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Abstract

We show that if the number I of incidences between m points and n planes in R3 is sufficiently
large, then the incidence graph (that connects points to their incident planes) contains a large
complete bipartite subgraph involving r points and s planes, so that rs ≥ I2

mn−a(m+n), for some
constant a > 0. This is shown to be almost tight in the worst case because there are examples
of arbitrarily large sets of points and planes where the largest complete bipartite incidence
subgraph records only I2

mn − m+n
16 incidences. We also make some steps towards generalizing

this result to higher dimensions.
On the way, we slightly improve upon a result of Brass and Knauer [BK] about the repre-

sentation complexity of incidences between m points and n hyperplanes in Rd, and get rid of
the logarithmic factor in their upper bound.

1 Introduction

Let P be a set of m points, and let Π be a set of n hyperplanes in Rd. We denote by G(P, Π)
their incidence graph, that is, the set of all point-hyperplane pairs (p, π) ∈ P ×Π, such that p ∈ π.
We let I(P, Π) denote the total number of these incidences. There have been several works on
point-hyperplane incidences in the past 15 years [AA, BK, EGS, ET], which we shall review later
on. The reader can also consult the recent survey by Pach and Sharir [PS], which reviews some of
these results.

As we show, an interesting property of point-hyperplane incidence graphs is that, if the number
of incidences is large (close to mn), then the incidence graph contains large complete bipartite sub-
graphs. Such a subgraph is in fact a configuration consisting of many hyperplanes of Π intersecting
at a common lower dimensional affine subspace H, together with many points of P , all incident to
H. This property arises, in one way or another, in almost all previous works; see below for details.
In this paper we continue to study this property and ask: Given a point-hyperplane configuration

∗Work on this paper has been supported by a grant from the Israeli Academy of Sciences for a Center of Excellence
in Geometric Computing at Tel Aviv University, Work by Micha Sharir was also supported by by a grant from the
U.S.–Israel Binational Science Foundation, by NSF Grant CCR-00-98246, and CCF-05-14079, and by the Hermann
Minkowski–MINERVA Center for Geometry at Tel Aviv University. This paper is part of the first author’s M.Sc.
and Ph.D. dissertations, prepared under the supervision of the second author.

†School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel; roel6@hotmail.com.
‡School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel and Courant Institute of Mathematical

Sciences, New York University, New York, NY 10012, USA; michas@post.tau.ac.il.

1



with many incidences, what is the size of the largest complete bipartite incidence subgraph? To
state the question more precisely, we define

rs(P, Π) = max {rs |Kr,s ⊆ G(P, Π)} ,

where Kr,s denotes the complete bipartite subgraph with r vertices on one side and s vertices on
the other, and the notation Kr,s ⊆ G(P, Π) means that Kr,s is a subgraph of G(P, Π), such that
there are some r points of P and s hyperplanes of Π all incident to one another. We let

rsd(m,n, I) = min
|P | = m
|Π| = n
I(P, Π) ≥ I

rs(P, Π)

denote the minimum of rs(P, Π) over all choices of a set P ⊂ Rd of m points and a set Π of
n hyperplanes in Rd, such that I(P, Π) ≥ I. Note that rsd(m,n, I) ≥ max

{
I
m , I

n

}
, since there

always exists a point incident to at least I/m hyperplanes, and a hyperplane incident to at least
I/n points, which give rise to both subgraphs KI/n,1 and K1,I/m. We thus have rsd(m,n, I) ≥

I
min{m,n} = Ω

(
I
m + I

n

)
, and any non-trivial estimate must exceed this lower bound.

1.1 Our results

For the case d = 3, we can estimate rsd(m,n, I) almost exactly:

Theorem 1.1 (i) If I = Ω(m
√

n + n
√

m), with a sufficiently large multiplicative constant, then

rs3(m,n, I) =
I2

mn
−Θ(m + n).

(ii) If m ≤ n, I = O(n
√

m), and I = Ω((mn)3/4), for appropriate multiplicative constants, then

rs3(m,n, I) = Θ
(

I4

m2n3
+

I

m

)
.

(iii) Symmetrically, if m ≥ n, I = O(m
√

n), and I = Ω((mn)3/4), then

rs3(m, n, I) = Θ
(

I4

m3n2
+

I

n

)
.

(iv) If I = O(m3/4n3/4 + m + n), then

rs3(m,n, I) = Θ
(

I

m
+

I

n

)
.

The interesting case is (i), where the number of incidences is largest. The upper bound construction
for this case consists of almost disjoint complete bipartite subconfigurations.

As the dimension d increases beyond 3, there are progressively more different ranges of I (as a
function of m,n) where the lower or upper bounds for rsd might change qualitatively. A complete
analysis of all these cases seems hard at this point, already in four dimensions, and even the
simpler question of focusing on the range where I is largest seems quite hard. There are actually
two subproblems here: (a) Determine the range itself (i.e., how large must I be to ensure the best
available bounds on rsd), and (b) determine these best bounds for rsd in this range.

We have obtained some non-trivial results for the higher dimensional case, but not tight ones:
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Theorem 1.2 (Lower bound) If I = Ω(mn1− 1
d−1 + m1− 1

d−1 n), then

rsd(m,n, I) = Ω

((
I

mn

)d−1

mn

)
,

where the constant of proportionality depends on d.

Theorem 1.3 (Upper bound) If I = Ω((mn)1−
1

d−1 ), then

rsd(m,n, I) = O

((
I

mn

) d+1
2

mn

)
,

where the constant of proportionality depends on d.

Note that for d = 3, both theorems yield the same bound on rs3, which is also identical (up to
multiplicative constants) to that in Theorem 1.1(i). Moreover, all three theorems apply within the
same (asymptotic) range I = Ω(m

√
n + n

√
m) (Theorem 1.3 applies within a wider range).

It is interesting to compare these bounds to the equivalent bounds for general graphs. There
are (m,n)-bipartite graphs with 1

2mn edges, such that the largest complete bipartite subgraph
has fewer than 2(m + n) edges. For example, take a random subgraph H of the complete (m,n)-
bipartite graph, in which each of the possible mn edges is chosen independently at random with
probability 1

2 . The probability of a particular pair of subsets of r vertices from one side, and of s
vertices from the other side, with rs ≥ 2(m + n), to induce a complete bipartite subgraph of H is
at most 2−2(m+n). The number of possible pairs of subsets as above is less than 2m+n. Thus, the
expected number of subsets, which induce a complete subgraph with at least 2(m + n) edges, is
less than 2−(m+n). Namely, for most choices of H there are no such subgraphs (see [Bo] for similar
constructions). In contrast, Theorems 1.1 and 1.2 assert that a point-hyperplane incidence graph
with these many edges has a complete bipartite subgraph with Ω(mn) edges.

On a different but closely related subject, we have also slightly improved upon a result of Brass
and Knauer [BK], who have shown that any d-dimensional point-hyperplane incidence graph is
the disjoint union of complete bipartite subgraphs, so that the overall size of their vertex sets is
O(((mn)1−

1
d+1 + m + n) log(m + n)). We remove the logarithmic factor and show that the total

size is actually
O((mn)1−

1
d+1 + m + n).

This bound is not known to be tight, even in d = 3 dimensions. Brass and Knauer derive weaker
upper bounds, and we refine their lowe bound for d = 3.

1.2 Previous work

The problem of bounding the number of incidences between points and curves or surfaces is one of
the classical problems in combinatorial geometry, and has been studied extensively during the past
20 years; see the recent survey [PS] for a comprehensive review of the state of the art in this area.
Most of the study has focused on incidences in the plane, but a considerable amount of work has
also been devoted to higher-dimensional problems. The specific problem of analyzing and bounding
the number I(P, Π) of incidences between a set P of m points and a set Π of n hyperplanes in d
dimensions has already been studied in [AA, BK, EGS, ET].
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The main technical issue that arises in the study of point-hyperplane incidences in d ≥ 3
dimensions is the possible presence of many points of P incident to many hyperplanes of Π. This
happens when the intersection of many of the hyperplanes is a nonzero-dimensional affine subspace,
and many of the points lie in that subspace. In this case the incidence graph G(P, Π) can be a
complete bipartite graph, or contain large such subgraphs, and then I(P, Π) can be as high as (the
trivial upper bound) mn.

