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Abstract

Let P be a set of n points in R3, and k ≤ n an integer. A sphere σ is k-rich with respect to P if
|σ ∩ P | ≥ k, and is η-nondegenerate, for a fixed fraction 0 < η < 1, if no circle γ ⊂ σ contains more
than η|σ ∩ P | points of P .

We improve the previous bound given in [1] on the number of k-rich η-nondegenerate spheres in 3-
space with respect to any set of n points inR3, from O(n4/k5+n3/k3), which holds for all 0 < η < 1/2,
to1 O∗(n4/k11/2+n2/k2), which holds for all 0 < η < 1 (in both bounds, the contants of proportionality
depend on η). The new bound implies the improved upper bound O∗(n58/27) ≈ O(n2.1482) on the
number of mutually similar triangles spanned by n points in R3; the previous bound was O(n13/6) ≈
O(n2.1667) [1].

1 Introduction

1.1 Nondegenerate hyperplanes and spheres

The concept of degeneracy of a hyperplane was introduced by Elekes and Tóth [10]. Given a finite point set
P ⊂ Rd and a constant 0 < η < 1, a hyperplane π in Rd is said to be η-degenerate (with respect to P ), if
there exists some lower-dimensional affine subspace π′ ⊂ π such that

|π′ ∩ P | ≥ η|π ∩ P |.

If no such affine subspace π′ exists, then π is said to be η-nondegenerate. A hyperplane π is called k-rich
(with respect to P ) if |π ∩ P | ≥ k. Elekes and Tóth [10] showed that for any dimension d there exists a
constant ηd < 1 which depends on d, so that, for any η < ηd and for any set of n points in Rd, the number
of η-nondegenerate k-rich hyperplanes is

O

(
nd

kd+1
+

nd−1

kd−1

)
, (1.1)
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with the multiplicative constant depending on η and d, and that this bound is asymptotically best possible.
We have η3 = 1, η4 = 1/2, and as d increases, ηd gets smaller and smaller. It is not known whether the
bound applies to all 0 < η < 1 in any dimension.

The motivation for studying nondegenerate hyperplanes comes from incidence problems between points
and hyperplanes in three and higher dimensions. These problems face the major difficulty that without
imposing any restrictions on the points and/or hyperplanes, the incidence graph can be the complete bipartite
graph: This can happen already in three dimensions, if we place all the points on a common line and make all
the planes pass through that line. We note, however, that in such constructions, the planes (or hyperplanes in
higher dimensions) are highly degenerate. As Elekes and Tóth [10] showed, by restricting the hyperplanes
to be nondegenerate, one can obtain better nontrivial bounds for point-hyperplane incidences.

In this paper we consider a related problem involving incidences between points and spheres. Given a
finite point set P ⊂ Rd and a constant 0 < η < 1, a (d − 1)-sphere σ ⊂ Rd is called η-degenerate (with
respect to P ) if there exists some (d− 2)-subsphere σ′ ⊂ σ such that

|σ′ ∩ P | ≥ η|σ ∩ P |.

Otherwise, σ is called η-nondegenerate. The notion of k-richness (with respect to P ) is defined as in the
case of hyperplanes.

Point-sphere incidence problems arise in several problems involving distances between points. For
example, the study of Aronov et al. [4] on the number of distinct distances determined by n points in R3

involves incidences between the points and a certain collection of spheres, and faces the issue of degeneracy
of these spheres. Another study by the authors and others [1] considers the problem of bounding the number
of similar triangles (or simplices) determined by n points in d dimensions. Here too the problem is reduced
to incidences between points and spheres, and handling degenerate and nondegenerate spheres is a major
step in the analysis.

By lifting Rd to the standard paraboloid in Rd+1 (see, e.g., [8]), every sphere is transformed into a
hyperplane, and the incidence relation, as well as degeneracy and nondegeneracy, are preserved. It thus
follows that for any η < ηd+1, the number of k-rich η-nondegenerate (d− 1)-spheres, with respect to a set
of n points in Rd is

O

(
nd+1

kd+2
+

nd

kd

)
. (1.2)

See [1] for more details.

