+ � = 0. Hence, if hF contains a vertexof some Gj , it must contain the entire polygon Gj . It then follows that F must be theconvex hull of the union of two polygons Gi, Gj (as in the proof of part (b) given above).The facet F is dual to the placement of P in which it is shrunk to a point and all its verticesare incident to the vertex of Q where edge i meets edge j (so that these two edges mustbe consecutive edges of Q). The number of such placements is n, and the complexity ofeach of the corresponding facets is O(m), since it is the 3-dimensional convex hull of 2mpoints. (It is easily veri�ed that each of these hulls is indeed a facet of D.) It follows thatthe overall complexity of these facets of D is O(mn). Constructing all these facets is easyto do in O(mn) time.Next, consider the facets of D whose supporting hyperplanes are not parallel to the2-plane u� = 0, v� = 0. Let F be such a facet of D, and let h be the hyperplane supportingF . The equation of h can be written as t� = �s�+ �u�+ v�+ � (for simplicity we assume,without loss of generality, that � is never in�nite). Then, for each j = 1; : : : ; n, the line`j of intersection between h and the 2-plane �j containing Gj either touches or is disjointfrom Gj . The equation of `j is t� = �s� + �aj + bj + �, u� = aj , v� = bj . Note that thecoe�cient � uniquely determines the vertex of Gj nearest to `j , for every j, unless � is a`critical' value equal to the slope of an edge of some Gj . There are � = mn such criticalslopes �, corresponding to the orientations at which an edge of P is parallel to an edge ofQ, and it is easy to compute them, in order, in time O(mn logn). Let �1 < �2 < � � � < ��be these critical slopes.Let K be an open interval of �-coe�cients between two successive critical slopes. Then,for each j = 1; : : : ; n, there exists a unique vertex wi(K);j of Gj , such that if h is anysupporting hyperplane of D whose �-coe�cient lies in K, then h can touch Gj , if at all, onlyat wi(K);j. In other words, such an h is also a supporting hyperplane of SK = fwi(K);jgnj=1(h must of course touch at least one of these vertices, and at least four if it contains a facetof D). For two adjacent intervals K and K 0, the set SK0 is obtained from SK by replacingone vertex w by another vertex w0 (both being adjacent vertices of some Gj). It easily1For example Ken Clarkson's hull program, at http://netlib.att.com/netlib/voronoi/hull.html,or Ioannis Emiris' chD, available by ftp from robotics.eecs.Berkeley.edu in /pub/ConvexHull. Theseand other convex hull programs are listed on the computational geometry software Web page athttp://www.geom.umn.edu/software/cglist. Using either of these programs gives a randomized algorithmwhich runs in time O(mn2 logmn), slightly worse than our theoretical result.5