Several attempts can be (and have been) made to study this problem in more restricted settings.
One is to assume that, in R3, not too many points and/or not too many planes are collinear (or,
for hyperplanes in higher dimensions, affinely dependent); see [EGS]. Another is to restrict the
problem only to points that are vertices of the arrangement of the hyperplanes [AA, EGS]. Under
these assumptions, better (nontrivial) upper bounds on I(P, Π) can be obtained. For example:

• The maximum number of incidences between n hyperplanes in Rd and m ≥ nd−2 vertices of
their arrangement is Θ(m2/3nd/3 + nd−1) [AA].

• For m points and n planes in R3, if no three points are collinear, the number of incidences is
O(m3/5n4/5 +m+n) (see [EGS]1). The symmetric bound O(m4/5n3/5 +m+n) holds when no
three planes are collinear. Brass and Knauer [BK] give a construction from which it follows
that the latter bound is tight in the worst case, when no three planes are collinear2.

• As a consequence of our analysis, for m points and n hyperplanes in Rd, and for any fixed
r, s > 0, if the incidence graph does not contain Kr,s as a subgraph, the number of incidences
is O((mn)1−

1
d+1 + m + n); see a remark at the end of Section 4.2.

• Elekes and Tóth [ET] have studied incidences between points and “non-degenerate” hyper-
planes, where a hyperplane is considered degenerate if it contains a lower dimensional affine
subspace that contains at least a constant fraction, say β, of its incident points. Elekes and
Tóth show that the number of such hyperplanes that are incident to at least k points in a
given set of m points in Rd is O(md/kd+1 +(m/k)d−1), where the constant of proportionality
depends on d and β. This, in turn, implies that the number of incidences between m points
and n non-degenerate hyperplanes in Rd is O((mn)1−

1
d+1 + mn1− 1

d−1 ).

Brass and Knauer [BK] considered the general case, where the incidence graph G(P, Π) can
contain large complete bipartite subgraphs. Rather than bounding I(P, Π) itself, they have obtained
an upper bound for the overall minimum possible complexity of a representation of G(P, Π) as the
disjoint union of complete bipartite graphs, that is, G(P, Π) =

⋃s
i=1 Ai × Bi, where Ai ⊆ P and

Bi ⊆ Π, for all i = 1, . . . , s, and each incidence is recorded exactly once in this union. The
complexity of such a representation of G(P, Π) is defined to be

∑s
i=1(|Ai|+ |Bi|), and the smallest

complexity of such a representation, or the representation complexity of G(P,Π), is denoted by
J(P, Π). We let Jd(m,n) denote the maximum of J(P, Π) over all sets P of m points, and Π of n
hyperplanes in Rd. Brass and Knauer [BK] have shown that

Jd(m,n) = O(((mn)1−
1

d+1 + m + n) log(m + n)). (1)

1In the original paper, this bound is multiplied by a subpolynomial factor of the form mδnδ, for any δ > 0. This
factor, however, can be eliminated using a more refined analysis.

2Brass and Knauer do not derive this specific bound, although it is implicit in their construction; see later in this
section and in Appendix A. We remark that the symmetric case, where no three points are collinear, is not known to
be tight in the worst case, because of some subtle aspects of point-hyperplane duality; see Appendix A.
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As noted, we improve this result and show that

Jd(m,n) = O((mn)1−
1

d+1 + m + n). (2)

One way to interpret (1) and (2) is that if the number of incidences I(P, Π) is much larger
than Jd(m,n), then G(P, Π) should contain large complete bipartite subgraphs (or else the succint
representation would not be possible). This has been one of our main motivations to study how
large must these complete bipartite subgraphs be.

On the flip side of the same coin, one would like to obtain constructions of sets P of m points,
and Π of n hyperplanes, so that G(P, Π) contains no large complete bipartite subgraphs and I(P, Π)
is as large as possible. Here too one would hope to obtain such constructions with I(P, Π) close to
Jd(m,n), or, in three dimensions, to Θ(m3/4n3/4+m+n). The best three-dimensional construction
to date is due to Brass and Knauer [BK], where G(P, Π) does not contain any K2,3, and I(P, Π) =
Ω(m7/10n7/10) in the balanced case m ≈ n. We note that their construction actually yields the
bound I(P, Π) = Ω(m4/5n3/5), and has the property that no three planes are collinear. Thus, the
known upper bound I(P, Π) = O(m4/5n3/5 +m+n) for this restricted case (which, as noted above,
follows from the analysis in [EGS]) is worst-case tight. For the sake of completeness, we present
the construction in Appendix A.

2 Many Incidences Yield Large Complete Bipartite Incidence Sub-
graphs (in R3)

In this section we prove of Theorem 1.1. The main result here is the following lower bound.

Theorem 2.1 (Cf. Theorem 1.1(i)—lower bound) Let P be a set of m points and Π a set of
n planes in R3, with I incidences between them. Then there exists a line ` containing r points of
P and contained in s planes of Π, such that

√
rs ≥ I√

mn
− a(m + n)

√
mn

I
,

where a > 0 is some sufficiently large constant.

This inequality, when squared, implies that rs ≥ I2

mn − 2a(m + n). This establishes the lower
bound of Theorem 1.1(i). Note that here there is no lower bound requirement on I, as opposed to
Theorem 1.1(i), where it is required that I = Ω(m

√
n+n

√
m). However, if I <

√
amn(m + n), then

the right hand side is negative. Thus the theorem is interesting only for point-plane configurations
with I >

√
amn(m + n) = Ω(m

√
n + n

√
m).

On the upper bound side, the situation is much simpler, so we first dispose of this case.

Lemma 2.2 (Theorem 1.1(i)—upper bound) There exist arbitrarily large configurations of m
points and n planes in R3 with I = Ω(m

√
n+n

√
m) incidences, such that the largest Kr,s incidence

subgraph satisfies

rs ≤ I2

mn
− 1

16
(m + n).

5



Proof: Without loss of generality, we present the construction for m ≥ n. Fix two arbitrarily large
numbers, r ≥ s ≥ 2, and a third number 2 ≤ k ≤ s. Take a set L of k parallel lines such that
no three lines are coplanar. Then each pair of lines in L determine a distinct plane. We include
all these

(
k
2

)
planes in the set Π of n planes. We include in Π additional planes, each of which

contains just one of the lines of L, so that each line is incident to exactly s planes. The set P of
points consists of m = rk elements, so that each line of L contains r points. The set Π consists
of sk − (

k
2

)
planes, and I(P, Π) = krs. Put n0 = sk = n +

(
k
2

)
. Note that rs(P,Π) = rs, because

the corresponding subgraph Kr,s cannot contain points from three lines—no plane passes through
three lines of L, and if it contains points from two lines then there is only one plane that passes
through both lines. This gives

rs(P, Π) = rs =
I2

mn0
=

I2

m
· 1
n +

(
k
2

) ≤ I2

m
· 1
n + k2/4

.

We now use the inequality
1

x + h
≤ 1

x
− h

2x2
,

which holds for all x ≥ h > 0, with x = n and h = k2/4 ≤ n, to get

rs ≤ I2

m
·
(

1
n
− k2/4

2n2

)
=

I2

mn
− (kI)2

8mn2
,

and since k = mn0
I , we get

rs ≤ I2

mn
− (mn0)2

8mn2
≤ I2

mn
− m

8
≤ I2

mn
− 1

16
(m + n),

as claimed. Note that I = mn0
k ≥ m

(
n
k + k

4

) ≥ m
√

n = Ω(m
√

n + n
√

m) is in the required range.

The case m ≤ n is handled in a symmetric manner, using duality between points and planes.
This completes the proof. 2

Remark: A simpler construction, consisting of disjoint copies of Kr,s, yields the lower bound
I2/(mn). Our construction shows that a lower order term proportional to m + n is unavoidable.

Lemma 2.3 (Theorem 1.1(iv)—upper bound) For any m,n, I > 0, such that Ω(m+n) = I =
O(m3/4n3/4), there exist configurations of m points and n planes in R3 with at least I incidences,
such that the largest Kr,s incidence subgraph satisfies

rs ≤ 6I

min {m,n} .