It has been conjectured (see [1]) that this bound is not tight. A supporting evidence comes from the fact
that in the plane, where the spheres are circles, which are clearly nondegenerate (if they are k-rich and k is
sufficiently large), we have an upper bound of O∗(n3/k11/2 +n2/k3 +n/k) on the number of k-rich circles
[2, 5, 12], which is significantly better than the O(n3/k4 + n2/k2) bound implied by lifting the circles into
nondegenerate planes in R3. We recall that this improved bound holds for circles in any dimension; see [3].

At any rate, the bound for spheres in Rd should lie in between those for hyperplanes in Rd and for
hyperplanes in Rd+1. The second threshold follows from the lifting transform just discussed, and the first
threshold follows from noting that an inversion ofRd takes a collection of hyperplanes inRd into a collection
of spheres (all passing through a common point), while preserving incidences, richness, degeneracy, and
nondegeneracy. In particular, we obtain the lower bound (the best known, as far as we are aware)

Ω
(

nd

kd+1
+

nd−1

kd−1

)
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on the number of k-rich η-nondegenerate spheres inRd, by taking the Elekes-Tóth lower bound construction
for nondegenerate hyperplanes in Rd, and by inverting space.

Narrowing this gap between the upper and lower bounds is an interesting problem in its own right.
Moreover, any improvement of the upper bound will immediately improve the bounds on the problems
studied in the papers [1, 4] mentioned above.

1.2 Our results

In this paper we improve the upper bound on the number of rich nondegenerate spheres in 3-space. We
show:

Theorem 1.1. For any constant η < 1, for any set P of n points in R3, and for any k ≤ n, the number of
k-rich η-nondegenerate spheres is

O∗
(

n4

k11/2
+

n2

k2

)
,

with the mutliplicative constant depending on η.

Clearly, this is an improvement over the previous bound of O(n4/k5 + n3/k3). Using this bound, we
get an improved upper bound on the number of mutually similar triangles spanned by n points in R3.

Theorem 1.2. Let P be a set of n points in R3, and let ∆ be a triangle. Then the number of triples of points
of P that span a triangle similar to ∆ is O∗(n58/27) = O(n2.1482).

The previous bound was O(n13/6) = O(n2.1667) [1].

Discussion. There are three conventional ways to present incidence bounds:

(a) An upper bound on the number of incidences between n points and m objects. For example, the
above mentioned Elekes-Tóth bound [10], when formulated this way, asserts that the number of in-
cidences between n points in Rd and m ηd-nondegenerate hyperplanes is O(nd/(d+1)md/(d+1) +
nm(d−2)/(d−1)).

(b) An upper bound on the number of objects incident to at least k out of n points. This, for example,
is the formulation of the Elekes-Tóth bound, which says that the number of k-rich ηd-nondegenerate
hyperplanes spanned by a set of n points in Rd is O(nd/kd+1 + nd−1/kd−1).

(c) An upper bound on the number of incidences between n points and objects incident to at least k
of these points. For example, the Elekes-Tóth bound can be reformulated to say that the number
of incidences between n points in Rd and any family of k-rich ηd-nondegenerate hyperplanes is
O(nd/kd + nd−1/kd−2).

In practically all known instances, all three alternatives are equivalent and any one of them can be derived
from any other. Theorem 1.1, when stated in the first form (a), reads as follows.

Theorem 1.3. For any η < 1, the number of incidences I between n points in R3 and m η-nondegenerate
spheres is

I = O∗
(
n8/11m9/11 + nm1/2

)
,

with the mutliplicative constant depending on η.
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We will prove Theorem 1.3 rather than Theorem 1.1. Theorem 1.1 follows by noting that if each of the
m spheres is also k-rich then I ≥ mk. Solving the resulting inequality mk = O∗(n8/11m9/11 +nm1/2) for
m yields the bound of Theorem 1.1.

We use in the proof the previous bound for the number of incidences between n point in R3 and m
nondegenerate spheres, and strengthen it by cutting. The bound is

I = O
(
n4/5m4/5 + nm2/3

)
, (1.3)

which is the alternative form (a) of the Elekes-Tóth bound (1.2) in four dimensions (where the given spheres
appear as hyperplanes).

