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Abstract

We show that the combinatorial complexity of the union of n “fat” tetrahedra in 3-space
(i.e., tetrahedra all of whose solid angles are at least some fixed constant) of arbitrary sizes,
is O(n2+ε), for any ε > 0; the bound is almost tight in the worst case, thus almost settling
a conjecture of Pach et al. [23]. Our result extends, in a significant way, the result of
Pach et al. [23] for the restricted case of nearly congruent cubes. The analysis uses cuttings,
combined with the Dobkin-Kirkpatrick hierarchical decomposition of convex polytopes, in
order to partition space into subcells, so that, on average, the overwhelming majority of the
tetrahedra intersecting a subcell ∆ behave as fat dihedral wedges in ∆. As an immediate
corollary, we obtain that the combinatorial complexity of the union of n cubes in R

3, having
arbitrary side lengths, is O(n2+ε), for any ε > 0 (again, significantly extending the result
of [23]). Our analysis can easily be extended to yield a nearly-quadratic bound on the
complexity of the union of arbitrarily oriented fat triangular prisms (whose cross-sections
have arbitrary sizes) in R

3. Finally, we show that a simple variant of our analysis implies
a nearly-linear bound on the complexity of the union of fat triangles in the plane.
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1 Introduction

Let T be a collection of n (arbitrarily oriented) tetrahedra of arbitrary sizes in 3-space. Let
A(T ) denote the three-dimensional arrangement induced by the facets of the tetrahedra in T ,
i.e., the decomposition of 3-space into vertices, edges, faces, and three-dimensional cells, each
being a maximal connected set contained in the intersection of a fixed subcollection of facets
of the tetrahedra of T and not meeting any other facet. The combinatorial complexity of the
union of the tetrahedra in T is the number of vertices, edges and faces of the arrangement
appearing on the union boundary. The problem studied in this paper is to obtain a nearly-
quadratic upper bound on the combinatorial complexity of the union, in the special case where
all the given tetrahedra are fat, meaning that the solid angles at their vertices are all at least
some fixed constant α > 0.

Previous results. The problem of determining the combinatorial complexity of the union of
geometric objects has received considerable attention in the past twenty years, although most
of the earlier work has concentrated on the planar case. The case involving pseudodiscs (that
is, a collection of simply connected planar regions, where the boundaries of any two distinct
objects intersect at most twice), arises for Minkowski sums of a fixed convex object with a
set of pairwise disjoint convex objects (which is the problem one faces in translational motion
planning of a convex robot), and has been studied by Kedem et al. [17]. In this case, the union
has only linear complexity. Matoušek et al. [20, 21] proved that the union of n α-fat triangles
(where each of their angles is at least α) in the plane has only O(n) holes, and its combinatorial
complexity is O(n log log n). The constant of proportionality, which depends on the fatness
factor α, has later been improved by Pach and Tardos [24]. Extending the study to the realm
of curved objects, Efrat and Sharir [14] studied the union of planar convex fat objects. Here
we say that a planar convex object c is α-fat, for some fixed α > 1, if there exist two concentric
disks, D ⊆ c ⊆ D′, such that the ratio between the radii of D′ and D is at most α. In this
case, the combinatorial complexity of the union of n such objects, such that the boundaries of
each pair of objects intersect in a constant number of points, is O(n1+ε), for any ε > 0. See
also Efrat and Katz [12] and Efrat [11] for related (and slightly sharper) nearly-linear bounds.

In three and higher dimensions, it was shown by Aronov et al. [4] that the complexity of
the union of k convex polyhedra with a total of n facets in R

3 is O(k3 + nk log k), and it
can be Ω(k3 + nkα(k)) in the worst case. The bound was improved by Aronov and Sharir [3]
to O(nk log k) (and Ω(nkα(k))) when the given polyhedra are Minkowski sums of a fixed
convex polyhedron with k pairwise-disjoint convex polyhedra. (This problem arises in the
case of a translating convex polyhedral robot in R

3 amid a collection of polyhedral obstacles.)
Boissonnat et al. [5] proved that the maximum complexity of the union of n axis-parallel
hypercubes in R

d is Θ
(

ndd/2e
)

, and that the bound improves to Θ
(

nbd/2c
)

if all hypercubes
have the same size. Pach et al. [23] showed that the combinatorial complexity of the union of
n nearly congruent arbitrarily oriented cubes in three dimensions is O(n2+ε), for any ε > 0
(see also [22] for a subcubic bound on the complexity of the union of fat wedges in 3-space).
Agarwal and Sharir [1] have shown that the complexity of the union of n congruent infinite
cylinders is O(n2+ε), for any ε > 0. In fact, the more general problem studied in [1] involves
the union of the Minkowski sums of n pairwise disjoint triangles with a ball (where congruent
infinite cylinders are obtained when the triangles become lines), and the nearly quadratic
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bound is extended in [1] to this case as well. Finally, Aronov et al. [2] showed that the union
complexity of n κ-round objects in R

3 is O(n2+ε), for any ε > 0, where an object c is κ-round
if for each p ∈ ∂c there exists a ball B ⊂ c that touches p and its radius is at least κ · diam(c).
The bound is O(n3+ε), for any ε > 0, for κ-round objects in R

4. Each of the above known
nearly-quadratic bounds (for the three-dimensional case) is almost tight in the worst case.

To recap, all of the above results indicate that the combinatorial complexity of the union of
fat objects is roughly “one order of magnitude” smaller than the complexity of the arrangement
that they induce. While considerable progress has been made on the analysis of unions in three
dimensions, the case of the union of fat polyhedra has so far been lagging behind, where only
very few nearly-quadratic bounds are known.

Our results. In this paper we make significant progress on the problem of bounding the
complexity of the union of fat polyhedra, by deriving a nearly-quadratic bound on the com-
binatorial complexity of the union of fat tetrahedra. Our bound, which is the first known
subcubic bound for this general problem, is almost tight in the worst case.

Specifically, a tetrahedron is called α-fat if each of its four solid angles (at its four respective
apices) is at least α. We show that, for any fixed α > 0, the complexity of the union of n
α-fat tetrahedra is O(n2+ε), for any ε > 0, where the constant of proportionality depends on ε
and on α. Our proof technique relies only on the nearly-quadratic bound of the union of α-fat
dihedral wedges, established by Pach et al. [23]; a dihedral wedge is called α-fat if its dihedral
angle is at least α. An immediate application of our result is a nearly-quadratic bound on the
complexity of the union of arbitrary cubes. In particular, the second part of the analysis of
Pach et al. [23], for the specific case that this paper studies, namely, that of nearly congruent
cubes, is not needed any more, since it is subsumed by our analysis, which does not use that
part, and applies in a much wider context.

The analysis is based on cuttings, which incorporate the Dobkin-Kirkpatrick hierarchical
decomposition scheme for convex polytopes [10], in order to partition space into subcells (sim-
plices), so that, on average, the overwhelming majority of the tetrahedra intersecting a subcell
∆ behave as α′-fat dihedral wedges within ∆, where α′ is another constant that depends on
α. Since, as shown in [23], the complexity of the union of α′-fat dihedral wedges is nearly
quadratic, it only remains to analyze the number of other types of vertices, a task which is
handled by the cutting-based divide-and-conquer mechanism (see below for details).

Our analysis can also be applied when the given objects are arbitrarily oriented α-fat

triangular prisms (that is, all the dihedral angles in each prism are at least α) having cross-
sections of arbitrary sizes. In this case, the complexity of the union is nearly-quadratic as
well, and the bound is nearly worst-case tight. We are not aware of any previous known
subcubic bound in this case, except for the nearly-quadratic bound of Aronov and Sharir [3],
for the special case where the prisms are Minkowski sums of lines in 3-space with a fixed (not
necessarily fat) polyhedron. An immediate consequence of this result is a bound O(n2+ε), for
any ε > 0, on the complexity of the union of any family of polyhedral objects, so that each
of them is the union of some number of α-fat tetrahedra (or triangular prisms), and the total
number of these tetrahedra or prisms is n.

The problem studied in this paper is a natural extension of the two-dimensional problem
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of bounding the complexity of the union of fat triangles, which was studied by Matoušek
et al. [20, 21] and by Pach and Tardos [24]. We show that a simple specialization of our analysis
to the two-dimensional case implies the bound O(n1+ε), for any ε > 0, on this complexity. The
analysis, based on the new approach, is almost immediate (albeit yielding a slightly suboptimal
bound), and is significantly simpler than the analysis in [20, 21, 24].