Remark: The construction of [BK] (see Appendix A), in which there are no K3,2 or K2,3 incidence
subgraphs, provides us with an example where rs = O(I/ min {m,n}), showing the bound is asymp-
totically tight. This construction, however, is good only for the range I = O(m3/5n4/5 +m4/5n3/5),
and cannot be used for larger values of I within the assumed larger range O((mn)3/4). In contrast,
our construction is good for the entire range specified in Lemma 2.3, but may have complete bi-
partite incidence subgraphs with an arbitrarily large number of elements on both sides.
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Proof: This construction resembles similar constructions of Elekes [El]. Put k =
⌊√

2I/n
⌋
,

l =
⌊√

6I/m
⌋
, and t =

⌊
(mn)3/2/(12

√
3I2)

⌋
. With an appropriate choice of the constants of

proportionality, we may assume that k, l, t ≥ 3. Define

P = {(x1, x2, x3) |x1, x2 ∈ {1, . . . , k} , and x3 ∈ {1, . . . , 3klt}} ,

and
Π = {x3 = a1tx1 + a2tx2 + b | a1, a2 ∈ {1, . . . , l} , and b ∈ {1, . . . , klt}} .

The set P consists of 3k3lt ≤ m points, and the set Π consists of kl3t ≤ n planes. Each plane is
incident to k2 points, and each point is incident to at most l2 planes, so the number of incidences
is k3l3t ≥ I.

Now there are three types of complete bipartite incidence subgraphs Kr,s:

1. Between a point and all its incident planes. Then r = 1, s ≤ l2, and rs ≤ l2 ≤ 6I/m.

2. Between a plane and all its incident points. Then r = k2, s = 1, and rs = k2 ≤ 2I/n.

3. Between some r collinear points and s collinear planes, all incident to the same line. Then
r ≤ k, s ≤ l, and rs ≤ kl = 2

√
3I/

√
mn ≤ 2

√
3I/ min {m,n}.

In either case, we have rs ≤ 6I
min{m,n} . This completes the proof. 2

To prove Theorem 2.1, we use the result of Elekes and Tóth [ET]. We define a hyperplane π
to be β-degenerate with respect to a point set P , if some lower dimensional flat F ⊂ π contains at
least a β-fraction of the points of P incident to π, i.e., if

|P ∩ F | ≥ β |P ∩ π| ,

for some lower dimensional flat F ⊂ π. If no such flat exists, then the hyperplane is said to be
β-non-degenerate.3 A hyperplane π is called k-rich (with respect to P ) if it contains at least k
points of P . Elekes and Tóth show:

Theorem 2.4 ([ET]) For any integer d ≥ 3, there are constants βd > 0 and C1(d) > 0, such that
for any set of m points in Rd, the number of k-rich βd-non-degenerate hyperplanes is at most

C1(d)
(

md

kd+1
+

md−1

kd−1

)
,

and this bound is best possible.

This theorem can be rephrased in terms of an upper bound on the number of incidences between
m points and n βd-non-degenerate hyperplanes. For the sake of completeness, we include a proof
of this fact.

3We caution the reader that this notation is the opposite to that used in [ET].
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Corollary 2.5 For any integer d ≥ 3, there is a constant C2(d), such that the number of incidences
between any set of m points and a set of n βd-non-degenerate hyperplanes (with respect to the given
point set) in Rd is at most

C2(d)
(
(mn)1−

1
d+1 + mn1− 1

d−1

)
.

Proof: Let P be a set of m points in Rd, let Π be a set of n βd-non-degenerate hyperplanes with
respect to P , and let I = I(P, Π) denote the number of their incidences.

Delete from Π all hyperplanes that are incident to fewer than I/(2n) points of P . This removes
at most I/2 of the incidences, se we are left with a set Π′ of n′ ≤ n hyperplanes, such that
I(P, Π′) ≥ I/2, and such that each π ∈ Π′ is (I/(2n))-rich (and remains βd-non-degenerate).

If n′ ≤ n/4 we use induction (the induction basis n = O(1) is trivial to establish), and have

I

2
≤ I(P,Π′) ≤ C2(d)

((mn

4

)1− 1
d+1 + m

(n

4

)1− 1
d−1

)
,

or

I ≤ 2C2(d)

(
(mn)1−

1
d+1

41− 1
d+1

+
mn1− 1

d−1

41− 1
d−1

)

≤ C2(d)
(
(mn)1−

1
d+1 + mn1− 1

d−1

)
.

Otherwise, Theorem 2.4 implies that

n

4
≤ n′ ≤ C1(d)

(
md

(I/(2n))d+1
+

md−1

(I/(2n))d−1

)
.

If the first term in the right hand side dominates, then n
(

I
2n

)d+1 ≤ 8C1(d)md, or

I ≤ 2(8C1(d))
1

d+1 (mn)1−
1

d+1 .

If the second term dominates, then n
(

I
2n

)d−1 ≤ 8C1(d)md−1, or

I ≤ 2(8C1(d))
1

d−1 mn1− 1
d−1 .

Hence, choosing C2(d) > 2(8C1(d))
1

d−1 yields the asserted bound. 2

Using this bound, we can prove the following result, which is slightly weaker than Theorem 2.1;
see below for a more detailed comparison.

Lemma 2.6 Let P be a set of m points and Π a set of n planes in R3, such that I = I(P, Π) =
Ω((mn)3/4 + m

√
n), with a sufficiently large multiplicative constant. Then there exists a line `

containing r points of P and contained in s planes of Π, such that

rs = Ω
(

min
{

I4

m2n3
,

I2

mn

})
.

This bound is asymptotically tight in the worst case.
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Proof: Applying Corollary 2.5 with d = 3, we see that, when the constant of proportionality is
chosen sufficiently large, most incidences are with planes of Π that are β3-degenerate, i.e., for each
such plane, at least a β3-fraction of its incident points are contained in a single line.

Put β = β3, and let Π′ ⊆ Π be the subset of those planes in Π that contain at least I/(2n)
points each, and are β-degenerate. By the preceding argument, if the constant of proportionality in
the assumed lower bound on I is sufficiently large, then I(P, Π′) ≥ I/3, say. We replace each plane
of Π′ with a line that lies on it and contains a β-fraction of its incident points. Thus, each such
line contains at least βI/(2n) points of P . By projecting these lines and the points of P onto some
generic plane, and applying the Szemerédi-Trotter bound for planar incidences [ST], the number of
incidences between the points of P and these lines is

I ′ = O

(
m2

(βI/(2n))2
+ m

)
= O

(
m2n2

I2
+ m

)
.

Note that I(P, Π′) differs from I ′, because we count in I(P, Π′) each line with its multiplicity, equal
to the number of planes of Π′ that contain it. The average multiplicity of a line is thus

s =
I(P, Π′)

I ′
= Ω

(
I

I ′

)
= Ω

(
min

{
I3

m2n2
,

I

m

})
.

By the pigeonhole principle, some line ` does have at least this multiplicity, i.e., it is contained in
at least s planes. By construction, it also contains r = Ω(I/n) points. Altogether, we get

rs = Ω
(

min
{

I4

m2n3
,

I2

mn

})
.

We have thus found a line ` with the asserted properties.

This bound was proved using the bounds of Szemerédi and Trotter [ST] and of Elekes and
Tóth [ET], which are both tight and have matching lower bound constructions. We can combine
these constructions to obtain a point-plane configuration that has a matching upper bound on
rs(P, Π) of the same order of magnitude as the lower bound we have just proved, i.e., rs(P, Π) =
O(min

{
I4/(m2n3), I2/(mn)

}
) (that is, unless the trivial bound rs(P, Π) ≥ max {I/m, I/n} domi-

nates). This is done as follows. We take m points spanning the maximal number of lines incident
to r = Θ(I/n) of the points, which, by the lower bound of [ST], is

Θ
(

m2

r3
+

m

r

)
= Θ

(
m2n3

I3
+

mn

I

)
.

We then let each such line occur on s = Θ(min
{
I3/(m2n2), I/m

}
) planes. The constants of pro-

portionality are chosen so that the total number of planes is n, and the number of incidences is
I. We have thus shown that the bound asserted in the lemma is asymptotically tight in the worst
case. 2

Proof of Theorem 1.1(ii,iii): If I = O(n
√

m), for an appropriate multiplicative constant,
then, in the bound of Lemma 2.6, the first term I4/(m2n3) is smaller than the second term
I2/(mn). Moreover, the lower bound on I that the lemma requires, holds under the assump-
tions I = Ω((mn)3/4) and m ≤ n. Hence, under the assumptions of part (ii) of the theorem,
rs3(m,n) = Ω(I4/(m2n3)), which clearly implies the lower bound of Theorem 1.1(ii). The upper
bound also follows easily from Lemma 2.6. Finally, Theorem 1.1(iii) follows by point-plane duality.
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2

On the other hand, if I = Ω(n
√

m), then the second term in Lemma 2.6, namely I2/(mn),
dominates. We thus get:

Corollary 2.7 Let P be a set of m points and Π a set of n planes in R3, such that I = I(P, Π) =
Ω(m

√
n + n

√
m), with a sufficiently large multiplicative constant. Then there exists a line ` con-

taining r points of P and contained in s planes of Π, such that

rs = Ω
(

I2

mn

)
.