follows that every facet F of D not parallel to u� = 0, v� = 0 is either a facet of conv(SK),for some interval K, or, if the �-coe�cient of F is a critical value, a facet of conv(SK [SK0),for some pair of consecutive intervals K and K0. If the vertices of P and Q are in generalposition, these latter facets correspond to placements in which an edge of P is incident toan edge of Q. In fact, we can prove the following stronger claim. Assuming �0 = �1 and��+1 = +1, let Ki be the open interval (�i; �i+1), for 0 � i � �. With a slight abuse ofnotation, let Si = SKi and let �i denote the unique element of Si n Si�1, for 1 � i � �.Lemma 2 Every facet F of D that is not parallel to u� = 0, v� = 0 is either a facet of theconvex hull conv(S0) or a facet of the convex hull conv(Si�1 [ f�ig) incident to �i for some1 � i � �.Proof: Let F be a facet of D that is not parallel to u� = 0, v� = 0 and that is not afacet of conv(S0). Let W be the set of vertices of F , and let i � � be the index such thatthe �-coe�cient of the hyperplane supporting F lies in the (semi-open) interval (�i�1; �i].Then, by the above argument, W � Si�1 [ f�ig. Suppose j � i is the largest index suchthat �j 2W (i.e., Sj is obtained from Sj�1 by inserting one of the points of W and deletinga point of Sj�1.) Then it is easily seen that W � Sj�1 [ f�jg. Hence, F is a facet ofconv(Sj�1 [ f�jg) incident to �j , as asserted. 2This lemma suggests that we should compute conv(S0) and, for each 1 � i � �, wecompute the facets of conv(Si�1[f�ig) incident to �i. Since the hyperplanes containing thefacets of conv(Si�1[f�ig) incident to �i have only three degrees of freedom, this problem canbe formulated as a three-dimensional convex hull problem, and can be solved in O(n logn)time; the number of these facets, as well as their overall complexity, is O(n). Notice that theset S0 and the vertices �i, for 1 � i � �, can be computed in O(mn logn) time. Repeatingthis algorithm for all 1 � i � � and computing conv(S0), the algorithm produces a total ofO(mn2) facets, of O(mn2) overall complexity, in time O(mn2 logn).These arguments prove that the total number of facets of D is O(mn2), and that theiroverall complexity, and hence the overall complexity of C, is O(mn2). Unfortunately, thealgorithm might produce additional spurious facets, which are not facets of D. Indeed, afacet F of conv(Si�1 [ f�ig) corresponds to a placement � of P such that there are at least4 vertex-edge incidences between the vertices of P� and the edges of Q, and F is spurious ifP� 6� Q. If the �-coe�cient of F lies in the interval Ki�1 [Ki, then it follows by de�nitionthat F cannot be spurious. However, if this �-coe�cient lies in another interval Kj, forsome j 62 fi � 1; ig, then F may be spurious, because P� may violate a constraint Lu;vcorresponding to some vertex wu;v 2 Sj n (Si�1 [ Si). See Figure 3 for an example: Let�i be the critical slope at which the edge p1p2 of P is parallel to the edge e5 of Q. Then,by construction, Si�1 = fw6;1; w5;2; w4;3; w3;4; w1;5; w7;6g, and �i = w2;5. It is easy to verifythat conv(fw5;2; w4;3; w3;4; w2;5g) is a facet of Si�1[f�ig incident to �i = w2;5, but, as shownin Figure 3, the corresponding copy of P does not lie inside Q (this facet is `violated' byw7;1). 6
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Figure 3: Spurious facets generated by the algorithm: (i) The orientation of P lies in Ki�1,where �i = w2;5; (ii) A placement of P corresponding to a spurious facet of Si�1 [ fw2;5g.Hence, to complete our algorithm, we need to detect and discard the facets of the hullsconv(SK) which are not facets of D. This is accomplished as follows. We triangulate eachcomputed facet F into O(jF j) tetrahedra, using the bottom-vertex triangulation schemedescribed in [5]. Let � denote the set of resulting tetrahedra; j�j = O(mn2). Let D� bethe bottom-vertex triangulation of the boundary of D. We want to discard those tetrahedraof � that are not facets of D�. For a vertex w, let �w � � be the subset of tetrahedraincident to w, and let Vw be the set of vertices of the tetrahedra in �w. It is easily veri�edthat a tetrahedron � 2�w is a facet of D� if and only if � is a tetrahedron in the bottom-vertex triangulation of the boundary of conv(Vw), which is necessarily incident to w. Wetherefore compute the facets of conv(Vw) that are incident to w, by the reduction, notedabove, to a 3-dimensional convex hull construction, and then compute the bottom-vertextriangulation of each such facet. Note that these facets can be computed in O(jVwj logn)time, since the vertices of Vw lie on only n 2-planes, so that the convex hull computationrequires only O(logn) recursive levels; we omit the easy details. We can now discard thosetetrahedra in �w that do not lie on the boundary of conv(Vw). Repeating this procedurefor all vertices w of D gets rid of all spurious facets computed by the algorithm.The running time of this step isPw O(jVwj logn), where the sum extends over all verticesw of D. Since Pw jVwj = 4j�j = O(mn2), the total time spent is O(mn2 logn).This completes the proof of part (a). 2An immediate corollary of Theorem 1(b) is the following.Corollary 3 The largest similar copy of P inside Q can be computed in O(mn2 log n) time.We conclude this paper by constructing a pair of polygons P and Q, with m and n7



vertices, respectively, such that there are 
(mn2) placements of P inside Q, each of whichinduces four incidences of the form (p; e), where p is a vertex of P and e is an edge of Q.This implies that the combinatorial bound of Theorem 1(a) is tight in the worst case.m� 1 verticespm pm�1qn=2+1n=2 vertices p1 pm�1qn p1
q1

qn=2qnqn=2+1
Figure 4: Polygons P and Q for which there exist 
(mn2) similar placements of P in Qwith four vertex-edge incidences per placementThe construction is depicted in Figure 4. Let n be of the form 2l+ 2, for some positiveinteger l, m an even integer, and o the origin. The �rst n=2 vertices q1; : : : ; qn=2 of Qare evenly distributed along the arc of the unit-radius circle, centered at o, which goesfrom ��=6 to �=6 (in counterclockwise direction). The vertices qn=2+1 : : : qn are evenlydistributed along a tiny arc of a larger circle, say the circle with radius 10 + " and center(10; 0), and we let the tiny arc span the orientations between � � "2(10+") and � + "2(10+") ,so that its arc length is ". The value of " will be chosen su�ciently small, in a manner tobe detailed in a moment.We place one vertex pm of P at the origin o and the remaining m � 1 vertices, equallyspaced, on a circular arc of radius 1=4, centered at (3=4; 0), that spans the orientationsbetween � �40l and + �40l .Claim: If " is chosen su�ciently small then the following holds. For every triple n=2+1 �i � n, 1 � j < n=2, and 1 � k � m � 2, there is a placement of P inside Q, usingtranslation, rotation, and scaling, such that the vertex pm of P coincides with the vertex qiof Q, and such that the edge pkpk+1 of P coincides with the edge qjqj+1 of Q.Notice that every such placement of P induces four vertex-edge incidences between Pand Q, and is thus a vertex of C. 8