By now, the arsenal of techniques for analyzing the complexity of the union of geometric
objects in 3-space is quite rich: It includes, for example, the technique of Aronov et al. [2], for
bounding the combinatorial complexity of the union of n κ-round objects in R

3, by reducing
the problem to subproblems involving sandwich regions between upper and lower envelopes
(see also [1]), and the technique of Pach et al. [23] for bounding the complexity of the union
of n cubes in 3-space by bounding the number of “special cubes” in the arrangement of these
cubes (see also [4]). However, we were unable to extend any of these alternative techniques to
our context, and had to develop new machinery. We believe it to be of independent interest,
and hope that it will find additional applications to related problems.

2 The Union of Fat Tetrahedra

Preliminaries and overview. We borrow the following notation from Pach et al. [23] (some
of which has already been mentioned in the introduction). A dihedral (resp., trihedral) wedge

is the intersection of two (resp., three) halfspaces. A dihedral (resp., trihedral) wedge is α-fat

if its dihedral (resp., solid) angle is at least α. A trihedral wedge is also associated with the
three dihedral angles at its edges. It is easily verified that there exists constant α′ > 0, which
depends only on α, such that, for any α-fat trihedral wedge, each of its three dihedral angles
is at least α′.

Similar definitions and observations apply to α-fat tetrahedra, namely, tetrahedra all of
whose solid angles are at least α. In particular, there exist (the same) constant α′ > 0, such
that, for any α-fat tetrahedron, each of its six dihedral angles is at least α′.

Let T = {T1, . . . , Tn} be a collection of n α-fat tetrahedra in 3-space, and let U =
⋃

T
denote their union. For simplicity of the analysis, we assume that the given tetrahedra are in
general position (see [4] for an argument that this involves no loss of generality). This general
position assumption implies that each vertex of the arrangement A(T ) of the (facets of the)
tetrahedra lies on exactly three tetrahedra facets, and is thus incident upon only a constant
number of edges and faces. This is easily seen to imply that the combinatorial complexity of
U is O(|V (T )|), where V (T ) is the set of vertices of A(T ) that appear on the boundary of the
union.

We classify the vertices of A(T ) as in [4]: An intersection vertex v of A(T ) (i.e., not a
vertex of one of the tetrahedra of T ) is said to be an outer vertex if it is the intersection of
an edge of one tetrahedron and the relative interior of a facet of another tetrahedron, or an
inner vertex, if v is the intersection of the relative interiors of three facets of three distinct
tetrahedra. Trivially, the number of outer vertices in the entire arrangement A(T ) is O(n2),
so our main goal is to bound the number of inner vertices that appear on ∂U . The main result
of the paper is:
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∆

Ci+1

v

Ci

Figure 1: Illustrating a step in the construction of the Dobkin-Kirkpatrick hierarchical decomposition: The
vertex v is peeled off Ci, the convex hull of the “hole” that it leaves is constructed, and the new facets are
connected to v by tetrahedra that fill up this portion of Ci \ Ci+1.

Theorem 2.1 The complexity of the union of n α-fat tetrahedra in R
3 is O(n2+ε), for any

ε > 0, where the constant of proportionality depends on ε and α. The bound is almost tight in

the worst case.

It is relatively easy (using standard techniques; see, e.g., [25]) to construct a set of n α-fat
tetrahedra that yield Ω(n2α(n)) vertices on the boundary of their union (see also [22, 23] for
further details). We thus devote the remainder of this section to deriving the upper bound
stated in Theorem 2.1.

Curve-sensitive cuttings. We use a divide-and-conquer approach, based on a simple vari-
ant of “curve-sensitive” cuttings [18]. Specifically, let F be the set of all facets of the tetrahe-
dra in T . For any r ≤ n there exists a (1/r)-cutting Ξ for F , which is a partition of R

3 into
O(r3 log3 r) simplices, such that every simplex (also referred to as a cell of Ξ) is crossed by at
most n/r facets of F , with the additional property that any edge of a tetrahedron in T crosses
at most O(r log2 r) cells of Ξ.

One can obtain such a cutting using the following (simple) construction1. We first draw
a random sample R of O(r log r) of the planes containing the facets of F , and add to that
collection four additional planes that define a sufficiently large simplex σ0 that encloses all the
vertices of A(F). We form the arrangement A(R) of R, consider only its portion within σ0,
and triangulate each of its cells C contained in σ0, using the Dobkin-Kirkpatrick hierarchical
decomposition of convex polytopes [10].

The number of simplices is proportional to the overall complexity of A(R), and is thus
O(r3 log3 r). The ε-net theory [7, 16] implies that, with high probability, each simplex of the
resulting decomposition is crossed by at most n/r (planes containing) facets of F . We pick
one sample R for which this property holds, and fix it in the foregoing analysis.

So far, the use of the Dobkin-Kirkpatrick hierarchy is not essential—many other triangu-
lation schemes for the cells of A(R) (e.g., bottom-vertex triangulation) would do equally well.

1For simplicity, we do not use the refined technique of [6, 19], which improves the size of the cutting down
to O(r3), since it does not affect the asymptotic bound that we obtain on the complexity of the union.
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However, the Dobkin-Kirkpatrick hierarchy is crucial for our divide-and-conquer approach in
a manner that will be described later on.

Here is a brief review of the technique, given for the sake of completeness, and also because
we will exploit several features of the construction in our analysis. Let C ⊆ σ0 be a fixed
(bounded) cell of A(R), which is a convex polytope. The hierarchical decomposition of C is a
sequence C1, . . . , Ck of k ≥ 1 convex polytopes, such that (i) C1 = C and Ck is a simplex, (ii)
Ci+1 ⊂ Ci, for 1 ≤ i < k, (iii) V (Ci+1) ⊂ V (Ci), for 1 ≤ i < k, where V (P ) is the set of the
vertices of a polytope P , and (iv) the vertices in V (Ci) \ V (Ci+1) form an independent set in
the planar skeleton graph of ∂Ci, for 1 ≤ i < k.

It is shown in [10] that there always exists a hierarchical decomposition for C that satisfies
k = O(log |V (Ci)|),

∑k
i=1 |V (Ci)| = O(|V (C)|), and maxi maxv∈V (Ci)\V (Ci+1) deg(v,Ci) ≤ c,

for some absolute constant c ≥ 3, where deg(v,Ci) is the degree of v in the skeleton graph
of ∂Ci. Specifically, we obtain Ci+1 from Ci by the following steps: (a) Find an independent
subset V ∗

i ⊆ V (Ci) of vertices of degree at most c, whose size is Θ(|V (Ci)|) (e.g., an independent
set of size |V (Ci)|/24 whose vertices have degree at most 11 can be shown to exist, as a simple
consequence of Euler’s polyhedral formula). (b) For each v ∈ V ∗

i , remove v and its adjacent
edges and facets from Ci. (c) The removal of such a vertex v leaves a “hole” in Ci. The
convex hull of the set of neighboring vertices of v is constructed, and its outer (triangular)
facets are added as new facets of Ci+1, thereby closing the hole that v has left. (d) Finally,
the gap between ∂Ci and Ci+1 in the neighborhood of v (formally, the connected component
of int(Ci) \Ci+1 whose closure contains v) is triangulated into O(1) simplices by connecting v
with each of the new facets of Ci+1 that bound the gap; see Figure 1 for an illustration.

A simplicial subcell ∆ is said to be generated at step i if it has a vertex v that is removed
from Ci; that is, ∆ is one of the simplices that fill up the gap formed by the removal of v. Note
that the three other vertices of ∆ belong to Ci+1.

The Dobkin-Kirkpatrick decomposition has several useful properties that we will exploit.
One of these properties is that a line that crosses a cell τ of A(R) crosses only O(log r) of
its simplices (it can visit at most two gaps of Ci \ Ci+1, for each of the logarithmically many
indices i). Since a line (or, rather, an edge of a tetrahedron in T ) crosses at most O(r log r)
cells of A(R) (it has to cross a plane of R to move from one cell to another), it crosses at most
O(r log2 r) simplices, as claimed.

The problem decomposition—an overview. We construct the cutting Ξ, as just de-
scribed, with a value of r that will be specified later, and bound the number of inner vertices
of the union in each cell of Ξ separately. Fix a cell ∆ of Ξ. We classify each facet F ∈ F that
intersects ∆ as being either long in ∆, if ∂F ∩∆ = ∅, or short, otherwise. As just discussed,
the number of cells ∆ in which F is short is O(r log2 r).