2 Proof of Theorem 1.3

Let P be a set of n points in R3, and let S be a set of m η-degenerate spheres in R3, for some fixed positive
η < 1. Let j > 0 be some integer. We say that a sphere σ is j-bad with respect to P if σ contains some
circle γ ⊂ σ, which contains at least j points of P , i.e., |γ ∩ P | ≥ j. If no such circle exists, then σ is said
to be j-good. Note that an η-nondegenerate sphere incident to exactly k points is, by definition, ηk-good.

Let I(P,S) denote the number of incidences between P and S. Denote by Iη(n,m), or I(n,m) for
short, the maximum of I(P,S) over all sets P of n points and S of m η-nondegenerate spheres in R3. Note
that each sphere σ ∈ S contains some noncoplanar quadruple of points, and each such quadruple uniquely
determines the sphere containing it, so we have m = |S| ≤ (

n
4

)
. In fact, this bound decreases as η decreases,

but it remains O(n4), with the constant of proportionality decreasing with η. Therefore, I(n, m) is defined
only for values of n and m satisfying (the appropriate variant of) this relationship.

The next lemma establishes a recurrence relation on I(n,m).

Lemma 2.1. For any 0 < η < 1, for any two positive integers n,m satisfying m = O(n4) as above, for
any integer 1 < j < n, and for any number 1 < r < min

{
m,n1/3

}
, we have

I(n,m) = O

(
r3β(r) log3 r · I

( n

r3
,
m

r

)
+ mjr2β(r) log3 r +

n4 log n

j11/2
+

n3

j3
+

n2

j

)
, (2.4)

where the constant of proportionality depends on η, and where β(r) = 2O(α2(r)) and α(r) is the extremely
slowly growing inverse Ackermann function.

Proof. Let P be a set of n points in R3, and let S be a set of m η-nondegenerate spheres with respect to P .
We partition S into two subsets consisting respectively of the j-good and the j-bad spheres, and bound the
incidences of P with each of these subsets separately.

We bound the number of incidences with the j-bad spheres as follows. The number of j-rich circles
with respect to P is O((n3 log n)/j11/2 + n2/j3 + n/j) [2, 3, 5, 12].2 Each circle γ can be incident to
several spheres of S. Since each such sphere σ is η-nondegenerate, we have |σ ∩ P | > 1

η |γ ∩ P |, or
|σ ∩ P | < 1

1−η |(σ \ γ) ∩ P |. Any point of P not on γ can lie in at most one of these spheres, so

∑

σ∈S|σ⊃γ

|σ ∩ P | <
∑

σ∈S|σ⊃γ

1
1− η

|(σ \ γ) ∩ P | < n

1− η
.

2This is the form (b) of the bound O
(
n6/11m9/11 log2/11(n3/m)+n2/3m2/3 +n+m

)
on the number of incidences between

n points and m circles in 3-space. This follows from the best known bound, with the same asymptotic value, for the incidence
problem in the plane, as derived by Marcus and Tardos [12]; the previous bounds [2, 3, 5] were slightly weaker.
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Hence, the total number of incidences between the spheres containing γ and P is O(n). Multiplying by the
number of circles, we get that the number of incidences between P and the j-bad spheres is

Ibad = O

(
n4 log n

j11/2
+

n3

j3
+

n2

j

)
. (2.5)

To bound the number of incidences with the j-good spheres, we construct a 1
r -cutting of S . We will

use the simpler version of cutting, in which we sample spheres of S by choosing each sphere in the sample
independently at random with probability Cr

n log r, for an appropriate sufficiently large constant C, and
then construct the vertical decomposition of the arrangement of the random sample (see, e.g., [6, 7]). As
follows from the analysis of [7], the result is a set of an expected number of O(r3β(r) log3 r) relatively
open cells, each of constant description complexity, such that, with high probability, each cell is crossed by
(i.e., is intersected by but not contained in) at most m/r spheres of S. We will assume that our cutting does
satisfy these properties, i.e., it consists of O(r3β(r) log3 r) cells, and each cell is crossed by at most m/r
spheres of S . We may also assume that each cell contains at most n/r3 points of P . To enforce this, we
take each cell that contains tn/r3 points, for any t > 1, and partition it into t + 1 subcells in some generic
way, such that each subcell contains at most n/r3 points. The number of cells in this refined cutting is still
O(r3β(r) log3 r).