(The lemma is applicable since (mn)3/4 is always dominated by m
√

n + n
√

m.)

This is already very close to the bound we are trying to prove, except for the multiplicative
constant. We shall now get rid of this constant and finish the proof of Theorem 2.1. Recall that
the theorem states that √

rs ≥ I√
mn

− a(m + n)
√

mn

I
,

for some r points and s planes all incident to one another, and for some constant a > 0.

Proof of Theorem 2.1: Let P be a set of m points and Π a set of n planes in R3, with
I = I(P, Π) incidences. By Corollary 2.7, there exist positive absolute constants A, k, and β, such
that for all m > k and n > k, if I > A(m

√
n + n

√
m), then

√
rs(P, Π) ≥ βI√

mn
.

We choose the constant a so that it satisfies a ≥ max
{

4, 2A2, k, 2
β

}
.

The proof proceeds by induction on m and n. It is easy to see that the theorem holds for suffi-
ciently small values of m, n, or I. More precisely, if I <

√
amn(m + n), then I√

mn
− a(m+n)

√
mn

I < 0,

and the theorem holds trivially. Moreover, if m ≤ a or n ≤ a, then I ≤ mn <
√

amn(m + n).
Hence, the theorem holds for all m and n such that m ≤ a or n ≤ a.

Suppose then that m > a and n > a are arbitrary, and that the claim holds for all (m′, n′)
satisfying m′ < m and n′ < n. Let P be a set of m points and Π a set of n planes in R3 with
I >

√
amn(m + n) incidences between them. Let ` be a line that maximizes rs, where r = |`∩P |,

and s = |{π ∈ Π |π ⊃ `}|.
Remove from the setting all the points and planes incident to `. We are left with m− r points

and n− s planes, and denote by I1 the number of incidences among them. We note that

I1 ≥ I − rs− (m + n) + (r + s). (3)

Indeed, by removing the elements incident to `, we lose the rs incidences between these elements.
We may also lose incidences between the removed points and the surviving planes, and between
the removed planes and the surviving points. However, each surviving plane can be incident to at
most one removed point, and each surviving point can be incident to at most one removed plane.
This implies the asserted inequality (3).
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We next choose a line `1 incident to r1 of the remaining points, and to s1 of the remaining
planes, such that r1s1 is maximized. If

√
r1s1 ≥ I√

mn
− a(m+n)

√
mn

I , then we are done, since, by
construction, rs ≥ r1s1. Otherwise, we may write

I√
mn

− a(m + n)
√

mn

I
>
√

r1s1 ≥ I1√
(m− r)(n− s)

− a((m + n)− (r + s))
√

(m− r)(n− s)
I1

,

where the right inequality follows from the induction hypothesis, or

I√
mn

>
I1√

(m− r)(n− s)
+ a

(
(m + n)

√
mn

I
− ((m + n)− (r + s))

√
(m− r)(n− s)

I1

)
.

Put

h =
(m + n)

√
mn

I
− ((m + n)− (r + s))

√
(m− r)(n− s)

I1
,

so we have
I√
mn

>
I1√

(m− r)(n− s)
+ ah.

We now distinguish between the two cases h ≥ 0 and h < 0. If h ≥ 0, then we have

I√
mn

>
I1√

(m− r)(n− s)
, (4)

or, using the inequality (m− r)(n− s) ≤ (
√

mn−√rs)2, and applying (3),

I√
mn

>
I − rs− (m + n)√

mn−√rs
,

or
I
√

mn− I
√

rs > I
√

mn−√mnrs− (m + n)
√

mn,

or
rs− I√

mn

√
rs + (m + n) > 0.

This quadratic inequality in the variable
√

rs solves to

√
rs >

I√
mn

+
√

I2

mn − 4(m + n)

2
, or

√
rs <

I√
mn

−
√

I2

mn − 4(m + n)

2
.

Note that, since a ≥ 4, it follows that I2

mn − 4(m + n) ≥ 0 for the assumed range of I. We can then
use the inequality

√
x−∆x ≥ √

x− ∆x√
x
, which holds for 0 ≤ ∆x ≤ x, to obtain

√
rs >

I√
mn

− 2(m + n)
√

mn

I
, or

√
rs <

2(m + n)
√

mn

I
.
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rs = Ω
(

I4

m2n3 + I
m

)

rs ≥ I2

mn
− 4(m + n)

rs = Ω
(

I4

m3n2 + I
n

)

rs = Ω
(

I
m

+ I
n

)

Constructions with no K2,3 or K3,2 exist

Figure 1: The known lower bounds for the maximum number of edges in a complete bipartite
incidence subgraph in R3.

Since a ≥ 2A2, it is easily checked that Corollary 2.7 is applicable for the assumed range of I, and
implies that

√
rs ≥ βI√

mn
. Hence, if the second case were possible, we would have βI√

mn
< 2(m+n)

√
mn

I ,

or I <
√

2
β mn(m + n), which, having chosen a ≥ 2

β , would contradict our assumption on I. Hence,
only the first inequality is possible, and the theorem holds in this case (since a > 2).

Consider now the case h < 0. We have

(m + n)
√

mn

I
<

((m + n)− (r + s))
√

(m− r)(n− s)
I1

<
(m + n)

√
(m− r)(n− s)
I1

,

or

I√
mn

>
I1√

(m− r)(n− s)
.

But this is exactly inequality (4), which, as we have already seen, implies
√

rs > I√
mn
− a(m+n)

√
mn

I ,
so the theorem holds in this case too.

This completes the induction step, and thus the proof of the theorem. 2

Figure 1 summarizes our findings. Each differently-shaded region represents certain values of
m,n and I, and has a different lower bound for rs.
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3 Large Complete Bipartite Incidence Subgraphs in Higher Di-
mensions

In Lemma 2.6 we require that I = Ω((mn)3/4 +m
√

n), because we want to ensure that most planes
are ‘degenerate’ in the sense that they can be replaced by lines, and the number of incidences will
stay roughly the same. However, the lemma holds in a considerably more general setting, involving
any family of ‘degenerate’ subsets of points in any dimension. Specifically, we call a finite set of
points S ⊂ Rd (β, j)-degenerate, if some j-flat contains at least a β-fraction of the points of S. In
other words, if

|F ∩ S| ≥ β|S|
for some j-flat F of Rd. If no such j-flat exists, we call S (β, j)-non-degenerate.4 With this notion
of degeneracy, Lemma 2.6 becomes a special case of the following lemma (with each plane π ∈ Π
being mapped to the set π∩P , and the entire set of planes Π being mapped to a multiset of subsets
of P ).

Lemma 3.1 Let P ⊂ Rd be a set of m points, let T ⊆ 2P be a multiset of n subsets of P , and
let 0 < β < 1 be some constant, such that all the members of T are (β, 1)-degenerate. Then there
exist a subset R ⊆ P of |R| = r points and a subfamily S ⊂ T of |S| = s subsets (counted with
multiplicity), such that R ⊆ S for each S ∈ S, and

rs = Ω
(

min
{

I4

m2n3
,

I2

mn

})
,

where I =
∑

T∈T |T |.

In particular, the multiset T need not be induced by planes, as in Lemma 2.6, but can be induced
by hyperplanes of any dimension. The proof is essentially identical to that of Lemma 2.6: We
replace each subset S ∈ S by a line that contains a fraction of its points, and estimate the average
multiplicity of the lines using the Szemerédi-Trotter bound within a generic 2-plane onto which we
project the points and lines.

We next obtain the following generalization of Lemma 3.1.