Let us fix a tetrahedron T ∈ T . For each cell ∆ of Ξ, either (i) ∆ is disjoint from T ,
or (ii) ∆ is fully contained in T , or (iii) ∆ intersects only one or two facets of T , or (iv) ∆
intersects at least three facets of T . In case (i) T has no effect on the union within ∆. In case
(ii) ∆ is fully covered and does not contain any portion of the boundary of the union. In case
(iii) we say that T meets ∆ as a dihedral wedge (which can also be a halfspace), and call T
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Figure 2: The proof of Lemma 2.2.

a D-tetrahedron in ∆, and in case (iv) we say that T meets ∆ as a tetrahedron or a trihedral
wedge, and call T a T-tetrahedron in ∆.

If ∆ meets only one facet F of T , we replace T by the halfspace bounded by that facet
and containing T . Similarly, if ∆ meets two facets of T , we replace T by the dihedral wedge
formed by the planes supporting these facets and containing T . Clearly, these replacements do
not affect the union of the tetrahedra within ∆. The case where at least three facets of T meet
∆ (case (iv)) is more involved—this is after all the situation we started with. What saves us
is the property that the number of T-tetrahedra is small on average. This is one of the main
technical insights in our analysis, and is established below in Lemmas 2.3 and 2.4.

Each inner intersection vertex v of the union that appears in ∆ is consequently classified
as either DDD, if all three facets that are incident to v belong to three respective D-tetrahedra
in ∆, DDT, if two of these facets belong to two respective D-tetrahedra and one belongs to a
T-tetrahedron, DTT, if one of these facets belongs to a D-tetrahedron and two belong to two
respective T-tetrahedra, or TTT, if all three facets belong to three respective T-tetrahedra. In
all four cases, the relevant tetrahedra are distinct.

T-tetrahedra are scarce. Our next goal is to show that, for each tetrahedron T ∈ T , the
overall number of simplices ∆ of Ξ, such that T crosses ∆ and is a T-tetrahedron in ∆, is only
O(r log2 r). We emphasize that this part of the analysis does not use the fatness of T — the
bound holds for any tetrahedron T .

Let us fix a tetrahedron T of T , and consider the set of simplices ∆ in Ξ that meet at least
three facets of T . It suffices to consider only simplices ∆ in which all facets of T are long: The
edge-sensitivity of the cutting implies that the overall number of simplices ∆ that are crossed
by an edge of T is O(r log2 r).

We establish the above bound in two steps, in the respective Lemmas 2.3 and 2.4. In
the first step (Lemma 2.3) we bound the number of cells of the untriangulated arrangement
A(R) that meet at least three facets of T ; a crucial ingredient of the analysis is established in
Lemma 2.2. Then we fix such a cell C, and bound (in Lemma 2.4) the number of sub-simplices
of Ξ in C that have this property. We first prove the following geometric property:
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Lemma 2.2 Let W be a trihedral wedge with apex a, let h1, h2 be two planes, whose intersec-

tion line crosses W . For i = 1, 2, denote by h+
i the halfspace bounded by hi and containing

a, and by h−
i the complementary halfspace. Then at least one of the wedges C = h+

1 ∩ h−
2 ,

C ′ = h−
1 ∩ h+

2 is crossed by at most two facets of W .

Proof: Project everything onto some plane h0 orthogonal to both h1, h2, and denote the
projection of object u by u0. The line ` = h1 ∩ h2 projects to a point `0, and h0

1, h
0
2 are

two lines passing through `0 and partitioning h0 into four quadrants, so that one of them,
Q0, contains a0, and the two quadrants Q,Q′ adjacent to Q0 are the projections of C, C ′,
respectively.

Let F1, F2, F3 be the facets of W , and let ei denote the edge incident to Fi and Fi+1, for
i = 1, 2, 3 (where e3 is incident to F3 and F1, and we also denote it by e0). The edges ei project
to three respective rays e0

i that emanate from a0. Note that, due to the assumption that `
crosses W , `0 must be contained in the projection of W . We next consider the following two
possibilities:

(a) e0
1, e

0
2, e

0
3 are contained in a common halfplane, bounded by a line λ through a0. Assume,

without loss of generality, that e0
2 lies between e0

1 and e0
3. Then F 0

1 and F 0
2 are openly disjoint,

so at least one of them, say F 0
1 , does not contain `0; see Figure 2(a). In this case the ray ρ from

a0 through `0 is disjoint from F 0
1 (except for its apex). We next claim that F 0

1 lies fully in one
of the halfplanes bounded by (the line containing) ρ. It will then easily follow that F 0

1 cannot
meet both Q and Q′, because each of them is fully contained on a different side of the line
containing ρ. Indeed, if the ray opposite to ρ is contained in F 0

1 , then it implies that `0 and
F 0

1 lie on different sides of λ, but then `0 is disjoint from the projection of W , contradicting
our assumption.

(b) e0
1, e

0
2, e

0
3 are not contained in a common halfplane. In this case, all three projections F 0

1 ,
F 0

2 , F 0
3 are openly disjoint and cover h0, so `0 is contained in exactly one of them, say F 0

2 . See
Figure 2(b). The line λ through a0 and `0 fully contains one of the two other facets, say F 0

3 ,
on one side. As in (a), each of the quadrants Q, Q′ lies fully on one (distinct) side of this line.
Hence, one of these quadrants cannot meet F 0

3 , a contradiction that completes the proof. 2

Lemma 2.3 Let T be an arbitrary tetrahedron. The overall number of cells C of A(R), for

which at least three facets of T meet C, each as a long facet in C, is O(r log r).

Proof: Let F1, F2, F3 be a triple of facets of T , let W be the trihedral wedge induced by these
facets, and let a denote its apex (which is a vertex of T ). We show below that the overall
number of cells C of A(R), for which all three facets of W meet C, each as a long facet in
C, is O(r log r) (note that if Fi is long in C then the extended facet of W is also long). By
repeating this argument for each triple of facets of T , the lemma follows.

Let H0 denote the set of all the planes in R that intersect W . Each such plane intersects
W in either a wedge or a triangle (which might be unbounded). We first dispose of all planes
that intersect W in a wedge. Each such plane h is disjoint from one of the facets of W , and
thus one of the halfspaces that it induces, say, the positive side h+ of h, meets only two facets
of W . Thus all the cells of A(R) under consideration are contained in h−. Hence all these
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Figure 3: (a) The cross section of a cell of A(H) on F1, and the pair of lines `1, `2 that it charges. (b)
The vertices v1,2 and v3,4 cannot both be edges of G, because the polygon P3,4 (partially highlighted) is
fully contained in the wedge spanned by the respective planes containing `1, `2 (and opposite to the wedge
that contains P1,2), which meets only two facets of W .

cells lie in the convex polyhedron K, which is the intersection of the respective halfspaces h−

induced by the above “good” planes h.

Let H denote the set of “bad” planes in H0; each of them intersects W in a (possibly
unbounded) triangle. Let C denote the collection of all cells of A(H) that meet all three facets
of W but do not meet any edge of W . Fix a facet F1 of W , form the intersections C∩F1, over all
cells C ∈ C, and denote by C1 the resulting collection of polygons. Note that C1 is a collection
of cells of the 2-dimensional arrangement, within the plane hF1

containing F1, of the set H1 of
the intersection lines between the planes of H and hF1

. The number of unbounded polygons
in C1 is thus O(|H|) = O(r log r), so we focus on the bounded elements of this collection. Fix
such a polygon P , and let v be its vertex which is the most counterclockwise as seen from the
apex a (from some fixed side of hF1

). Denote the two intersection lines that are incident to
v and bound P by `1, `2, where `1 separates P and a within hF1

, and `2 does not separate
them; see Figure 3(a). We then charge P to the pair (`1, `2); clearly, the charge is unique (the
two respective planes h1, h2, which intersect hF1

in `1, `2, can intersect only once on F1; their
intersection line may meet at most one additional facet of W ).

Let G be the graph whose vertices are the intersection lines ` ≡ h ∩ hF1
, for h ∈ H, and

whose edges are all the charged pairs (`1, `2) just defined. We claim that G is planar. It will
then follow that the number of edges of G is at most 3|H| − 6 = O(r log r), which thus also
bounds the number of cells of A(H) that meet all three facets of W . Any such cell C induces
at most one cell of A(R) that can touch all three facets of W , namely the intersection C ∩K.
Hence the number of such cells of A(R) is also O(r log r).