Proof: We consider the scaling, rotation, and translation of P that places pkpk+1 on theline ` supporting qjqj+1 and also places pm at qi.pm o o0 sq000q00q0q`Figure 5: Proof of claimAs in Figure 5, let q be the center of edge qjqj+1; q is also the orthogonal projectionof the origin o onto the line ` supporting qjqj+1. Let q0 be the projection of pm, which isplaced at qi, onto `. Let q00 be the projection onto ` of o0, the center of the small circlewhose boundary contains the points p1; : : : ; pm�1, which is appropriately shifted with P .Let q000 be the intersection of the line from pm = qi through o0 with `. Finally, let s be theintersection of the line supporting pmpm�1 (at this placement of P ) with `.The distance from q to q0 is at most ". The angle q000pmq0 is the same as the angle q000o0q00,which, by the construction of P , is at most �40l . The angle spmq000 is exactly �40l . Since thedistance from pm to q0 is at most 1 + ", the distance from q to s isd(q; s) � " + (1 + ") tan �20l :Since the distance from q to qj+1 is sin �6l , " can be chosen small enough so that"+ (1 + ") tan �20l < sin �6l ;which then implies that this placement of P fully lies below the segment pmqj+1. Ananalogous argument shows that P lies above the segment pmqj , so P lies inside Q, asclaimed.We therefore obtain the following result.Theorem 4 There exist a convex m-gon P and another convex n-gon Q such that there are
(mn2) placements of similar copies of P inside Q, each of which induces four vertex-edgeincidences between P and Q. 9



Remarks. (1) A weakness of the above lower bound construction is that it only yieldsplacements of P with `degenerate' vertex-edge contacts, including a vertex-vertex contactand an edge-edge containment. Is there another construction, in which there are 
(mn2)similar placements of P inside Q, such that at each of them four distinct vertices of P touchfour distinct edges of Q? This extends a similar open problem, asking for 
(mn2) congruentplacements of P inside Q, each with three contacts of distinct vertices of P with distinctedges of Q; see [9] for details.(2) Another open problem is whether the algorithm for �nding the largest similar placementof P inside Q can be improved. Such an improvement could be by at most a logarithmicfactor if we have to compute the entire space C, as is implied by the above lower bound.Can we do better if we only need to compute the largest placement of P?AcknowledgmentsWe are grateful to Boris Aronov and Emo Welzl for helpful discussions, and to David Jacobsand Ronen Basri for bringing Baird's representation to our attention.References[1] P.K. Agarwal, B. Aronov and M. Sharir, Motion planning for a convex polygon in a polygonalenvironment, in preparation.[2] H. S. Baird, Model-Based Image Matching Using Location, Distinguished Dissertation Series,MIT Press, Cambridge, MA, 1984.[3] R. Basri and D. Jacobs, Recognition using region correspondences, Proc. 5th Int. Conf. Comput.Vision, 1995, pp. 8-13.[4] B. Chazelle, The polygon containment problem, in Advances in Computing Research, Vol. 1:Computational Geometry (F. P. Preparata, Ed.), JAI Press, London, England, 1983, pp. 1{33.[5] B. Chazelle and J. Friedman, A deterministic view of random sampling and its use in geometry,Combinatorica 10 (1990), 229{249.[6] L.P. Chew and K. Kedem, A convex polygon among polygonal obstacles: placement and high-clearance motion, Comput. Geom. Theory Appls. 3(2) (1993), 59{89.[7] L. Guibas, L. Ramshaw, and J. Stol�, A kinetic framework for computational geometry, Proc.24th Annu. IEEE Sympos. Found. Comput. Sci., 1983, pp. 100{111.[8] J. Matou�sek, M. Sharir and E. Welzl, A subexponential bound for linear programming andrelated problems, to appear in Algorithmica.[9] D. Parson and C. Torras, The combinatorics of overlapping convex polygons in contact, Proc.4th Canad. Conf. Comput. Geom., 1992, pp. 83{92.10
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