Lemma 3.2 Let P ⊂ Rd be a set of m points, let T ⊆ 2P be a multiset of n subsets of P , and let
β > 0 and j ≥ 1 be some constants, such that all the members of T are (β, j)-degenerate. Then
there exist a subset R ⊆ P of |R| = r points and a subfamily S ⊂ T of |S| = s subsets (again,
counted with multiplicity), such that R ⊆ S for each S ∈ S, and

rs = Ω
(

min
{

Ij+3

mj+1nj+2
,

Ij+1

mjnj

})
,

where I =
∑

T∈T |T |, and the constant of proportionality depends on β and j.

Proof: The proof proceeds by double induction on j and n. The base case j = 1 is given by
Lemma 3.1 (for any n). Suppose now that the lemma holds for j − 1 ≥ 1, and also for j and for
n′ < n, and we shall see that it also holds for j and for n. (The base case for n, at any fixed j, is
trivial, with an appropriate choice of the constants of proportionality.)

4Again, this notation is opposite to that of [ET].
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Delete from T all the members containing fewer than I/(2n) points, and let T ′ denote the
multiset of the remaining sets. We have I ′ =

∑
T∈T ′ |T | ≥ I/2. If |T ′| < n/4, then, by induction

on n, we have subsets R ⊆ P and S ⊆ T ′, such that R ⊆ S for each S ∈ S, and

|R| · |S| = Ω
(

min
{

(I/2)j+3

mj+1(n/4)j+2
,

(I/2)j+1

mj(n/4)j

})

= Ω
(

min
{

2j+1 Ij+3

mj+1nj+2
, 2j−1 Ij+1

mjnj

})
.

Since j ≥ 2, we obtain R and S that satisfy the asserted lower bound. We can therefore assume
that there are at least n/4 remaining sets in T ′.

For each set T ∈ T ′, let πT be a j-flat (which exists by assumption) containing at least β|T | ≥ βI
2n

points of P . Project these j-flats and the points of P onto some generic (j+1)-space Q, and partition
T ′ into two subfamilies:

T1 =
{

T ∈ T ′ ∣∣πT is βj+1-non-degenerate in Q
}

, and T2 = T ′ \ T1.

Note that all the members of T2 are (ββj+1, j − 1)-degenerate, that is, informally, they are ‘more
degenerate’ than the other members of T ′. One of these two families contains at least half of the
members of T ′. If |T2| ≥ |T ′|/2 ≥ n/8, we have, by induction on j,

rs = Ω
(

min
{

Ij+2

mjnj+1
,

Ij

mj−1nj−1

})

= Ω
(

min
{

Ij+3

mj+1nj+2
,

Ij+1

mjnj

})
,

with an appropriate careful choice of the constants of proportionality, and the lemma holds in this
case.

Suppose then that |T1| ≥ |T ′|/2 ≥ n/8. Put Π = {πT |T ∈ T1}. Since the j-flats π ∈ Π are
βI
2n -rich and βj+1-non-degenerate with respect to P (in the space Q of projection), Theorem 2.4
implies that the number of these j-flats is upper-bounded by

|Π| = O

(
mj+1

(βI/(2n))j+2
+

mj

(βI/(2n))j

)

= O

(
mj+1nj+2

Ij+2
+

mjnj

Ij

)
.

Taking into account that |T1| ≥ n/8, the average multiplicity of an element of Π is

|T1|
|Π| = Ω

(
min

{
Ij+2

mj+1nj+1
,

Ij

mjnj−1

})
.

Let π ∈ Π be a j-flat with at least this multiplicity. Define R = π ∩P , and S = {T ∈ T1 |πT = π}.
We have (i) r = |R| ≥ βI

2n = Ω(I/n), (ii) s = |S| ≥ |T1|/|Π|, (iii) R is contained in every member of
S, and

rs = Ω
(

I

n
· |T1|
|Π|

)
= Ω

(
min

{
Ij+3

mj+1nj+2
,

Ij+1

mjnj

})
,

as asserted by the lemma. 2

As a corollary, we obtain:
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Theorem 3.3 If I = Ω((mn)1−
1

d+1 + mn1− 1
d−1 ), with a sufficiently large multiplicative constant,

then

rsd(m,n, I) = Ω
(

min
{

Id+1

md−1nd
,

Id−1

md−2nd−2

})
.

Proof: Let P be a set of m points in Rd and Π a set of n hyperplanes in Rd, with I = I(P, Π) in the
assumed range. By Corollary 2.5, an appropriate choice of constants implies that most incidences
are with hyperplanes of Π that are βd-degenerate with respect to P . We map each hyperplane
π ∈ Π, which is βd-degenerate, to the set Tπ = P ∩ π, and let T be the multiset of all those Tπ’s.
This multiset has n′ < n elements, all of which are (βd, d− 2)-degenerate, and I ′ ≥ I/2 incidences.
By Lemma 3.2, there are subsets R ⊆ P and S ⊆ T , such that R ⊆ S for each S ∈ S and

rs = Ω
(

min
{

(I ′)d+1

md−1(n′)d
,

(I ′)d−1

md−2(n′)d−2

})

= Ω
(

min
{

Id+1

md−1nd
,

Id−1

md−2nd−2

})
,

where r = |R| and s = |S|.
We map each member S ∈ S back to the hyperplane π ∈ Π that satisfies S = Tπ (by the

multiset structure of S, this inverse mapping can be assumed to be well defined). We denote the
resulting set of hyperplanes by Σ. Then G(R, Σ) = Kr,s and rs has the asserted lower bound. This
completes the proof. 2

We can now prove Theorem 1.2, which states that in the range I = Ω(mn1− 1
d−1 + nm1− 1

d−1 ),
we have the lower bound

rsd(m,n) = Ω

((
I

mn

)d−1

mn

)
;

That is, in this range the minimum in the expression provided by Theorem 3.3 is attained by the
second term.

Proof of Theorem 1.2: Let P be a set of m points and Π a set of n hyperplanes in Rd,
with I = I(P, Π) = Ω(mn1− 1

d−1 + nm1− 1
d−1 ) incidences. This lower bound is larger than the

one required in Theorem 3.3. Indeed, we have (mn)1−
1

d+1 ≤ mn1− 1
d−1 when n ≤ m(d−1)/2, and,

symmetrically, (mn)1−
1

d+1 ≤ nm1− 1
d−1 when m ≤ n(d−1)/2; since (d − 1)/2 ≥ 1, one of the latter

inequalities must hold. Therefore, we have in this range

rsd(m,n, I) = Ω
(

min
{

Id+1

md−1nd
,

Id−1

md−2nd−2

})
.

However, the minimum is attained by the second term when I = Ω(mn1/2), which certainly holds
for I in the assumed range, which therefore yields the asserted lower bound. 2

Next, we give an upper bound construction showing that

rsd(m,n) = O

((
I

mn

) d+1
2

mn

)
,
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as asserted in Theorem 1.3.

Proof of Theorem 1.3: We start with the following d-dimensional structure, which is closely
related to similar constructions of Elekes [El]. For arbitrary integers k, l > 0, let Pd,k,l and Πd,k,l

denote the following respective sets of points and hyperplanes in Rd:

Pd,k,l = {(x1, . . . , xd) |x1, . . . , xd−1 ∈ {1, . . . , k} , and xd ∈ {1, . . . , dkl}} ,

Πd,k,l =

{
xd =

d−1∑

i=1

aixi + b

∣∣∣∣∣ a1, . . . , ad−1 ∈ {1, . . . , l} , and b ∈ {1, . . . , kl}
}

.

Note that |Pd,k.l| = dkdl and |Πd,k,l| = kld. For any hyperplane π ∈ Πd,k,l, and for each choice of
x1, . . . , xd−1 ∈ {1, . . . k}, there is a point (x1, . . . , xd−1, xd) ∈ Pd,k,l ∩ π. The set Pd,k,l ∩ π is thus
a (d − 1)-lattice isomorphic to the hypercube {1, . . . , k}d−1, and contains kd−1 points. Hence the
number of incidences between Pd,k,l and Πd,k,l is I = kdld.

Each j-flat F ⊂ Rd, which is the intersection of some d − j or more hyperplanes of Πd,k,l, is
the image of some j-flat of the hypercube, as embedded into any of the hyperplanes π ∈ Πd,k,l that
contain F . Since any j-flat of the hypercube contains at most kj points, we have |F ∩ Pd,k,l| ≤ kj .
Furthermore, we have:

Observation 3.4 A j-flat F as above is contained in at most ld−j−1 hyperplanes of Πd,k,l.