To establish the claim, assume, without loss of generality, that a is the origin in hF1
, and

apply the standard duality transform that maps points (u, v) to the respective lines ux+vy+1 =
0 and vice versa (where lines through a are ignored). This duality maps the lines ` in R1 to
points `∗, and each of the above pairs (`1, `2) is mapped to the segment connecting the points
`∗1, `∗2 dual to the respective lines `1, `2. By construction, any point q within the polygon P ∈ C1
which is represented by (`1, `2), is mapped to a line q∗ that separates the origin o and `∗1, and
has `∗2 on the same side as the origin. That is, q∗ intersects the segment `∗1`

∗
2. Conversely, for

any line q∗ that separates `∗1 and `∗2 as above, its primal point q must lie in the wedge between
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`1 and `2 that contains P . Moreover, if q∗ separates `∗1 and `∗2 in the opposite way, q lies in the
opposite wedge between `1 and `2.

The collection of dual segments, as constructed above, defines a straight-line embedding of
G in the dual plane, and we claim that this drawing is crossing-free. Indeed, suppose to the
contrary that two edges `∗1`

∗
2, `∗3`

∗
4 of the drawing cross each other. The preceding discussion

then implies that, back in the primal plane hF1
, each of the resulting vertices v1,2 = `1 ∩ `2,

v3,4 = `3 ∩ `4 lies in the double wedge of the other vertex that does not contain a. Denote
by P1,2 (resp., P3,4) the polygon of C1 whose most counterclockwise vertex is v1,2 (resp., v3,4).
In particular, one of these vertices, say v1,2 lies clockwise to the other vertex v3,4, in which
case v1,2 must lie in the wedge of `3, `4 that contains P3,4, and v3,4 must lie in the wedge of
`1, `2 opposite to the one containing P1,2. Let C1,2 (resp., C3,4) denote the cell of A(H) that
contains P1,2 (resp., P3,4); also, for i = 1, . . . , 4, let hi denote the plane of H containing `i.
Then, since C1,2 meets all three facets of W , it follows by Lemma 2.2 that the wedge spanned
by h1, h2, and opposite to the wedge containing P1,2 (and C1,2), meets only two facets of W ,
but then C3,4 (which is clearly contained in this wedge, as all these polygons are disjoint in
their interiors) cannot meet all three facets of W , contrary to assumption; see Figure 3(b).
This contradiction implies that G is planar, and this, as argued above, implies the assertion of
the lemma. 2

Remark: As already noted, Lemma 2.3 is fairly general, and makes no assumption about
fatness of T . In fact, we believe that in certain circumstances it might also be generalized to
situations where T is the boundary of a non-polyhedral convex shape. In this case, the assertion
would be that the number of cells of A(R) that touch at least three pairwise disjoint connected
sub-regions on T is O(r log r) (perhaps with some additional restrictions on these sub-regions,
or with a larger number of sub-regions). We consider the lemma to be of independent interest,
and believe that it will find additional applications in related problems.

Lemma 2.4 Let T ∈ T be a fixed tetrahedron, and let C be a cell of A(R) that meets at least

three facets of T , but not any vertex of T . Then the number of simplicial subcells ∆ of C that

meet at least three facets of T , each as a long facet in ∆, is O(log r).

Proof: As in Lemma 2.3, it is sufficient to assume that T is a trihedral wedge, and to show
that the number of simplicial subcells ∆ of C that meet all three facets of T , each as a long
facet in ∆, is O(log r).

We first claim that if all the three facets F1, F2, F3 of T are long in ∆, there must be one
(triangular) facet F∆ of ∆ that meets all these facets. This easily follows from the fact that
each of these facets intersects ∆ in either a triangle or a quadrilateral, which yields at least 9
intersections between facets of T and facets of ∆. Since ∆ has four facets, at least one of them
must meet all three facets of T , as claimed. In addition, each of F1, F2, F3 intersects F∆ in a
distinct pair of edges, as is easily verified; see Figure 4.

Let Ci denote the convex polytope obtained from C after i − 1 steps of the Dobkin-
Kirkpatrick hierarchical decomposition, for i ≥ 1 (see [10] and earlier in this section). Recall
that a simplicial subcell ∆ is said to be generated at step i if it has a vertex v that is removed
from Ci; that is, v belongs to the independent set of vertices of Ci collected at the i-th step.

9



F2

F3

F∆

F1

Figure 4: One facet F∆ of ∆ meets all three facets of T , in the depicted manner.

When v and its adjacent edges and facets are removed, they leave a hole in Ci. The convex
hull of the other vertices of that hole is constructed, and its (triangular) facets are connected
to v to form O(1) simplices that fill up the corresponding gap between Ci and Ci+1, and ∆
is one of these simplices. Note that the three other vertices of ∆ belong to Ci+1, and that all
three edges of ∆ incident to v lie on the boundary of Ci. See Figure 1.

In what follows, we fix a decomposition step i, and show that there are only O(1) simplices
∆ of C that are generated at step i and have the properties in the lemma. The discussion
above implies that for each such simplex ∆, the corresponding facet F∆ appears either on the
boundary of Ci, or on the boundary of Ci+1, or as an “internal” facet of a hole of Ci that is
connected to the peeled-off vertex v of ∆, as described above.

Let u denote the apex of T . By assumption, u /∈ C. Let F (i) denote the collection of all
facets F∆ of simplicial subcells ∆ of C that are generated at step i, such that F∆ meets all
three facets of T and such that these facets are all long in ∆. To simplify the analysis, we first
prune away facets from F (i), until F (i) has the property that, for each peeled-off vertex v of
Ci there is at most one simplex ∆ incident to v, generated at step i, and contributing a facet
to F (i). By construction, this reduces the size of F (i) by at most a constant factor.

We partition F (i) into the following seven subcollections:

• F
(i)
1 , which consists of all facets of Ci in F (i) that are visible from u (regarding Ci itself

as opaque); that is, the relative interiors of all the segments connecting u to points on any

F∆ ∈ F
(i)
1 do not meet ∂Ci;

• F
(i)
2 , which consists of all facets of Ci in F (i) that are invisible from u; that is, all the segments

connecting u to any F∆ ∈ F
(i)
2 cross ∂Ci (once) before reaching F∆;

• F
(i)
3 , which consists of all facets of Ci+1 in F (i) that are not facets of Ci and are visible from

u (regarding Ci+1 itself as opaque); that is, the relative interiors of all the segments connecting

u to points on any F∆ ∈ F
(i)
3 do not meet ∂Ci+1; any such segment crosses ∂Ci (once) before

reaching F∆;

• F
(i)
4 , which consists of all facets of Ci+1 in F (i) that are not facets of Ci and are invisible

from u; that is, all the segments connecting u to any F∆ ∈ F
(i)
4 cross ∂Ci+1 (once) before

reaching F∆; as in the previous case, any such segment crosses ∂Ci (once) before reaching F∆;
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Ci+1

ρ

u

F∆

q

F∆′
q′

u

ρ

ρ′

F∆
q

Ci+1
q′

F∆′

(a) (b)

Figure 5: (a) The facets F∆, F∆′

are internal to two distinct holes generated at step i, and are fully

visible from u (with Ci+1 opaque). The ray ρ that hits F∆ at q and then F∆′

at q′ must cross ∂Ci at least
twice between q and q′, which is impossible. (b) Illustrating the proof that no ray from u can cross two

distinct facets in F
(i)
7 .

• F
(i)
5 , which consists of all facets in F (i) that are internal to the holes (components of Ci\Ci+1)

generated at step i, and are fully visible from u (in the presence of Ci+1 as an opaque object);

• F
(i)
6 , same as F

(i)
5 , but consisting of facets that are fully invisible from u (fully occluded by

Ci+1); and

• F
(i)
7 , same as F

(i)
5 , F∆

6 , but consisting of facets that are partially visible from u (partially
occluded by Ci+1).

We next claim that each subset F
(i)
k has at most one facet. This implies that F (i) has

constant size, which, since the decomposition has only O(log r) steps, implies the bound stated
in the lemma. We first need the following easy technical claim.

Claim: If we project the triangles of F
(i)
k , for any fixed 1 ≤ k ≤ 7, centrally from u, the

projected triangles are pairwise disjoint.

