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between a function and its graph. The lower envelope EF of F is de�ned asEF(x) = mini fi(x) ;where the minimum is taken over all functions of F that are de�ned at x. Similarly, wede�ne the upper envelope E 0F of F asE 0F(x) = maxi fi(x) :The minimization diagram MF of F is the decomposition of Rd into maximal connectedrelatively open cells, of any dimension, so that within each cell the same subset of functionsappear on the envelope EF . If the functions of F are partially de�ned, we also requirethat, over each cell c, each of the polynomials de�ning the domain of de�nition of anyfunction that attains EF over c has a �xed sign. Informally, this means that if a functionf attains EF over a cell c, then either c is fully contained in the boundary of the domain off or is disjoint from that boundary. The combinatorial complexity of MF and of EF is thenumber of cells of all dimensions in MF . The maximization diagram and its combinatorialcomplexity are de�ned in an analogous manner.Recently there has been signi�cant progress in the analysis of the combinatorial com-plexity of lower envelopes of multivariate functions [15, 19]. In particular, it was shown in[19] that the maximum complexity of MF is O(nd+"), for any " > 0, where the constant ofproportionality depends on ", d, and b. This result almost settles a major open problemand has already led to many applications [1, 15, 19]. In some applications, however, one hasto consider the interaction between the lower envelope of one collection of functions and theupper envelope of another collection. A major application of this type, which has motivatedthe work on the present paper, is the analysis of the combinatorial complexity of the spaceof k-transversals of a collection C of n compact convex sets in d dimensions; a k-transversalis a k-
at that intersects all the sets of C (see [11, 12, 13]). Using an appropriate coordinatesystem for representing the space of k-
ats in Rd (as is well known, the dimension of thatspace is N = (k + 1)(d � k)), one can show that the space of k-transversals of C can berepresented as the region enclosed between the upper envelope of one collection of functionsand the lower envelope of another collection, where each function in the �rst (resp. sec-ond) collection represents all k-
ats that are tangent to one of the given sets from below(resp. from above). Hence, the study of spaces of transversals calls for combinatorial (as wellas algorithmic) analysis of the region enclosed between two envelopes in higher dimensions[11, 13]. Edelsbrunner et al. [11] showed that the complexity of the region between the twoenvelopes of d-variate, partially-de�ned, linear functions is O(nd�(n)), where �(n) is theinverse Ackermann function, which in turn yields a near-optimal bound on the complexityof the space of hyperplane transversals for convex polytopes. No such bound is known fornonlinear functions, even for d = 2.In this paper we provide such an analysis for the case of bivariate functions. We showthat the combinatorial complexity of the region enclosed between the lower envelope of a2



collection of n low-degree bivariate algebraic functions and the upper envelope of anothercollection of n such functions, is O(n2+"), for any " > 0, where the constant of proportion-ality depends, as in the case of a single envelope, on ", on the maximum degree of the givenfunctions, and, in case of partial functions, of their domain boundaries. In other words, theworst-case complexity of the region in question is asymptotically no worse than that of asingle envelope.The proof uses techniques that resemble those used in the proofs given in [15, 19], butrequires several additional tricks. The basic result that we derive in this paper, which weconsider to be interesting in its own right, is the analysis of the combinatorial complexityof the overlay of the minimization diagrams of the lower envelopes of two collections ofbivariate functions. Notice that this problem is easy for the case of univariate functions,because the complexity of the overlay of the x-projections of two envelopes of univariatefunctions is proportional to the sum of the complexities of the individual envelopes. Thisis, however, not true for envelopes of bivariate functions; see Figure 1. Nevertheless, weshow that the complexity of the overlay of the minimization diagrams of two collections ofa total of n functions in 3-space is only O(n2+"), for any " > 0. This result not only impliesthe asserted bound on the complexity of the region enclosed between two envelopes, butalso has several other useful applications, among which is a simple, deterministic, divide-and-conquer algorithm for computing lower envelopes, which we believe to be conceptuallymuch simpler than the competing techniques of [4, 9, 19].