Proof: Any j-flat (j < d) in Rd is the image of some affine mapping T : Rj → Rd, that is,
T (y) = My + v, for some matrix M ∈ Rd×j , with rank ρ(M) = j, and vector v ∈ Rd. Let M and v
be such a pair of a matrix and a vector, so that the image of the affine mapping y 7→ My + v is F .

Let π ∈ Πd,k,l be a hyperplane containing F , given by the linear equation xd =
∑d−1

i=1 aixi + b,
for some a1, . . . , ad−1 ∈ {1, . . . , l} and b ∈ {1, . . . , kl}. Put ad = −1, and a = (a1, . . . , ad) ∈ Rd.
Thus we can write π =

{
x ∈ Rd

∣∣ aTx + b = 0
}
.

Since π ⊃ F , we have aT(My + v) + b = 0 for all y ∈ Rj . In particular, for y = 0, we have

aTv + b = 0.

This gives aTMy = 0, for all y ∈ Rj , which is equivalent to

MTa = 0.

Thus, a is in the kernel of MT ∈ Rj×d. We have

dimKer(MT) = d− dim Im(MT) = d− ρ(M) = d− j.

Hence a lies in the (d− j)-flat K = Ker(MT). In addition, the requirement ad = −1 constrains a
to a hyperplane H. Note that H 6⊃ K, since 0 ∈ K, but 0 6∈ H. Hence a lies in the (d− j − 1)-flat
K ∩H. This flat can contain at most ld−j−1 points of the l×· · ·× l× 1 lattice section. Hence there
are at most ld−j−1 possible values of a. Once a has been determined, b = −aTv is also uniquely
determined. Thus, there are at most ld−j−1 possible hyperplanes π ∈ Πd,k,l containing F , and the
observation is established. 2
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By adding another dimension to the construction, an xd+1-axis, we turn every point of Pd,k,l into
a line parallel to the xd+1-axis, and every (d−1)-hyperplane of Πd,k,l into a d-hyperplane parallel to
the xd+1-axis. We denote the resulting set of lines by P ′

d,k,l, and the set of d-hyperplanes by Π′d,k,l.
These sets have the same incidence relations as the original sets of points and (d− 1)-hyperplanes.
In particular, every j-flat in Rd+1, which is the intersection of some d− j +1 or more d-hyperplanes
of Π′d,k,l contains at most kj−1 lines of P ′

d,k,l (all parallel to the xd+1-axis), and is contained in at
most ld−j d-hyperplanes of Π′d,k,l.

To construct an example that attains the asserted bound rs = O

((
I

mn

) d+1
2 mn

)
, we proceed

as follows. Let P ′ = P ′
d−2,k,k and Π′ = Π′d−2,k,k be sets of (d − 2)kd−1 lines and kd−1 (d − 2)-flats

in Rd (these lines and flats are constructed in Rd−1, but we embed them in a natural way in Rd).
For every line ` ∈ P ′, choose µ arbitrary points on `, and let P denote the overall resulting set
of points, and put m = |P | = (d − 2)µkd−1. For every (d − 2)-flat π′ ∈ Π′, choose ν distinct
arbitrary hyperplanes, i.e., (d− 1)-flats, containing π′, and let Π denote the overall resulting set of
hyperplanes. The hyperplanes are chosen so that no two hyperplanes containing two different flats
from Π′ coincide. Put n = |Π| = νkd−1.

Now every hyperplane π ∈ Π contains one flat π′ ∈ Π′, which contains kd−3 lines of P ′, yielding
a total of µkd−3 points of P incident to π. The number of incidences between P and Π is thus
I = µνk2d−4 = Θ(k−2mn), or I

mn = Θ(k−2). Note that the freedom of choice of the parameters k, µ

and ν allows I to have almost any asymptotic value from Θ((mn)1−
1

d−1 ) (choose µ = ν = 1) up to
Θ(mn) (choose k = 1). In particular, we may assume I = Ω(mn1− 2

d+1 + m1− 2
d+1 n). Suppose now

that G(P, Π) contains a Kr,s subgraph, that is, there exists some j-flat F (for some j = 1, . . . , d−2)
containing r points of P , and contained in s hyperplanes of Π. Without loss of generality, we may
take F to be the intersection of these s hyperplanes. Thus, F is parallel to the xd+1-axis, so any line
of P ′ that meets F is fully contained in F . F contains at most kj−1 lines of P ′, hence, r ≤ µkj−1.
Also, F is contained in at most kd−j−2 flats of Π′, hence, s ≤ νkd−j−2. Altogether,

rs ≤ µνkd−3 = µkd−1

︸ ︷︷ ︸
≈m

· νkd−1︸ ︷︷ ︸
=n

· k−d−1︸ ︷︷ ︸
≈( I

mn)
d+1
2

= O

((
I

mn

) d+1
2

mn

)
,

as claimed. 2

We leave it as an open problem to close the gap between the bounds in Theorem 1.2 and
Theorem 1.3, for d ≥ 4.

4 Improved Compact Representation of Point-Hyperplane Inci-
dence Graphs

In this section we obtain a compact bipartite representation of point-hyperplane incidence graphs,
whose size is slightly smaller than that obtained by Brass and Knauer [BK].
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4.1 Preliminaries

Let π be a hyperplane in Rd, and let ∆ be a k-dimensional convex polyhedron, for some 1 ≤ k ≤ d.
We say that π crosses ∆, if π intersects, but does not contain, ∆.

Let Π be a set of n hyperplanes in Rd. A 1
r -cutting for Π is a decomposition of Rd into a set Ξ

of pairwise disjoint relatively open simplices of dimensions 0, . . . , d, so that each simplex is crossed
by at most n

r hyperplanes of Π.

The following lemma is a variant of well-known results (see [AE, Ch, CF, Ma]).

Lemma 4.1 Let P be a set of m distinct points and let Π be a set of n distinct hyperplanes in
Rd. Then, for any r < n, there exists a 1

r -cutting, Ξ, consisting of O(rd) relatively open pairwise
disjoint simplices of dimensions 0, . . . , d, so that each cell of Ξ contains at most m/rd points of P .

For the sake of completeness, we sketch a proof of the lemma, even though it is similar to
the proof in [CF]. We do so because the proof of Theorem 4.2 depends on several features of the
construction, and requires a slight modification of it.

To construct a 1
r -cutting for Π that satisfies the properties of the lemma, we proceed as follows.

We choose a random sample R0 ⊂ Π of c0r hyperplanes (c0 being a sufficiently large constant),
construct the arrangement A(R0) and triangulate it into a set Ξ0 of relatively open simplices. For
each simplex ∆ ∈ Ξ0, let Π∆ ⊂ Π denote the set of hyperplanes that cross ∆. The weight of ∆ is
defined as |Π∆| · r

n . Note that a cell of weight ≤ 1 is crossed by at most n
r hyperplanes of Π. Thus,

we only need to handle cells of weight > 1. This we do by a refinement of the cutting within each
of these cells.

For each ∆ ∈ Ξ0 of weight t > 1, we choose an additional random sample R∆ ⊂ Π∆ of ct log t
hyperplanes among the ones crossing ∆, where c is a sufficiently large constant. Let A∆(R∆) denote
the arrangement of R∆ within ∆, i.e., the subdivision of ∆ into cells by the hyperplanes of R∆. We
triangulate the cells of A∆(R∆) into a set Ξ∆ of simplices. For simplices ∆ ∈ Ξ0 of weight ≤ 1, we
simply define Ξ∆ = {∆}. Finally, we define Ξ =

⋃
∆∈Ξ0

Ξ∆ as the final triangulation. We denote
by R the union of the samples R′ in all the stages of the cutting construction.

By the theory of random sampling, it follows that, with high probability, Ξ is a 1
r -cutting. Also,

as is shown in [CF], the expected number of cells with weight ≥ t in Ξ0 is O(rd2−t) . This, in turn,
implies that the expected total number of cells in Ξ is O(rd).

In the original constructions [AE, Ch, CF, Ma] concerning hyperplanes in higher dimensions,
the triangulation method employed is bottom-vertex triangulation. Here, however, we modify the
construction as follows. Let R′ be one of the random samples (within the entire space, or within
some ∆ ∈ Ξ0). For every cell τ of A(R′) which is not a simplex, let v be a point in the relative
interior of τ and let ξ be a triangulation of the relative boundary of τ . We extend every (k − 1)-
dimensional simplex ∆′ ∈ ξ to the k-dimensional simplex ∆ which is the convex hull of ∆′ and v.
ξ itself is constructed recursively using the same method in lower dimensions. The number of new
vertices introduced in the triangulation process is at most the number of faces of all dimensions in
A(R′). Summing over all the random samples R′ of the different stages of triangulation, gives a
total of O(rd) new vertices, and the total complexity of Ξ remains O(rd). The theory of random
sampling implies that the resulting triangulation preserves (with high probability) the properties
of the cutting.