Proof: The claim easily follows for F
(i)
1 , F

(i)
2 , F

(i)
3 , F

(i)
4 by definition and by the convex-

ity of Ci, Ci+1. Consider F
(i)
5 , and assume to the contrary that it contains two facets F∆, F∆′

,

such that a ray ρ emanating from u meets both of them, hitting, say, first F∆ and then F∆′

at two respective points q, q′. By the initial pruning process, F∆ and F∆′
lie in different holes

of Ci \ Ci+1. By definition of F
(i)
5 , qq′ is disjoint from Ci+1, and is fully contained in Ci, by

convexity. This, however, is impossible, because qq′ has to cross from some hole of Ci \ Ci+1

to a different one, and the boundary of such a hole is contained in ∂Ci ∪ ∂Ci+1, and thus qq′

must cross ∂Ci (at least twice), a contradiction; see Figure 5(a) for an illustration.

The case of F
(i)
6 is argued similarly. Here again qq′ is disjoint from Ci+1, because uq must

have already crossed ∂Ci+1 twice. Finally, for F
(i)
7 , we argue as follows. As above, the segment

qq′ is fully contained in Ci and crosses from one hole of Ci \ Ci+1 to another hole, so it must
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τ

l2

l1

l3

Figure 6: The centrally projected facets of some F
(i)
k , and the central projections l1, l2, l3 of the three

respective facets F1, F2, F3 of T . The triangle τ is the unique triangle that meets all three edges l1, l2, l3.

cross ∂Ci+1 twice. Since F∆ is partially occluded by Ci+1, there exists another ray ρ′ from u
that first crosses ∂Ci+1 and then hits F∆. This, however, is impossible, since it would have
implied that F∆ and ∂Ci+1 cross each other; this is proved by continuity, moving ρ towards
ρ′, and is illustrated in Figure 5(b). 2

Let us now fix one of the subsets F
(i)
k . The central projection of ∂T from u is a triangle

whose three edges l1, l2, l3 are the “head-on” projections of the respective facets F1, F2, F3.

Each facet F∆ ∈ F
(i)
k projects to a triangle that meets all three edges l1, l2, l3. However, since

the projections of the facets F∆ of F
(i)
k are pairwise disjoint, at most one of them can touch

all three edges l1, l2, l3, as is easily checked; see Figure 6.

As argued above, this completes the proof of the lemma. 2

We have thus established the following theorem:

Theorem 2.5 For any tetrahedron T , the overall number of simplicial cells ∆ of Ξ that meet

at least three facets of T is O(r log2 r).

Proof: Lemma 2.3 shows that only O(r log r) cells C of A(R) meet three facets of T . Of those,
at most four contain an apex of T , and they have a total of O(r log r) sub-simplices. For any
other cell, only O(log r) of its simplices have this property, as shown in Lemma 2.4. 2

Remark: With some additional care, the proof of Lemma 2.4 can be extended to the case
where C contains an apex of T . However, as just argued, the validity of Theorem 2.5 does not
require this stronger property.

2.1 The overall recursive analysis

We now apply the following recursive scheme (a similar scheme has been presented in [15]).
Each step of the analysis involves a simplex ∆0, which, in the initial step, is the entire 3-space,
(or, rather, a sufficiently large simplex that contains all the vertices in the arrangement of the
tetrahedra), and in further recursive steps is a cell of a cutting of some larger simplex, from
the preceding recursive level.

We construct a (1/r)-cutting Ξ of the arrangement of the planes that support facets of the
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tetrahedra that cross ∆0, using the Dobkin-Kirkpatrick hierarchical decomposition of each cell
of the corresponding arrangement, as above. Let ∆ be a simplicial cell of Ξ and let D∆ (resp.,
T ∆) denote the set of D-tetrahedra (resp., T-tetrahedra) within ∆. Put ND = N∆

D := |D∆|,
and NT = N∆

T := |T ∆|.

During each step of the recursion, after partitioning ∆0 into smaller subcells ∆, we imme-
diately dispose of any new DDD and DDT vertices within each subcell ∆, and show that the
overall number of these vertices is O

(

(ND + NT )NT
1+ε

)

, for any ε > 0. These vertices are
not considered during any further recursive substep, but only the remaining DTT and TTT
vertices.

The recursion bottoms out when NT ≤ c, for some absolute constant c ≥ 3. In this case we
bound the number of the remaining inner DTT and TTT vertices of the union in a brute-force
manner, and thus obtain an overall bound of O(NT

2ND + NT
3) = O(ND + 1) on the number

of these vertices.

To bound the number of DDD vertices in ∆, we replace each tetrahedron in D∆ by the
equivalent halfspace or dihedral wedge, and face the problem of bounding the overall number
of vertices appearing on the boundary of the union of ND halfspaces and α′-fat dihedral wedges
(where, as argued earlier, α′ > 0 is a constant that depends only on α). As shown in [23],
the number of such vertices is O(N2+ε

D ), for any ε > 0, where the constant of proportionality
depends on ε and α. In an additional major step of the analysis, we derive, in Section 2.2
below, a similar bound on the number of DDT-vertices.

The recursive scheme. With all this machinery at hand, we can now proceed to the proof
of Theorem 2.1. The analysis begins with the initial cell ∆0, with N∆0

T = n, N∆0

D = 0, and
recursively subdivides space, using the preceding kind of (1/r)-cuttings, for some sufficiently
large constant parameter r.

For simplicity, write in what follows n = N∆0

T . Theorem 2.5 implies that there are only
O(rn log2 r) crossings between the cells of Ξ and their T-tetrahedra. It thus follows that, for
any r2 log2 r ≤ s ≤ M = O(r3 log3 r), where M is the size of Ξ, the number of cells in Ξ that

are crossed by at least
rn log2 r

s
T-tetrahedra is at most O(s). (The case s < r2 log2 r cannot

arise, since each cell of Ξ is intersected by at most n
r tetrahedra of T .) We partition the set

of cells of Ξ into at most log
(

M
r2 log2 r

)

= Θ(log r) subsets, so that the i-th subset Ξi contains

O(2ir2 log2 r) cells ∆ of Ξ, each of which satisfies

n

2ir
≤ N∆

T = |T ∆| ≤
2n

2ir
,

for i = 1, . . . , log
(

M
r2 log2 r

)

. Note that |T ∆| = O
(

n
r2

)

for each of the O(r3 log3 r) cells ∆ in the

last subset. For the number of D-tetrahedra in any cell ∆, we use the bound N∆
D = |D∆| ≤ n

r ,
for each ∆ ∈ Ξ.

As in [15], we recurse in each cell ∆ of Ξ, where the goal of the recursive step at ∆ is to
obtain an upper bound for the number of DTT and TTT vertices in ∆ (including vertices of
these kinds that appear on ∂∆). Thus, before entering the recursion, we need to bound the
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number of new DDD and DDT vertices within ∆ (or on its boundary). These are vertices v
that were DTT or TTT vertices at the parent cell ∆′ of ∆, but have become DDT or DDD
vertices at ∆. Put N ′

T = N∆′

T and N ′
D = N∆′

D . Partition D∆′
into k = dN ′

D/N ′
T e subsets

D1, . . . ,Dk, each consisting of at most N ′
T D-tetrahedra. The preceding observations imply

that any new DDD or DDT vertex in ∆ must be a DDD or a DDT vertex of the union of the
wedges and tetrahedra of Dj ∪T

∆′
, clipped to ∆, for some j = 1, . . . , k (because it was a DTT

or a TTT-vertex in ∆′, and so involves at most one wedge of D∆′
). By the results of [23] and

of Section 2.2, the number of such vertices, for any fixed j, is thus O(N ′
T

2+ε), for any ε > 0.
Hence, summing over j = 1, . . . , k, the overall number of new DDD and DDT vertices in ∆ is
O(kN ′

T
2+ε) = O((N ′

D + N ′
T )N ′

T
1+ε), for any ε > 0. Repeating the analysis to each subcell ∆

of ∆′, and recalling that r is a constant, the overall number of new DDD and DDT vertices
within the children of ∆′ is

O(r3 log3 r · (N ′
D + N ′

T )N ′
T

1+ε
) = O((N ′

D + N ′
T )N ′

T
1+ε

),

for any ε > 0.