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Figure 1: Overlay of two envelopes with quadratic complexityThe paper is organized as follows. In Section 2 we prove the main result concerning theoverlay of the projections of two envelopes in 3-space. In section 3 we apply the result toobtain: 3



� an e�cient and simple divide-and-conquer algorithm for constructing lower envelopesin 3 dimensions; and� a near-quadratic upper bound on the complexity of the region enclosed between alower envelope and an upper envelope;� a near-quadratic upper bound on the complexity of the space of all plane transversalsof an arbitrary collection of simply-shaped convex sets in 3 dimensions.2 Complexity of the Overlay of Two EnvelopesLet F and G be two given families of a total of n bivariate functions, satisfying the followingcondition:(?) Each f 2 F[G is a continuous, totally or partially de�ned, bivariate algebraic functionof constant maximum degree b; if f is only partially de�ned, the domain of de�nitionof f is bounded by a constant number of algebraic arcs of constant maximum degreeb.Let M denote the planar map obtained by superimposing MF and MG . We refer to Mas the overlay of MF and of MG . We �rst prove an upper bound on M for the case whenthe functions in F [ G are totally de�ned, and then extend the proof to partially de�nedfunctions.Theorem 2.1 Let F and G be two collections of n totally de�ned bivariate functions, sat-isfying condition (?). Then the combinatorial complexity of the overlay of the minimizationdiagrams of F and G, as de�ned above, is O(n2+"), for any " > 0 (where the constant ofproportionality depends on " and on the maximum degree b).Proof: We use a two-stage counting argument to obtain a recurrence for the complexity ofthe overlay. For the sake of simplicity, we assume that the functions in F [G are in generalposition. This excludes degenerate con�gurations where four function graphs meet at apoint, a pair of graphs are tangent to each other, a singular point on one graph lies on anintersection curve between two other graphs, etc.) Similar conditions were assumed in thepapers [15, 19]. We refer the reader to these papers for more details, and for an argumentthat no real loss of generality is made by assuming general position. An appropriate variantof this argument shows that our proof can also be extended to collections F , G not in generalposition.Our general position assumption implies that over each face of MF the envelope isattained by a single function (or by no function at all), that over each edge the envelopeis attained by two functions simultaneously, and that over each vertex of MF the envelopeis attained by three functions simultaneously. By Euler's formula for planar maps, the4



complexity of the overlay M is proportional to the number of vertices of M . Each vertexof M is a vertex of MF , a vertex of MG , or an intersection point of an edge of MF andan edge of MG . Since the total number of vertices in MF and MG is O(n2+"), as provedin [15, 19], it su�ces to bound the number of intersection points between the edges of MFand the edges of MG .We call an intersection between an edge of MF and an edge of MG an crossing in M .For the purpose of analysis, we generalize the notion of a crossing, as follows. Let A(F)denote the arrangement of F , namely the three-dimensional space decomposition inducedby the graphs of the functions of F (see [10] for a more detailed de�nition). The level of apoint w in A(F) is de�ned as the number of surfaces of F that lie vertically below w (notethat 0-level points are precisely those that lie on or below the lower envelope EF ). Let e bean edge of A(F). Clearly, the level of all points on e is the same, so we de�ne the level of eto be the level of any point on e. We de�ne the arrangement A(G), and the level of a pointor of an edge in this arrangement, in an analogous manner for the collection G. Let e be anedge of A(F), and let e0 be an edge of A(G), such that the xy-projections of e and e0 crosseach other at a point �. Let �, �0 be the levels of the respective edges e, e0. Then we say that(e; e0; �) is an edge-crossing in (A(F);A(G)) at level (�; �0). If the point � is not important,or is clear from the context, we just use (e; e0) to denote the edge