Consider now the triangulation Ξ together with a given set of points P . A k-face (i.e., a k-
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Figure 2: Triangulation by an interior point.
The interior vertex is chosen so that the new faces of the triangulation avoid the points of P that

lie in the interior of the cell.

dimensional face) of a cell of Ξ may be either a simplex portion of a k-face of A(R′), for some
of the random samples R′ used to construct Ξ, or a new face created during the triangulation
process by taking the convex hull of an interior point v of a j-dimensional cell τ , for j > k, and a
(k − 1)-dimensional simplex ∆′ on the relative boundary of τ .

Now a crucial point needed for our analysis is that the points of P must not lie on these new
faces. However, this can easily be achieved by an appropriate choice of the interior points v. See
Figure 2. Finally, each cell τ of Ξ that contains more than m/rd points of P is further partitioned,
by cutting it with a generic collection of hyperplanes, into subcells, each containing at most m/rd

points. Clearly the new cells still constitute a 1
r -cutting of Π, and their overall number is still O(rd).

We thus obtain a 1
r -cutting consisting of O(rd) simplices with the above properties, including the

property that the new faces added in the triangulation do not contain points of P .

Finally, we note that the construction of Ξ is randomized. However, since our analysis is non-
algorithmic, we simply assume that each of the samples taken at each step of the construction
meets or beats the expected values of the various parameters that it controls.

To summarize, in addition to the properties asserted in the lemma itself, the cutting has the
property that a k-dimensional simplex of Ξ contains points of P only if it is contained in the
intersection of (at least) d− k sample hyperplanes of Π.

4.2 Constructing a compact representation of the incidence graph

Theorem 4.2
Jd(m,n) = O((mn)1−

1
d+1 + m + n).

Proof: Let P ⊂ Rd be a set of m points, and let Π be a set of n hyperplanes. We shall construct
a representation of G(P, Π) with the claimed complexity.

Fix a parameter r ≤ min
{
m1/d, n

}
, whose value will be determined later, and construct, using

Lemma 4.1, a 1
r -cutting Ξ of Rd, that consists of t = O(rd) relatively open simplices ∆1, . . . , ∆t, of

dimensions 0, . . . , d, so that each ∆i contains mi ≤ m/rd points of P , and is crossed by ni ≤ n/r
hyperplanes of Π.

For each i = 1, . . . , t, put Pi = P ∩∆i, and let Πi (resp., Π∗i ) denote the set of all hyperplanes
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of Π that cross ∆i (resp., fully contain ∆i). We clearly have

G(P, Π) =

(
t⋃

i=1

Pi ×Π∗i

)
∪

(
t⋃

i=1

G(Pi, Πi)

)
.

However, we can compactify the first union still further. For each k = 0, . . . , d − 1, we consider
all the k-faces of Ξ that contain points of P , and all the k-flats obtained as the intersection of
d− k affinely independent hyperplanes of R. We lump together all the k-faces that lie on the same
k-flat, f , into a single common group, and note that any hyperplane that contains one of these faces
contains all of them. (Note that lower-dimensional faces on f are not part of this group, but are
collected in the appropriate lower-dimensional sub-flats of f . Note also that any k-face of Ξ that
contains points of P is of this form, by construction.) We repeat this process for all dimensions k,
and can thus write

G(P, Π) =


⋃

f

Pf ×Π∗f


 ∪

(
t⋃

i=1

G(Pi, Πi)

)
,

where the first union is over all k-flats f , of dimensions k = 0, . . . , d− 1, which are the intersection
of at least d − k sample hyperplanes of R and which contain k-faces of Ξ with points of P . Here
Pf is the set of all points of P that lie in f and are not contained in lower dimensional faces of Ξ,
and Π∗f is the set of all hyperplanes of Π that contain f .

Hence, we obtain the recurrence

J(P, Π) ≤
∑

f

(|Pf |+ |Π∗f |) +
t∑

i=1

J(Pi, Πi),

where the first summation is only over those f for which the corresponding set Pf is nonempty.
Since |Pi| ≤ m/rd, and |Πi| ≤ n/r, for each i = 1, . . . , t, the last sum in the right-hand side can be
upper bounded by

O(rd) · Jd

(m

rd
,
n

r

)
.

Consider next the first sum
∑

f (|Pf | + |Π∗f |). Since the (open) cells of Ξ are pairwise disjoint, we
have ∑

f

|Pf | ≤ m.

To estimate
∑

f |Π∗f |, we argue as follows. Let R0 denote the set of O(r) hyperplanes in the initial
random sample. Each hyperplane π ∈ Π can be incident to at most O(rd−k−1) of the k-flats of
A(R0). This is because the hyperplanes of R0 intersect π in at most |R0| (d− 2)-flats (or |R0| − 1
if π ∈ R0) and induce on π a (d − 1)-dimensional arrangement of these flats, which has at most( |R0|
d−k−1

)
= O(rd−k−1) k-flats. Since every k-flat of A(R0), which is contained in π, appears as a

k-flat of the induced arrangement, the claim follows. Any k-face ϕ of Ξ, that is the intersection of
d − k sample hyperplanes and has not been counted so far, must fully lie inside some cell ∆ ∈ Ξ0

of the first stage of the cutting, and all the sample hyperplanes that form ϕ are those sampled in
∆ (including the O(1) hyperplanes that define ∆). Suppose that ∆ has weight t. Then there are
ct log t sample hyperplanes in ∆, and, arguing as above, they form O((t log t)d−k−1) k-flats of the
kind that we consider on each hyperplane π ∈ Π that crosses ∆. Since there are only tn/r such
hyperplanes, the total number of such additional k-faces within ∆ is O( tn

r (t log t)d−k−1). Summing
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over all cells ∆ ∈ Ξ0, and rounding up each weight to the nearest integer, we obtain a total of

O


∑

j≥2

jn

r
(j log j)d−k−1rd2−j


 = O


nrd−1

∑

j≥2

j(j log j)d−k−12−j


 = O

(
nrd−1

)
,

where we use the fact that the expected number of cells of weight j ≥ t ≥ j − 1 ≥ 1 is O(rd2−j)
[CF], and assume that the samples in our construction meet (or beat) these expectations. Hence
we have

∑

f

|Π∗f | =
d−1∑

k=0

O(nrd−1) = O(nrd−1).

Putting everything together, we obtain the following recurrence:

Jd(m,n) = O(rd) · Jd

(m

rd
,
n

r

)
+ O(nrd−1 + m). (5)

We next note that, using point-hyperplane duality, Jd(m,n) is symmetric, i.e., Jd(m,n) = Jd(n,m).
In particular, restricting r further to satisfy r ≤ min

{
m1/(d+1), n1/(d+1)

}
, we have

Jd

(m

rd
,
n

r

)
= Jd

(n

r
,
m

rd

)
= O

(
rdJd

( n

rd+1
,

m

rd+1

)
+

m

r
+

n

r

)
.

Substituting that in (5) we get

Jd(m,n) = O
(
rd

(
rdJd

( m

rd+1
,

n

rd+1

)
+

m

r
+

n

r

)
+ nrd−1 + m

)

= O
(
r2dJd

( m

rd+1
,

n

rd+1

)
+ (m + n)rd−1

)
. (6)

Lemma 4.3 The solution of (5) and (6) is

Jd(m,n) = O((mn)1−
1

d+1 + m + n).

Proof: Without loss of generality, we may assume that m ≥ n. Put s = m/n ≥ 1, and rewrite (5)
as

Jd(m,n) = O
(
rdJd

(sn

rd
,
n

r

)
+ nrd−1 + sn

)
. (7)

We then choose r = s
1

d−1 and get

Jd(m,n) = O
(
s

d
d−1 Jd

( n

s1/(d−1)
,

n

s1/(d−1)

)
+ sn

)
. (8)

Note that for this choice of parameters to make sense we must have s1/(d−1) = (m/n)1/(d−1) ≤
min{m1/d, n}, or m ≤ nd. If m > nd we argue as follows. The complexity of a compact repre-
sentation of the incidence graph can be bounded exactly as in the analysis that has led to the
derivation of (5), but using Π as the entire “sample”, i.e., with r = n. This yields the bound
Jd(m,n) = O(m + nrd−1) = O(m + nd) = O(m). Hence, Jd(m,n) = O(m) when m > nd.