Let U(NT , ND) denote the maximum number of vertices that appear on the boundary of
the union at a recursive step involving up to NT T-tetrahedra and ND D-tetrahedra (excluding,
as above, any old DDD and DDT vertices, which have become such vertices at proper ancestors
of the current node). Then U satisfies the following recurrence:

U(NT , ND) ≤



























O
(

(ND + NT )N1+ε
T

)

+
∑

log
“

M

r2 log2 r

”

i=0 O(2ir2 log2 r)U
(

2NT

2ir
, NT +ND

r

)

, if NT > c,

O(ND + 1), if NT ≤ c,

where c ≥ 3 is an appropriate constant, and where the constant of proportionality in the
first expression depends on r. It is straightforward to verify (see also [15]), that the solution
of this recurrence is U(NT , ND) = O(NT (NT + ND)1+ε), for any ε > 0, with a constant of
proportionality that depends on ε and on α.

Substituting the initial values NT = n, ND = 0, we conclude that the overall combinatorial
complexity of the union is O(n2+ε), for any ε > 0, as asserted. This completes the proof of
Theorem 2.1. modulo the still missing analysis of the number of DDT-vertices.

Since a cube in 3-space can be partitioned into a constant number of α-fat tetrahedra, for
some appropriate constant parameter α > 0, we obtain the following extension of the bound
in [23]:

Corollary 2.6 The complexity of the union of n arbitrarily oriented cubes in R
3, of arbitrary

side lengths, is O(n2+ε), for any ε > 0, where the constant of proportionality depends on ε.

Similar results can be obtained for any polyhedral objects that can be decomposed into, or
covered by, a total of n α-fat tetrahedra.

A similar, almost verbatim, analysis yields the bound O(n2+ε), for any ε > 0, for the
complexity of the union of n α-fat trihedral wedges. Another way of handling this case is by
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reducing it to the case of fat tetrahedra, as follows. Let W be an α-fat trihedral wedge. If
α > π/2, we cover W by O(1) α′-trihedral wedges W ′, with α′ ≤ π/2. We then truncate each
of the truncated (or original) wedges W ′ by a plane that passes through a triple of points a,
b, c, each located on a different edge of W ′, at equal and sufficiently large distances from the
apex u of W ′ (in the sense that the truncated wedge contains all the vertices of the union
that appear on ∂W ′) . We thus replace each trihedral wedge W by a set of O(1) (sufficiently
large) α′′-fat tetrahedra, for some absolute constant α′′ > 0 that depends on α, and apply
Theorem 2.1 to the resulting collection, obtaining:

Corollary 2.7 The complexity of the union of n α-fat trihedral wedges is O(n2+ε), for any

ε > 0, where the constant of proportionality depends on ε and α.

Our analysis can easily be extended to the problem of bounding the complexity of the union
of n α-fat arbitrarily oriented triangular prisms, with cross-sections of arbitrary sizes. In this
case, we apply a similar decomposition scheme as in the case of α-fat tetrahedra, exploiting
similar properties to those stated in Lemmas 2.3 and 2.4 for the case where T is a triangular
prism (rather than a trihedral wedge) — simply think of a prism as a wedge with apex at
infinity. A lower bound construction that yields Ω(n2α(n)) vertices on the boundary of the
union can be supplied using similar techniques as in the original problem. We thus obtain:

Corollary 2.8 The complexity of the union of n arbitrarily oriented α-fat triangular prisms,

with cross-sections of arbitrary sizes, in R
3, is O(n2+ε), for any ε > 0, where the constant of

proportionality depends on ε and α. The bound is almost tight in the worst case.

Similar results can be obtained for any polyhedral objects that can be decomposed into, or
covered by a total of n α-fat triangular prisms.

2.2 The Number of DDT-Vertices

In this section we provide the missing ingredient of the preceding analysis, showing that the
number of DDT-vertices is nearly-quadratic.

We thus have, at each step of the analysis, a simplex ∆, a set D = D∆ of ND α′-fat dihedral
wedges, and a set T = T ∆ of NT α-fat tetrahedra2. Our goal is to obtain a nearly-quadratic
bound on the number of DDT vertices on the boundary of the union of D ∪ T within ∆. We
may assume that NT ≤ ND. Otherwise, we apply the partitioning trick used in the preceding
analysis. That is, we partition T arbitrarily into k = dNT /NDe subsets T1, . . . , Tk, of size
at most ND each, establish a bound O(N2+ε

D ) on the number of DDT-vertices on each union
D ∪ Ti, i = 1, . . . , k, and add up the bounds, to obtain an overall bound of O(NT N1+ε

D ). In
other words, the goal is to establish the upper bound O((NT + ND)N1+ε

D ) on the number of
DDT-vertices.

2Some of these tetrahedra may be trihedral wedges, in case only three of the facets of a tetrahedron T appear
in ∆. However, to simplify the presentation, we will refer in what follows to all the elements of T as tetrahedra.
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Let L denote the set of the xy-projections of the edges (lines) of the wedges in D. We
construct a (1/r)-cutting Ξ of the planar arrangement A(L), by taking a random sample
R of O(r log r) lines of L, for some sufficiently large constant parameter r, constructing the
planar arrangement A(R), and triangulating each of its cells using the two-dimensional version
of the Dobkin-Kirkpatrick hierarchical decomposition of a convex polygon [10]. We obtain
O(r2 log2 r) triangles, and we may assume that the sample R is such that each triangle is
crossed by at most ND/r lines of L (this indeed happens with high probability). We lift each
cell of A(R), and each of its sub-triangles, into a vertical prism (or rather its portion within the
current simplex ∆ ). Each triangular prism σ is crossed by at most ND/r edges of the wedges
of D. Any other wedge either misses σ altogether, or each of its bounding halfplanes that
meets σ crosses σ completely, cutting it into two disconnected pieces (as if it were a plane).

We now claim that, given a fixed tetrahedron T ∈ T , the overall number of vertical tri-
angular prisms σ, erected over the cells of Ξ, such that σ meets at least three facets of T , is
O(r log2 r). Indeed, a facet F of T whose bounding edges do not meet σ must intersect σ in a
triangle whose boundary is contained in ∂σ. Since T ∩ σ is convex, there can be at most two
such facets. Hence σ meets at least one of the edges e of T . That is, the projection e∗ of e
crosses the triangular cell of Ξ which is the base of σ. However, applying a simplified version
of the argument used above for 3-dimensional arrangements, e∗ can cross only O(r log r) cells
of A(R), and only O(log r) triangles within each cell, from which the claim follows.

Summing up, we have so far O(r2 log2 r) subproblems, each defined within a triangular
prism σ, and involves the following sets of objects: (i) The set Dσ of dihedral wedges of D
whose edges cross σ; (ii) the set Pσ of dihedral wedges of D that cross σ but whose edges do
not cross σ (we can think of each member of P σ as either a halfspace or a region enclosed
between a pair of planes crossing σ); (iii) the set T σ of tetrahedra such that at least three of
their facets cross σ; and (iv) the set Wσ of tetrahedra that cross σ, and at most two of their
facets cross σ. Put NDσ := |Dσ|, NPσ := |Pσ |, NT σ := |T σ|, and NWσ := |Wσ |. As just
argued,

∑

σ NT σ = O(NT · r log2 r).

The goal is to bound the number of inner vertices v, within σ, of the unionDσ∪Pσ∪T σ∪Wσ,
such that v is incident to the boundaries of two objects in Dσ∪Pσ, and of one object in T σ∪Wσ.
We classify each inner vertex v in σ of this kind as either DDW, if v is incident to the boundaries
of two objects in Dσ and one object in Wσ, DPW, if the three objects whose boundaries are
incident to v are in Dσ, Pσ , and Wσ, respectively, PPW, if two of these objects are in Pσ and
one in Wσ, DDT, if two of these objects are in Dσ and one in T σ, DPT, if the objects are in
Dσ, Pσ , and T σ, respectively, or PPT, if two of the objects are in Pσ and one in T σ.

Since each vertex of type DDW, DPW, or PPW lies on the boundary of the union of α′-fat
dihedral wedges (or halfspaces), it follows, by applying the results of [23], that the number of
such vertices is O((NDσ + NPσ + NWσ)2+ε), for any ε > 0. Summing over all prisms σ, and
using the facts that r is constant and that NT ≤ ND, we obtain the overall bound O(N2+ε

D ),
for any ε > 0. For larger values of NT , using the partitioning trick described above, we get the
bound O(NT N1+ε

D ). Together, we get the bound O((ND + NT )N1+ε
D ), for any ε > 0. We next

show how to bound the number of the remaining types of vertices.