crossing (e; e0; �) (by ourassumptions, for any pair of edges (e; e0), as above, there is only a constant number of points� that appear in edge-crossings of the form (e; e0; �)). Note that the original crossings in Mcorrespond to edge-crossings at level (0; 0). (We slightly confuse the notation here, becausecrossings in M involve arcs in the xy-plane, whereas edge-crossings in (A(F);A(G)) involvearcs of these arrangements in 3-space; this abuse will also take place in what follows.) LetCp;q(F ;G) denote the number of edge-crossings in (A(F);A(G)) whose level is (p0; q0) forsome p0 � p, q0 � q, and let Cp;q(n) = maxCp;q(F ;G) ;where the maximum is taken over all collections F and G, as above, such that jFj+ jGj= n.The goal is thus to obtain a sharp upper bound for C0;0(n).Let k be a threshold parameter, whose value will be speci�ed later on. Let e be anedge in the graph of EF , and let Ve be the vertical 2-manifold obtained as the union of allz-vertical lines passing through points of e. The intersection of the graph of each functiong 2 G with Ve is an algebraic arc of constant maximum degree, so each pair of these arcsintersect in at most some constant number, s, of points (where s depends only on themaximum degree of the functions of F [ G and of their graph boundaries, but not on e).Let A(e)(G) denote the cross-section of A(G) with Ve, and let C0;q(e;G) denote the numberof edge-crossings of the form (e; e0) whose level is (0; q0), for any q0 � q. See Figure 2 for anillustration. A simple but crucial observation is:Lemma 2.2 Let e0 be an edge of A(G). Then (e; e0; �) is an edge-crossing in (A(F);A(G))at level (0; �), if and only if the point of e0 \ Ve that lies on the z-vertical line through � isa vertex at level � in A(e)(G), and vice-versa.5



ee0(e; e0; �)Ve
Figure 2: The arrangement A(e)(G); the shaded region consist of points at level � 3.This lemma implies that each crossing of e in M corresponds to a vertex in the cross-section E(e)G of the lower envelope EG within Ve. Let G(e) � G be the subset of functions of Gthat appear on E(e)G , and let t = jG(e)j. By the standard Davenport-Schinzel theory [2, 16],C0;0(e;G) � �s(t), where s is an appropriate constant (depending on the maximum degree ofthe surfaces in F[G), and where �s(t) is the maximum length of a (t; s)-Davenport-Schinzelsequence.If t � k then, by Lemma 2.2, there are at most �s(k) edge-crossings at level (0; 0)involving e. Since the number of edges in MF is O(n2+"), the overall number of crossingsinvolving such edges is at most O(�s(k)n2+").Next, assume that t > k. Let g, g0 be a pair of distinct functions in G(e). By continuity,g and g0 must intersect within Ve at least once. Thus each function g 2 G(e) must crossat least t � 1 other functions of G within Ve, that is, each function g 2 G(e) is incident toat least t � 1 vertices of A(e)(G). Since the graph of g contains points at level 0 in thiscross section, it follows that g is incident to at least k vertices of A(e)(G) at level � k. Thenumber of vertices of A(e)(G) at level � k is therefore 
(tk), which, by Lemma 2.2, impliesC0;k(e;G) = 
(tk) = 
�k t�s(t) � C0;0(e;G)� � k�(n) �C0;0(e;G) ; (1)where �(n) = �(�s(n)=n) is an extremely slowly growing function of n [2, 16].Summing (1) over all edges of MF that cross more than k edges of MG , adding thebound for the other edges of MF , and observing that each edge crossing in C0;k(F ;G) iscounted in this manner exactly once, we obtain:C0;0(F ;G) = Xe2MF C0;0(e;G) � �(n)k C0;k(F ;G) +O(kn2+") ;6



which implies: C0;0(n) � �(n)k C0;k(n) +O(kn2+") : (2)We next bound C0;k(n) in terms of Ck;k(n). Let e0 be an edge of A(G) at some level�0 � k, let Ve0 be the vertical 2-manifold erected from e0, de�ned as above, and considerthe cross section A(e0)(F) of A(F) within Ve0 . Let t denote the number of functions of Fthat appear on the lower envelope of A(e0)F . If t � k, then e0 contributes at most �s(k) edge-crossings to C0;k(F ; G). Since there are only O(k1�"n2+") edges of A(G) at level at most k(see, e.g., [18, 20]), the number of crossings as above is O(�s(k)k1�"n2+") = O(k2n2+"), forany " > 0.We thus assume that t > k. We can now repeat, within Ve0 , the preceding analysis,replacing G by F , so as to conclude that the number of edge crossings of the form (e; e0)at level (�; �0), for all � � k, is 
