Assignment 5 - Geometric Optimization (0368-4144)

Due: Before the exam, in my mailbox

Problem 1

Smallest enclosing cylinder in the L_{∞}-norm. Let P be a set of n points in 3 -space. Find a line ℓ such that the maximum L_{∞} distance from the points of P to ℓ is minimized. (Hint: In fact, this is an LP-type problem!)

Problem 2

Smallest enclosing cylinder. Let P be a set of n points in 3 -space. Find a line ℓ that passes through the origin such that the maximum Euclidean distance from the points of P to ℓ is minimized.
(a) Give an exact algorithm: Formulate the problem in an LP-style, as minimizing an objective function subject to constraints. Then linearize the constraints, compute the feasible region and search for a minimum of the objective function.
(b) Let Q be an ε-kernel of P. Show that the radius of the smallest enclosing cylinder for Q (with its axis through the origin, as above) is a good approximation for the radius for P.

What are the consequences for an approximate algorithm?

Problem 3

Approximate smallest enclosing ball. Let P be a set of n points in \mathbb{R}^{d}. Show that an ε-kernel $Q \subset P$ can be used to approximate the radius of the smallest enclosing ball of P, in the sense that the radius of the smallest enclosing ball of Q is at least $1-O(\varepsilon)$ times that for P.