For each cell τ separately, we bound the number of incidences between the points of P ∩ τ and the
spheres that cross τ , and then sum up the bounds over all cells. A cell τ has at most n/r3 points and is
crossed by at most m/r spheres. If a sphere contains more than j/η points of P ∩ τ , then, since it is a
j-good sphere, it is locally η-nondegenerate in τ (i.e., with respect to the points of P ∩ τ ). The number of
incidences between such spheres and the points of P ∩ τ is at most I( n

r3 , m
r ). The number of incidences

with the other spheres in τ is O(mj/r). The total, summed over all cells, is

∑
τ

O

(
I

( n

r3
,
m

r

)
+

mj

r

)
= O

(
r3β(r) log3 r · I

( n

r3
,
m

r

)
+ mjr2β(r) log3 r

)
.

It remains to bound, for each cell τ , the number of incidences between the points of P ∩ τ and the
spheres of S that contain τ , which we do separately for cells of dimensions 2,1 and 0. (Cells of dimension
3 are “exempt” from this analysis.) Any two-dimensional cell can be contained by at most one sphere, so
these cells contribute a total of O(n) incidences of this kind. For one-dimensional cells, we can restrict
our attention only to these cells which are (portions of) edges in the arrangement of the sample spheres.
(By choosing a generic coordinate frame, the other edges of the vertical decomposition will not contain
points of P .) Each of the m spheres intersects the O(r log r) spheres of the sample along O(r log r) circles,
and each such circle contains at most j points of P . Thus, the number of incidences contributed by the
one-dimensional cells is O(mjr log r). As for zero-dimensional cells, which are simply the vertices of the
arrangement of the sample spheres (as above, we may ignore the additional vertices created by the vertical
decomposition), each of the m spheres σ contains O(r2 log2 r) such vertices, which are intersection points
of the O(r log r) circles of intersection of σ with the sample spheres. Hence, the total contribution of these
cells is at most O(mr2 log2 r) incidences. Thus, the total number of incidences, over all cells τ , between the
points of P ∩τ and the spheres of S that contain τ is O(n+mjr log r+mr2 log2 r), which is asymptotically
smaller than O(n + mjr2β(r) log3 r), and so, the total number of incidences with the good spheres is

Igood = O
(
r3β(r) log3 r · I

( n

r3
,
m

r

)
+ mjr2β(r) log3 r + n

)
. (2.6)

Summing both inequalities (2.5) and (2.6), we obtain the bound asserted in the lemma.

5



Next, we simplify the recurrence by getting rid of j. We have, on one hand, the term mjr2β(r) log3 r,
which increases with j, and, on the other hand, the terms

n4 log n

j11/2
+

n3

j3
+

n2

j
,

which decrease with j, so we choose j so as to balance between them. By comparing the increasing term
with each of the decreasing terms, this leads to the choice

j =
n8/13

m2/13r4/13
+

n3/4

m1/4r1/2
+

n

m1/2r
,

which implies

I(n,m) = O

(
r3l(r)I

( n

r3
,
m

r

)
(2.7)

+ l(r)
(

n8/13m11/13r22/13 log
(

n4

m

)
+ n3/4m3/4r3/2 + nm1/2r

))
,

where l(r) = β(r) log3 r.

Our next and final step is to solve this recurrence, and derive the bound of Theorem 1.3.

Theorem 2.2 (Cf. Theorem 1.3). For any arbitrarily small ε > 0, there exists a constant Aε, which depends
on ε and η, such that we have

Iη(n, m) ≤ Aε

(
n8/11+εm9/11+ε + nm1/2

)
. (2.8)

Proof. We use induction on m. Our end conditions are as follows

1. If m is smaller than some constant, say c, then I ≤ nm ≤ cn. Clearly, in this case (2.8) is also
satisfied, if we choose Aε sufficiently large.

2. If m is large enough relative to n, namely, if m > Cn4, for some appropriate constant C depending on
η, then I = O(m) = O(n4) (recall that only the case m = O(n4) can arise, so in the present situation
m = Θ(n4)). This can be shown, e.g., using the previous bound of I = O(n4/5m4/5 + nm2/3). In
this case we also have I = O

(
n8/11+εm9/11+ε + nm1/2

)
as in (2.8).