(tk). Following the same arguments as above, and notingthat each such crossing (e; e0) is counted in this manner at most once, we easily obtain therecurrence: C0;k(n) � �(n)k Ck;k(n) +O(k2n2+") : (3)Next, we estimate Ck;k(n), by using the probabilistic technique of Clarkson and Shor [8](see also [18]). Set r = dn=ke. Choose a random subset R � F of size r, where each subsetof size r is chosen with equal probability. Similarly, choose a random subset S � G of size r.Let (e; e0; �) be an edge-crossing in (A(F);A(G)) at level (�; �0), and let `� be the verticalline passing through �. This edge-crossing appears in (A(R);A(S)) at level (0; 0) if andonly if the following conditions hold.(i) The two functions whose intersection curve contains e are chosen in R,(ii) the two functions whose intersection curve contains e0 are chosen in S,(iii) none of the � functions whose graphs intersect `� below e is chosen in R, and(iv) none of the �0 functions whose graphs intersect `� below e0 is chosen in S.The probability that (e; e0; �) is an edge-crossing in (A(F);A(G)) at level (0; 0) is thus�n���2r�2 ��n��0�2r�2 ��nr��nr� :Following the same analysis as in [8], we can show that, for �; �0 � k and for the speci�cchoice of r, this probability is at least 1=(ck4), for some absolute constant c. Summing thisover all edge-crossings counted in Ck;k(F ;G), we thus obtain, as in [8], that the expectednumber of edge-crossings in (A(R);A(S)) at level (0; 0) isE[C0;0(R; S)]� 1ck4Ck;k(F ;G) :7



Hence, we obtain Ck;k(n) = O(k4) �C0;0��nk�� : (4)Combining (2), (3), and (4), we thus obtainC0;0(n) = O((k + k�(n))n2+") + �2(n)k2 �O(k4) � C0;0��nk ��= O(k�(n)n2+") +O(k2�2(n)) � C0;0��nk�� : (5)The solution of this recurrence is O(n2+�), for any � > ". This is shown by induction,choosing k = �1+2=�(n) and using the fact that �(n) is an extremely slowly growing functionof n. This concludes the proof of Theorem 2.1. 2Next, we extend the above proof to partially de�ned functions. We call an edge-crossing(e; e0) a boundary edge-crossing if e or e0 is contained in the boundary of some functiongraph in F or in G, respectively.Lemma 2.3 The overall number of boundary edge-crossings (e; 
), where e is an edge ofEF and 
 is a boundary edge in A(G), is O(n�s0(n)), where s0 is an appropriate constantdepending on the maximum degree of the functions in F [ G.Proof: Let 
 be a boundary arc of a function graph in G (there are a total of O(n) sucharcs), and let V
 denote the vertical 2-manifold erected from 
, de�ned exactly as Ve in theproof of Theorem 2.1. Let E(
)F denote the cross section EF \ V
. As in Lemma 2.2, eachboundary edge-crossing involving 
 in the present lemma corresponds to a breakpoint ofE(
)F , and, by the standard Davenport-Schinzel theory, the number of such breakpoints isO(�s0(n)), for an appropriate constant s0. This is easily seen to imply the lemma. 2We now establish the recurrence (2) for partially de�ned functions, in the same way asabove, but with the following additional modi�cations. Again, we assume that the functionsin F [ G are in general position. Let k be a threshold parameter. We split each edge eof EF at a point � if there exist an integer l � k and a boundary edge e0 2 A(G) suchthat (e; e0; ��) is a boundary edge-crossing at level (0; l), where �� is the xy-projection of�. This step ensures that there is no boundary edge-crossing at level (0; l) for any l � k.By Lemma 2.3, we introduce a total of at most O(n�s0(n)) new vertices, over all edges e ofEF , so the number of edges in MF is still O(n2+").Fix an edge e of the (re�ned) lower envelope EF . De�ne Ve, A(e)(G), and E(e)G as above.By construction, the level of any point on @g \ Ve, for any g 2 G, is greater than k. LetG(e) be the set of connected components of g \ Ve, for g 2 G, that appear on E(e)G , and lett = jG(e)j. The case t � k is handled exactly as in the preceding proof, so assume thatt > k. We claim that any arc 
 2 G(e) is incident to at least k vertices of A(e)(G) whoselevels are � k. There are two cases to consider:8



VeeVe pq ve 
(i) (ii)
qvFigure 3: Illustration of the claim (for k = 3): (i) 
 has a point p at level � k; (ii) the levelof all points on 
 is < k.(i) 
 has a point p whose level is � k. Let v be a point on 