We may thus assume that m ≤ nd, and estimate Jd

(
n

s1/(d−1) ,
n

s1/(d−1)

)
as follows. Apply (6)

with m = n = q, to obtain

Jd(q, q) = O
(
r2dJd

( q

rd+1
,

q

rd+1

)
+ qrd−1

)
.
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Choosing r = q1/(d+1), we obtain

Jd(q, q) = O
(
q2d/(d+1)Jd(1, 1) + q2d/(d+1)

)
= O

(
q2d/(d+1)

)
.

Substituting this solution in (8), with q = n/s1/(d−1)and taking into account also the case m > nd,
we get

Jd(m,n) = O

(
s

d
d−1

( n

s1/(d−1)

) 2d
d+1 + sn + m

)
= O((mn)1−

1
d+1 + m). (9)

Symmetrically, for n ≥ m we get

Jd(m,n) = O((mn)1−
1

d+1 + n). (10)

Combining (9) and (10), we get the desired bound. 2

This completes the proof of Theorem 4.2. 2

Remarks:

1. The best known lower bound constructions, presented in [BK], are point-hyperplane config-
urations with:

• Jd(m,n) = Ω
(
(mn)1−

2
d+3

−ε
)

for d odd, and for any ε > 0,

• Jd(m,n) = Ω
(

(mn)
1− 2(d+1)

(d+2)2
−ε

)
for d even, and for any ε > 0, and

• Jd(m,n) = Ω(m7/10n7/10) for d = 3.

These bounds apply for the balanced case, where m ≈ n. For the non-balanced case, there
are slightly better lower bounds; see [BK]. Closing the gaps between these bounds and our
upper bound remains an open problem. See also Appendix A for more details concerning the
3-dimensional construction.

2. One corollary of Theorem 4.2, already noted in the introduction, is that if the incidence graph
does not contain a Kr,s subgraph, i.e., no r points lie inside any intersection of s hyperplanes,
then the number of incidences is O((mn)1−

1
d+1 +m+n), where the constant of proportionality

depends on r and s. This slightly improves (by a logarithmic factor) a similar observation in
[BK].

5 Conclusion

We have studied the structure of point-hyperplane incidence graphs, and have shown that whenever
the number of incidences is large, the incidence graph contains large complete bipartite subgraphs.
Specifically,

1. We have obtained an improved upper bound on the overall size of a compact representation
of the incidence graph as the union of complete bipartite subgraphs (Theorem 4.2).
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2. We have derived lower bounds on the number of edges in the largest complete bipartite
incidence subgraph in three dimensions (Theorems 1.1) and in higher dimensions (Theorem
1.2).

3. We have obtained matching upper bound constructions for these lower bounds. The three-
dimensional constructions (Lemma 2.2, Lemma 2.3, and Lemma 2.6) are worst-case tight,
whereas the higher-dimensional one (Theorem 1.3) is not known to be tight.

4. For each of these bounds, we have provided an estimate of how many incidences must there
be in order to ensure the existence of large complete bipartite incidence subgraphs that attain
the asserted lower bounds. The three-dimensional estimates are tight, whereas the higher-
dimensional ones are not known to be tight.

We leave as open problems:

(i) To close the gap between the higher-dimensional bounds on the number of edges in the largest
complete bipartite point-hyperplane incidence subgraph.

(ii) To establish a tight bound on the representation complexity of point-hyperplane incidence
graphs. Even the case d = 3 is still open.

(iii) To find a maximal point-hyperplane incidence graph that does not contain some fixed complete
bipartite subgraph, or to prove that the known constructions of [BK] for this problem are
maximal. It is not clear whether or not this problem is equivalent to problem (ii).
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Appendix A: Incidences Between Points and Planes in R3 with no
Three Collinear Planes

An upper bound on the number of incidences between m points and n planes in R3 with no three
collinear planes (and a symmetric bound for the dual problem, where no three points are collinear)
has been known for a while. As discussed in the introduction, we attribute the result to [EGS]; the
bound there is slightly weaker, but can be cleaned-up using a more careful analysis.

Theorem 5.1 (Edelsbrunner et al. [EGS]) Let P ⊂ R3 be a set of m points and let Π be a set
of n planes in R3, such that no three planes of Π are collinear. Then the number of incidences is
bounded by

I(P, Π) = O(m4/5n3/5 + m + n).

The symmetric bound I(P, Π) = O(m3/5n4/5 + m + n) holds in the dual case, where no three points
of P are collinear.

The proof of the first bound uses the fact that if no three planes are collinear, then the incidence
graph does not contain a K2,3, i.e., two distinct points lying in the intersection of three distinct
planes. Note that the converse is not true, i.e., we can construct point-plane configurations with no
K2,3, but with (many) triples of collinear planes. Thus, Edelsbrunner et al. have implicitly proved
a slightly stronger statement, whose proof follows the one in [EGS] almost verbatim.

Theorem 5.2 Let P ⊂ R3 be a set of m points and let Π be a set of n planes in R3, such that
G(P, Π) does not contain a K2,3 subgraph. Then the number of incidences is bounded by

I(P, Π) = O(m4/5n3/5 + m + n).

The symmetric bound I(P,Π) = O(m3/5n4/5 + m + n) holds in the dual case, where G(P, Π) does
not contain a K3,2 subgraph.

Recently, Brass and Knauer [BK] constructed an example that effectively shows that these
bounds are worst-case tight. For the sake of completeness, we repeat (and slightly modify) their
construction here. It relies on the following result.

24



Theorem 5.3 (Bárány et al. [BHPT]) Let Q be a subset of the integer lattice in R3 contained
in the ball of radius r centered at the origin. Assume further that every three distinct vectors of Q
are linearly independent, and that Q is a maximal set satisfying this property. Then

|Q| = Θ
(
r3/2

)
.

Theorem 5.4 (Brass and Knauer [BK]) For any m and n, such that m = O(n3), there exist
a set P of m points and a set Π of n planes in R3, with no three collinear planes, such that

I(P, Π) = Ω(m4/5n3/5).

Proof: Let P =
{
1, . . . ,m1/3

}3
be an m1/3×m1/3×m1/3 lattice section. Put r = Θ(n2/5m−2/15),

and let Q be a maximal lattice subset of the ball of radius r about the origin that satisfies the
property in Theorem 5.3, i.e., every three vectors of Q are linearly independent, and |Q| = Θ(r3/2).
Note that for our assumed range of m and n, we have r > 1, with an appropriate choice of the
constants of proportionality. For each point p ∈ P , and for each vector q ∈ Q, construct a plane
through p normal to q; its equation is x · q = p · q. Let Π denote the resulting set of planes. Since
each coordinate of p is an integer ≤ m1/3, and each coordinate of q is an integer ≤ r, there are
O(m1/3r) distinct values of p · q, and the number of planes is thus |Π| = |Q| · O(m1/3r) = O(n).
The number of incidences between P and Π is I(P, Π) = |P | · |Q| = Θ(mr3/2) = Θ(m4/5n3/5), and
no three planes are collinear. Indeed, suppose there were three collinear planes in Π with normals
q1, q2, q3 ∈ Q. These normals are all distinct, and lie in the plane through the origin normal to the
intersection line of the three planes, and are thus linearly dependent — a contradiction. 2

Interestingly, this construction, when transformed to dual space, does not have the dual property
that no three points are collinear. This is because the duals of three parallel planes are three
collinear points, and the construction does contain many triples of parallel planes. Thus, the
problem of obtaining a tight bound on the number of incidences between m points, no three of
which are collinear, and n planes in R3, remains open. Nevertheless, the following somewhat
weaker result, which follows from the dual construction, holds:

Corollary 5.5 The maximum number of incidences between m points and n planes in R3, such
that no three collinear points lie in two or more common planes, is Θ(m3/5n4/5 + m + n).

In other words, both primal and dual versions of Theorem 5.2 yield bounds that are worst-case
tight. In contrast, the bound in the primal version of Theorem 5.1 is worst-case tight, but the
bound in the dual version is not known to be tight.
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