Assume for the moment that we have managed to establish a nearly-quadratic bound on
the number of PPT-vertices and DPT-vertices (which will be accomplished in the next two
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steps of the analysis). Specifically, using the same partition trick as above, the bounds that we
will actually obtain are O((ND +NT )N1+ε

D ), for any ε > 0. Then we are only left with the task
of bounding the number of DDT-vertices within σ, which we do recursively. To recap, there
are O(r2 log2 r) such recursive subproblems, over all triangular prisms σ, in each of which we
apply the nearly-quadratic bound on the number of vertices of all the remaining types, and
continue to bound the number of DDT-vertices in a recursive manner.

The recursion bottoms out when either NT ≤ c or ND ≤ c, for some absolute constant
c ≥ 3. We then bound the number of the remaining vertices of the union under consideration
(that is, inner vertices whose type is still DDT) in a brute-force manner, and thus obtain an
overall bound of O(ND

2NT ) = O(N2
D + NT ) on the number of these vertices.

Let U1(NT , ND) denote the maximum number of DDT-vertices that appear on the bound-
ary of the union at a recursive step involving ND dihedral wedges and NT tetrahedra. Then
U1 satisfies the recurrence:

U1(NT , ND) ≤























O
(

(ND + NT )N1+ε
D

)

+
∑

log
“

M

r log2 r

”

i=0 O(2ir log2 r)U1

(

2NT

2i , ND

r

)

, if min{NT , ND} > c,

O(N2
D), if NT ≤ c,

O(NT ), if ND ≤ c,

(1)

where c ≥ 3 is an appropriate constant, M = O(r2 log2 r) is the overall number of prisms
in the decomposition, and where the constants of proportionality in the non-recursive terms
depend on r (and on ε, α). This follows from the fact that the number of prisms σ with
NT

2i ≤ NT σ < 2NT

2i is at most O(2ir log2 r). As above, it is easy to verify that the solution

of this recurrence is U1(NT , ND) = O((ND + NT )N1+ε
D ), for any ε > 0, with a constant of

proportionality that depends on ε and on α.

The number of PPT-vertices. To bound the number of PPT vertices, we launch a new
recursive analysis, which, as the analysis in Section 2.1, is based on cuttings in arrangements of
planes in 3-space. Recycling for the moment some of the previous notations, we have, at each
step, a subproblem within some simplex ∆′, involving a set P = P∆′

of pairs of planes, at least
one of which crosses ∆′, and a set T = T ∆′

of tetrahedra, so that, for each T ∈ T , at least
three of its facets cross ∆′. Put NP = |P∆′

|, NT = |T ∆′
|. Initially, ∆′ is the (clipped) vertical

triangular prism σ of some specific recursive instance of the above recursion that handles DDT
vertices.

We first draw a random sample R ⊂ P∆′
of O(r log r) pairs of planes, for some sufficiently

large constant parameter r, and construct the sampled arrangement A(R) within ∆′. We then
collect only the cells in the complement of the union of the wedges enclosed between each sam-
pled pair of planes (within ∆′). Since the wedges are all α′-fat, the analysis of [23] implies that
the overall number of these cells is O(r2+ε), for any ε > 0. Furthermore, since R is a collection
of planes within ∆′, each cell that we consider is a convex (possibly unbounded) polyhedron.
We next triangulate each of these cells C using the Dobkin-Kirkpatrick hierarchical decompo-
sition of convex polytopes (see the beginning of this section and [10]), and obtain an overall
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number of O(r2+ε) simplicial subcells. Using similar considerations as in the original problem,
we may assume that each simplicial cell ∆ of the resulting decomposition is crossed by at most
NP /r wedge boundaries (pairs of planes) in P∆′

, and each edge of any tetrahedron in T ∆′

crosses at most O(r log2 r) cells. In addition, Theorem 2.5 implies that the overall number of
simplicial cells, each of which meets at least three facets of a fixed tetrahedron T ∈ T ∆′

, is
O(r log2 r).

Note that, in this problem, the decomposition generates only two types of vertices, PPW
and PPT. We thus apply the above decomposition recursively, where we dispose immediately
(i.e., derive a nearly-quadratic bound on the number) of all PPW-vertices within each cell ∆ of
the decomposition, and bound the number of the (remaining) PPT-vertices recursively. At the
bottom of the recurrence we bound the number of PPT-vertices by brute force, as above. An
appropriate variant of the preceding analysis leads to a recurrence relationship similar to (1),
with the difference that (i) NP replaces ND, and (ii) the upper bound on M is O(r2+ε), rather
than O(r2 log2 r); this, however, has no effect on the asymptotic solution of the recurrence.
That is, we obtain that the maximum number of PPT-vertices that appear on the boundary
of the union at a recursive step, involving NP α′-fat dihedral wedges (which behave like pairs
of planes) and NT α-fat tetrahedra, is O((NP + NT )N1+ε

P ), for any ε > 0.

The number of DPT-vertices. Here too we bound the number of DPT-vertices using a
separate recursive analysis, where, at each step, we have a subproblem within some simplex
∆′, involving a set D = D∆′

of dihedral wedges whose boundary edges cross ∆′, a set P = P∆′

of pairs of planes, at least one of which crosses ∆′, and a set T = T ∆′
of tetrahedra, so that,

for each T ∈ T , at least three of its facets cross ∆′. Put ND = |D∆′
|, NP = |P∆′

|, and
NT = |T ∆′

|. Initially, ∆′ is a (clipped) vertical triangular prism, as above.

We choose some sufficiently large constant parameter r, and draw three random samples,
each of which consists of O(r log r) planes, which contain the facets of the wedges of D∆′

, the
facets of the wedges of P∆′

, and the facets of the tetrahedra of T ∆′
, respectively. Let R denote

the union of the three samples. We form the arrangement A(R), and triangulate each of its
cells, using, as usual, the Dobkin-Kirkpatrick hierarchical decomposition.

We obtain O(r3 log3 r) simplicial cells in the decomposition. Assuming that the drawn
samples are good, we may assume that each of these cells ∆ is crossed by at most ND/r
dihedral wedges of D∆′

, at most NP /r dihedral wedges (bounded by the pairs of planes) of
P∆′

, and at most NT /r tetrahedra of T ∆′
. Each edge of any tetrahedron in T ∆′

crosses at
most O(r log2 r) cells, and the overall number of simplicial cells, each of which meets at least
three facets of a fixed tetrahedron T ∈ T ∆′

, is O(r log2 r). Each edge ` of a dihedral wedge of
D∆′

crosses only O(r log2 r) cells, so the overall number of wedge-cell crossings, for which the
edge of the wedge appears in the cell, is O(ND · r log2 r). In any other crossing of a cell ∆ by
a dihedral wedge, the wedge behaves like a pair of planes, at least one of which crosses ∆.

The decomposition therefore generates, within each simplicial cell ∆, vertices of type PPW,
DPW, PPT, or DPT. The number of vertices of the first three types is nearly-quadratic, and
the number of DPT-vertices, within each cell ∆, is bounded recursively. As in the original
recursive scheme, presented in Section 2.1, at each step of the recursion, we only need to bound
the number of new PPW, DPW, and PPT vertices within ∆. Each such vertex is incident to
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the boundary of a dihedral wedge in D∆′
, a plane in P∆′

, and a tetrahedron in T ∆′
. By the

preceding analysis, the number of such vertices is nearly-quadratic in ND + NP + NT . We can
refine this bound using the partition trick. That is, suppose, without loss of generality, that
ND ≤ NP ≤ NT . Partition T ∆′

into dNT /NP e sets, each of size at most NP . Bound separately
the number of DPT vertices of the above kind for D∆′

, P∆′
, and each subset of T ∆′

. The
bound is O(N2+ε

P ), for any ε > 0, within each of these subproblems, for a total of

O

(

N2+ε
P ·

NT

NP

)

= O(NT N1+ε
P ),

for any ε > 0. Considering also the other symmetric cases, we have thus shown that the number
of new PPW, DPW, and PPT vertices is O

(

(NDNP + NDNT + NP NT ) ·max{ND,NP ,NT }
1+ε

)

,
for any ε > 0.

We do not have to process in further recursive steps dihedral wedges of D∆′
whose edge

does not meet the current cell ∆, as well as tetrahedra of T ∆′
with at most two facets meeting

∆, since the DPT-vertices that they induce have already been counted.