 \ E(e)G ; without loss ofgenerality, assume that v lies to the right of p. Let q be the rightmost point on 
 tothe left of v whose level is k, and let 
qv denote the portion of 
 between q and v.The level of all points on 
qv is at most k. Let g0 2 G be any of the k function graphslying below q. Obviously, g0 cannot lie below v. Moreover, by construction, no pointof @g0 can lie below 
qv, so g0 has to intersect 
qv (see Figure 3(i)). Since there are kfunction graphs of G lying below q, the arc 
qv contains at least k vertices of A(e)(G),and the level of each of them is at most k.(ii) The level of all points on 
 is < k. In this case, by construction, the endpoints of 
must lie on the vertical boundary edges of Ve. Let 
0 be another arc in G(e). If theendpoints of 
0 also lie on the vertical boundary edges of Ve, then, as argued in theproof of Theorem 2.1, 
 and 
0 intersect within Ve. Otherwise, 
 0 has an endpoint pthat lies inside Ve. By construction, the level of p is > k. Since the level of all pointsin 
 is � k, the endpoint p lies above 
, implying again, that 
 and 
0 intersect (seeFigure 3 (ii)). Since t > k, we obtain at least k such intersections with 
, and thelevel of each of these intersection points is � k.This completes the proof of the claim. Hence A(e)(G) has 
(tk) vertices at level � k.Following the same argument as in the proof of Theorem 2.1, we can obtain the recurrence(2) in this case too.A similar argument can be applied to obtain the recurrence (3) for the case of partialfunctions. The only di�erence is that we now split an edge e0 2 A(G) at a point p if thereare integers j; j 0 � k and a boundary edge e of some function in F such that (e; e0; p�)is an edge-crossing at level (j; j0), where p� is the xy-projection of p. Using the proof ofLemma 2.3, in conjunction with the Clarkson-Shor technique, we can show that the numberof newly added vertices in A(G) is O(k2n�s0(dn=ke)), for an appropriate constant s0. Hencethe number of edges of A(G) at level � k remains O(k1�"n2+"), as in the preceding analysis.9



The recurrence (3) now follows by the same analysis as above. This is turn yields the same�nal recurrence (5) for C0;0(n), whose solution, as above, is O(n2+"). We thus obtain themain result of the paper:Theorem 2.4 Let F and G be two collections of n, possibly partially de�ned, bivariatefunctions, satisfying condition (?). Then the combinatorial complexity of the overlay of theminimization diagrams of F and G, as de�ned above, is O(n2+"), for any " > 0 (where theconstant of proportionality depends on " and on the maximum degree b).3 Applications3.1 Computing lower envelopes in 3-spaceLet F be a collection of n bivariate functions satisfying condition (?). Our goal is toconstruct the lower envelope EF of F . This is equivalent to constructing the minimizationdiagram MF , as de�ned above, so that each face � of MF is labeled with the uniquefunction of F (if exists) attaining EF over �. Several algorithms for this construction haverecently been designed (see [4, 9, 19]), but they are either rather complicated or requirethe use of randomization. Here we present a simple deterministic algorithm based on thedivide-and-conquer approach, which is similar to Atallah's algorithm [3] for computing theminimization diagram of univariate functions.The algorithm partitions F into two subcollections, F1, F2, of roughly n=2 functionseach, constructs recursively the minimization diagrams MF1 , MF2 , and then merges thesediagrams to obtain the �nal minimization diagram MF .The merge step is done as follows. We �rst compute the superposition M of MF1 andMF2 . This can be done, e.g., by applying a standard sweep-line procedure, whose runningtime is O((jMF1 j+ jMF2 j+ jM j) logn); by Theorem 2.4, this is O(n2+"), for any " > 0. Wecan implement the sweep so that it also constructs the vertical decomposition of M . Thevertical decomposition of M is a re�nement of M , obtained by drawing a vertical segmentupwards and downwards (in the y-direction) from each vertex of M and from each pointon any edge of M that has y-vertical tangency, and by extending each segment until ithits another edge of M or to in�nity if no such edge exists. The number of resulting cells,usually referred to as `pseudo-trapezoids', is proportional to the complexity of M , namelyit is also O(n2+").Let c be a pseudo-trapezoid in this vertical decomposition. Note that, over c, theenvelope EF1 is attained by a single function f1 2 F1 (or by no function at all), and EF2is attained by a single function f2 2 F2 (or by no function at all). Hence, the envelopeEF is equal over c to minff1; f2g if both functions exists, or to one of these functions ifthe other does not exist, or, if both functions do not exist, EF is unde�ned over c. In10