We now deal with the case where n and m are large, and c < m < Cn4, in which case, we apply the
induction hypothesis and rewrite (2.7) as

I(n,m) ≤ B

(
r3l(r)Aε

(( n

r3

)8/11+ε (m

r

)9/11+ε
+

( n

r3

)(m

r

)1/2
)

+ l(r)
(

n8/13m11/13r22/13 log
(

n4

m

)
+ n3/4m3/4r3/2 + nm1/2r

))

= B · l(r)Aε

(
n8/11+εm9/11+ε

r4ε
+

nm1/2

r1/2

)

+ B · l(r)
(

n8/13m11/13r22/13 log
(

n4

m

)
+ n3/4m3/4r3/2 + nm1/2r

)
,
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for an appropriant absolute constant B. We now choose r sufficiently large so that B·l(r)
r4ε < 1

2 , and
then choose Aε sufficiently large so that the last terms (in the second line of the bound) are at most
1
2Aε(n8/11+εm9/11+ε + nm1/2). This can be done, because the terms n8/13m11/13r22/13 log

(
n4

m

)
and

n3/4m3/4r3/2 are dominated by the terms n8/11+εm9/11+ε + nm1/2, for m < Cn4. Thus,

I(n,m) ≤ Aε

(
n8/11+εm9/11+ε + nm1/2

)
,

establishing the induction step and thereby completing the proof of the theorem, and consequently also the
proof of Theorem 1.3.

Remark: The reader may be left wondering where did the exponents 8/11 and 9/11 “pop-up” from, since
they do not appear explicitly in (2.7). The answer is that a solution of (2.7) with a leading term nαmβ must
satisfy the two inequalities 3α + β > 3, and α + 4β > 4. The first inequality is needed to control the
homogeneous part of the recurrence, i.e., the term r3l(r) · I (

n
r3 , m

r

)
, and the second inequality is needed

to ensure that the term n8/13m11/13 is dominated by nαmβ when m = O(n4), as can be easily verified.
The exponents 8/11 + ε and 9/11 + ε, for arbitrarily small ε, are, in a sense, the best solution of these
inequalities.

3 Applications of the new bound

As already noted, nondegenerate spheres were used in some previous works. In [4], they were used in the
analysis of distinct distances in R3, and in [1], we used them to bound the number of mutually similar
simplices in d dimensions. The improved bound of Theorem 1.1, once plugged into these analyses, gives
improved results for the respective problems. In this section we apply Theorem 1.1 to the analysis of [1]
of similar triangles in R3 and prove Theorem 1.2. Recall that the previous bound, established in [1], on the
number of similar triangles spanned by n points in R3 is O(n13/6) = O(n2.1667). With the use of Theorem
1.1, the bound becomes O∗(n58/27) = O∗(n2.1482), as we prove next.

Proof of Theorem 1.2. Fix a parameter k < n, and denote by M(n, k) the maximum possible number of
k-rich nondegenerate spheres spanned by n points in R3 (for some fixed constant degeneracy factor η).
As shown in [1], the number T of triangles spanned by n points in R3 and similar to a fixed triangle is
upper-bounded by

T = O
(
n2k1/3 + M(n, k)k4/3

)
,

for any choice of k. The optimal choice is of course the one that minimizes the expression on the right hand
side. In [1] we used the old bound M(n, k) = O(n4/k5 +n3/k3), for which the optimal k is k = n1/2, and
the resulting bound is T = O(n13/6). If we use the new bound, then we get

T = O∗
(

n2k1/3 +
n4

k25/6
+

n2

k2/3

)
= O∗

(
n2k1/3 +

n4

k25/6

)
.

We choose k = n4/9, and get
T = O∗(n58/27),

as claimed.
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Theorem 1.1 can also be applied to yield a better result, over the one achieved in [4], for the number, de-
noted by g3(n), of distinct distances determined by n points in R3, but this result has already been surpassed
by Solymosi and Vu [13]. Specifically, the old bound in [4] was g3(n) = Ω∗(n77/141) = Ω(n0.546). With the
new bound we get g3(n) = Ω∗(n5/9) = Ω(n0.555), but the Solymosi-Vu bound [13] is g3(n) = Ω(n0.5644).3

(The upper bound on the minimum number of distinct distances is O(n2/3).)