any case, we can compute EF over c in constant time.1 We repeat this computation overall pseudo-trapezoids of M , in overall O(n2+") time, and thus obtain the entire envelopeEF . We still need to apply a �nal clean-up stage, in which the computed portions of EFare properly glued together, removing, as appropriate, any redundant data concerning thebehavior of EF over edges of the pseudo-trapezoids of M . This stage also produces the�nal minimization diagramMF , with its faces labeled in the required manner. We omit theroutine details of this step, and note that it also takes only O(n2+") time. It follows thatthe cost of the entire divide-and-conquer process is also O(n2+"). In conclusion, we thushave:Theorem 3.1 The lower envelope of a collection of n bivariate functions satisfying con-dition (?), can be computed, in an appropriate model of computation, by a deterministicdivide-and-conquer algorithm, in time O(n2+"), for any " > 0, where the constant of pro-portionality depends on " and on the maximum algebraic degree of the given functions (andof their domain boundaries).3.2 Complexity of the region enclosed between two envelopes in 3-spaceLet T and B be two given families of a total of n, possibly partially-de�ned, bivariatefunctions satisfying condition (?). We denote by LT the lower envelope of the `top' familyT , and by UB the upper envelope of the `bottom' family B. We consider the region K =f(x; y; z) j UB(x; y) � z � LT (x; y)g of points lying between the two envelopes, and our goalis to derive an O(n2+") bound on the combinatorial complexity of K.We establish this bound as follows. LetMT ,MB denote the minimization and maximiza-tion diagrams of the envelopes LT , UB, respectively. By Theorem 2.4, the combinatorialcomplexity of the overlay M of these two planar maps is O(n2+"), for any " > 0. Con-struct the vertical decomposition of M , as de�ned above. As noted, the number of pseudo-trapezoids of this decomposition is proportional to the complexity ofM , i.e., it is O(n2+").Observe that, for each resulting pseudo-trapezoid � , there is a single function f 2 T anda single function g 2 B such that LT � f and UB � g over � (if the given functions areonly partially de�ned then either f or g or both may not exist at all, in which case thecorresponding envelope(s) are unde�ned over �). This implies that the portion of K thatprojects into � has constant complexity|it is de�ned by the interaction between f , g, andthe functions de�ning the (at most 4) edges of � . Since the number of pseudo-trapezoids isO(n2+"), we immediately obtain:1We are implicitly assuming an appropriate model of computation, in which computing the pointwiseminimum of two given functions, as well as various primitive operations involving edges of the minimizationdiagrams, can be performed in constant time. For example, we can use precise rational arithmetic to performeach of these operations in constant time, using standard techniques from computational real algebraicgeometry; see, e.g., [17]. 11



Theorem 3.2 The combinatorial complexity of the region enclosed between a lower enve-lope and an upper envelope of two respective collections of n bivariate functions satisfyingcondition (?), is O(n2+"), for any " > 0, where the constant of proportionality dependson " and on the maximum algebraic degree of the given functions (and of their domainboundaries).It is also easy to construct the desired region K, in a manner that resembles the divide-and-conquer algorithm presented above. That is, we compute LT and UB separately, in timeO(n2+"), using the algorithm of the preceding subsection. Next we compute the overlayof the minimization diagram MT and of the maximization diagram MB, using the samesweep technique described above, and decompose the resulting map into pseudo-trapezoids.Finally we compute the portions of K over each pseudo-trapezoid separately, and `glue'together the resulting pieces to obtain the whole K. It is easily veri�ed that the overallcomplexity of the algorithm is O(n2+"), so we have:Theorem 3.3 The region enclosed between two envelopes in 3-space, as above, can be com-puted in (deterministic) time O(n2+"), for any " > 0.3.3 Complexity of the space of plane transversalsIn this subsection we obtain new bounds on the combinatorial complexity of the spaceof plane transversals of a collection of simply-shaped convex sets in 3-space. Let C =fC1; : : : ; Cng be a collection of n compact convex sets in 3-space. A plane � is a transversalof C if it intersects every set in C. The space of all plane transversals of C is denoted byT (C).It is more convenient to represent T (C) in the dual space, where each nonvertical planez = �x+ �y+ � is mapped to a point (�; �; �), and each point (u; v; w) is mapped to a planez = �ux� vy +w. Note that a plane z = �x+ �y + � intersects a compact convex set C ifand only if �C(�; �) � � �  C(�; �), where �C(�; �),  C(�; �) are de�ned so that the planez = �x+�y+�C (�; �) (resp. z = �x+�y+ C(�; �)) is tangent to C from below (resp. fromabove). Thus, in the dual space, the set of all plane transversals of C is the setf(�; �; �) j maxC2C �C(�; �)� � � minC2C  C(�; �)g :That is, T (C) is, in the dual space, the region enclosed between a lower envelope and anupper envelope of two respective collections of functions.We can therefore apply Theorem 3.2 to this case, but we �rst have to ensure that thefunctions �C and  C satisfy the assumptions of that theorem. This will be the case if weassume that each C 2 C has constant description complexity, that is, it is de�ned by aconstant number of algebraic equalities and inequalities of constant maximum degree. In12



this case one can easily show that the functions �C and  C do indeed satisfy condition (?).2We thus have:Theorem 3.4 The complexity of the space of plane transversals of a collection of n compactconvex sets in 3-space, each of constant description complexity, is O(n2+"), for any " > 0.Remarks: (1) Convexity is not essential here, since we can replace each set in C by itsconvex hull, without a�ecting the transversality of any plane.(2) If the sets in C do not have constant description complexity, the complexity of T (C) canbe arbitrarily large. However, if one assumes, in addition, that the sets are separated, in thesense that no three of these sets is crossed by a common line, then it is shown by Cappellet al. [5] that, for such a collection C, the complexity of T (C) is O(n2). This bound, in thisrestricted case, is slightly better than the bound derived above. The result of [5] appliesin higher dimensions too: Under an appropriate assumption of separation of the sets in C,the complexity of T (C) is O(nd�1). Other related results on transversals can be found in arecent paper by Goodman et al. [13], and in a survey paper [14] by the same authors.AcknowledgmentsWe wish to thank Boris Aronov, Leo Guibas, and Olivier Devillers for useful discussionsconcerning the problems studied in this paper. Part of the work on the paper has beencarried out in the Mathematisches Forschungsinstitut in Oberwolfach, and we would like tothank the institute for its hospitality.References[1] P. Agarwal and M. Sharir, On the number of views of polyhedral terrains, Proc. 5thCanadian Conf. Computational Geometry, 1993, 55{61.[2] P. Agarwal, M. Sharir and P. Shor, Sharp upper and lower bounds for the length ofgeneral Davenport Schinzel sequences, J. Combin. Theory, Ser. A. 52 (1989), 228{274.[3] M. Atallah, Some dynamic computational geometry problems, Computers and Mathe-matics with Applications 11 (1985), 1171{1181.[4] J.D. Boissonnat and K. Dobrindt, On-line randomized construction of the upper enve-lope of triangles and surface patches in R3, Tech. Rept. 1878, INRIA, Sophia-Antipolis,France, 1993.2Actually, �C and  C may only be piecewise-algebraic, so we may have to replace them by a constantnumber of appropriate partially de�ned algebraic functions, and apply Theorem 3.2 to the resulting newcollections of functions. 13
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