4 Conclusion

We have shown an improved bound on the number of incidences between points and nondegenerate spheres
in R3, and demonstrated its usefulness by improving the bound on the number of mutually similar triangles
in R3. We believe that our main results (Theorems 1.1 and 1.3) can be improved still further. We also
believe that our results can be extended to higher-dimensional nondegenerate spheres, and that they shall
find applications in various other problems of geometric incidences and repeated subconfigurations.

It is interesting to compare our results to the recent work of Elekes and Szabó [9], in which they define
the combinatorial dimension of a set of vertices in a bipartite graph. They show that a set of n points and
a family of m hyperplanes in Rd, such that the set of points has combinatorial dimension k in the point-
hyperplane incidence graph, has at most I = O∗(nd(k−1)/(dk−1)mk(d−1)/(dk−1) + n + m) incidences. For
d = 4 and k = 3, one gets I = O∗(n8/11m9/11 + n + m), very similar to our bound. Recall that in our
setting of n points and m spheres inR3, by liftingR3 toR4, one can think of them as points and hyperplanes
in R4 with all the points lying on a three-dimensional paraboloid, thus having dimension 3. In spite of the
similarity betwen the two results, we note that the three-dimensionality of the points in the point-sphere
setting does not appear to conform with Elekes’s and Szabó’s definition of combinatorial dimension.

Indeed, in their setup, we consider the bipartite incidence graph H ⊆ P×S , and say that a subset Q ⊆ P
has combinatorial dimension k, if, after discarding at most b spheres from S, for some fixed constant b, the
following holds: For each sphere σ in the remaining set S ′, the points of Q∩σ have combinatorial dimension
k − 1, with respect to the spheres in S ′ \ {σ}. To have combinatorial dimension 0, Q should have at most
b points. Thus, for P to have combinatorial dimension 3, P ∩ σ, for most spheres σ ∈ S, should have
combinatorial dimension 2, which in turn means that for most pairs σ, σ′ of spheres in S , P ∩ σ ∩ σ′ should
have combinatorial dimension 1, which in turn means tha for most triples σ, σ′, σ′′ of spheres, |P∩σ∩σ′∩σ′′|
should be at most b. Unfortunately, this does not have to hold, since σ ∩ σ′ ∩ σ′′ could be a circle containig
many points of P .

Yet, it is possible that there is some indirect connection between Elekes’s and Szabó’s combinatorial
dimension, and point-nondegenerate sphere incidences. In particular, consider a set P of n points in Rd and
a set S of m nondegenerate spheres in Rd. If P had combinatorial dimension d with respect to S, then,
after lifting the spheres to nondegenerate hyperplanes in Rd−1, the analysis in [9] would yield the bound
O∗(n(d2−1)/(d2+d−1)md2/(d2+d−1) + n + m) on the number of incidences between P and S . Combining
this “lead” with the bound we have for d = 3 in Theorem 1.3, we tend to conjecture that the number of these
incidences is I = O∗(n(d2−1)/(d2+d−1)md2/(d2+d−1) + nm(d−2)/(d−1)).

3In their paper [13], they specify a slightly weaker bound of g3(n) = Ω(n0.5643). Their analysis depends on the respective
two-dimensional lower bound, i.e. on the number of distinct distances between n points in the plane. This lower bound was
later improved by Katz and Tardos [11], which consequently improved also the lower bound in three dimensions. In more detail,
Solymosi and Vu [13] showed that g3(n) = Ω∗(nω3), where ω3 ≥ 3/(3 + 2/ω2), and ω2 is any number such that g2(n) =
Ω∗(nω2). As of today, the best estimate for ω2, due to Katz and Tardos [11], is ω2 ≥ 0.8641, which implies ω3 ≥ 0.5644.
Solymosi and Vu [13] used the weaker bound ω2 ≥ 0.8635, which only implies ω3 ≥ 0.5643.
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