At the bottom of the recursion (when min{ND,NP ,NT } ≤ c, for some absolute constant
c ≥ 3), we bound the number of the remaining inner DPT-vertices of the union in a brute-force
manner, and thus obtain an overall bound of O(NDNP NT ) = O(NDNP + NDNT + NP NT ) on
the number of these vertices.

Let U2(ND, NP , NT ) denote the maximum number of DPT-vertices that appear on the
boundary of the union at a recursive step within some simplex ∆′, involving a set D∆′

of
ND dihedral wedges, a set P∆′

of NP dihedral wedges (pairs of planes), and a set T ∆′
of NT

tetrahedra. For each i ≥ 1, consider those cells ∆ for which

1

2ir
< max

{

ND∆

ND
,
NT ∆

NT

}

≤
1

2i−1r
.

Since, as argued above,
∑

∆ ND∆ = O(ND ·r log2 r), and
∑

∆ NT ∆ = O(NT ·r log2 r), it follows

that the number of cells ∆, satisfying the above inequalities, is O(2ir2 log2 r). Moreover, all
cells appear in these counts, because, by construction, we have ND∆ ≤ ND/r and NT ∆ ≤ NT /r,
for each cell ∆. Hence, U2 satisfies the following recurrence:

U2(ND, NP , NT ) ≤























O
(

(NDNP + NDNT + NP NT ) ·max{ND, NP , NT }1+ε
)

+

∑
log

“

M

r2 log2 r

”

i=0 O(2ir2 log2 r)U2

(

2ND

2ir
, NP

r
, 2NT

2ir

)

, if min{ND, NP , NT } > c,

O(NDNP + NDNT + NP NT ), if min{ND, NP , NT } ≤ c,

where M = O(r3 log3 r) is the overall number of cells in the decomposition (at the current
recursive step), c ≥ 3 is an appropriate constant, and the non-recursive terms also depend
on r. Again, it is easy to verify that the solution of this recurrence is U2(ND,NP ,NT ) =
O

(

(NDNP + NDNT + NP NT ) ·max{ND,NP ,NT }
1+ε

)

, for any ε > 0, with a constant of pro-
portionality that depends on ε and on α (see also [15] for similar considerations).

This finally completes the analysis, and establishes Theorem 2.1. 2
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3 The Union of α-Fat Triangles in the Plane

Let T be a collection of n α-fat triangles in the plane. In this section we use a simple variant
of our approach to the three dimensional problem, and derive a nearly-linear bound on the
combinatorial complexity of the union of the triangles in T .

We first draw a random sample R of O(r log r) of the lines containing the edges of the tri-
angles in T , for some sufficiently large constant parameter r, and form the arrangement A(R).
We then triangulate each cell of the arrangement, using, e.g., bottom-vertex triangulation.
The number of the resulting simplices is O(r2 log2 r), and, with high probability, each simplex
of the resulting decomposition is crossed by at most n/r edges of the triangles in T . We can
therefore assume that one sample has this property.

Similarly to the original problem, we fix a triangle T ∈ T , and a cell ∆ of the cutting
that it meets, and classify T as being either a W-triangle in ∆, if ∆ meets only one or two
edges of T , or a T-triangle in ∆, if ∆ meets all the three edges of T . As a consequence, each
intersection vertex v of the union boundary that appears in ∆ is classified as being either WW,
if the two edges that are incident to v belong to two respective W-triangles in ∆, WT, if one
of these edges belongs to a W-triangle and the other belongs to a T-triangle, or TT, if both of
these edges belong to two respective T-triangles. (In all three cases, the relevant triangles are
distinct.)

We next observe that, for any triangle T ∈ T , there is only a single triangular cell of the
cutting that meets all three edges of T ; see Lemma 2.4 and Figure 6.

We now apply a recursive scheme, similar to that used in the three-dimensional setup.
Let ∆ be a cell of the cutting and let W∆ (resp., T ∆) denote the set of W-triangles (resp.,
T-triangles) within ∆. Put N∆

W := |W∆|, and N∆
T := |T ∆|. The preceding observation implies

that
∑

∆ N∆
T ≤ NT , where NT is the overall number of triangles.

During each step of the recursion, we immediately dispose of any new WW- and WT-
vertices within each subcell ∆, and continue to bound the number of TT vertices recursively.
The recursion bottoms out when NT ≤ c, for some absolute constant c ≥ 2. In this case the
number of the remaining intersection vertices of the union is O(1).

To bound the number of WW-vertices in ∆, we replace each triangle in W∆ by the equiv-
alent halfplane or wedge, and face the problem of bounding the overall number of vertices
appearing on the boundary of the union of NW halfplanes and α-fat wedges (that is, wedges,
whose angles are all at least α). As shown in [13], the number of such vertices is O(NW ). As
we will shortly show, the number of WT-vertices in ∆ is O

(

(NW + NT )1+ε
)

, for any ε > 0.

Let U1(NT ) denote the maximum number of intersection vertices that appear on the bound-
ary of the union at a recursive step involving NT triangles. For each 1 ≤ i ≤ log (r log2 r), the

number of cells ∆ with NT

r2i < N∆
T ≤

2NT

r2i is at most 2ir (recall that N∆
T ,N∆

W ≤
NT

r always
holds, by construction). Hence U1 satisfies the recurrence:

U1(NT ) ≤











O
(

N1+ε
T

)

+
∑log (M

r )
i=1 2ir · U1

(

NT

r2i−1

)

, if NT > c,

O(1), if NT ≤ c,
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where c ≥ 2 is an appropriate constant, M = O(r2 log2 r) is the overall number of cells in
the cutting, and where the constants of proportionality in the non-recursive terms depend
on r (and on ε, α). Note that we process recursively only the T-triangles, since we bound
the number of WW- and WT-vertices, and then disregard them, before processing the new
recursive step. Esther says: I think that in all the other recursive relationships (from previous ←−
sections) we have to start the summation from i = 1, and not i = 0.

It is easy to verify that the solution of this recurrence is U1(NT ) = O(N1+ε
T ), for any ε > 0,

with a constant of proportionality that depends on ε and on α.

The number of WT-vertices. To complete the analysis, we next establish a near-linear
bound on the number of WT-vertices. The analysis somewhat resembles the upper bound
analysis for the number of PPT-vertices from Section 2.2. We have, at each step, a subproblem
within some simplex ∆′, involving a set W =W∆′

of wedges, whose boundaries cross ∆′, and
a set T = T ∆′

of triangles, so that, for each T ∈ T , all three of its edges cross ∆′. Put
NW = |W∆′

|, NT = |T ∆′
|.

We first draw a random sample R ⊂ W∆′
of O(r log r) wedges, for some sufficiently large

constant parameter r, form and triangulate the arrangement A(R), and collect only the cells
in the complement of the union of these wedges. Since the wedges are all α-fat, it follows by
the analysis of [13] that the overall number of these cells is O(r log r). Arguing as above, we
may assume that each subcell ∆ of the resulting decomposition is crossed by at most NW /r
wedge boundaries in W∆′

, and there is at most one cell that meets all three edges of a fixed
triangle T ∈ T ∆′

.

In this problem, the decomposition generates only two types of vertices that we need to
bound: WW-vertices, which we dispose of immediately, and WT-vertices, which we process
recursively. The recurrence bottoms out when min{NT ,NW } ≤ c, for some constant c ≥ 2; we
then bound the number of the (remaining) WT-vertices, using brute force, by O(NW + NT ).

Let U2(NT , NW ) denote the maximum number of WT-vertices that appear on the boundary

of the union at a recursive step within some simplex ∆′, involving a set W∆′
of NW wedges

and a set T ∆′
of NT triangles. Arguing as above, one can show that U2 satisfies the following

recurrence:

U2(NT , NW ) ≤











O(NW + NT ) +
∑log M

i=1 2i · U2

(

2NT

2i , NW

r

)

, if min{NT , NW } > c,

O(NW + NT ), if min{NT , NW } ≤ c,

where M = O(r log r) is the overall number of cells in the decomposition (at the current
recursive step), c ≥ 2 is an appropriate constant, and the non-recursive terms depend also on
r. Note that in the next recursive step we only need to consider W-triangles that have been
created by the triangles in W∆′

(from the preceding step), and not by the triangles in T ∆′
,

since the W-triangles that they create do not involve WT-vertices. Again, it is easy to verify
that the solution of this recurrence is U2(NT ,NW ) = O

(

(NW + NT )1+ε
)

, for any ε > 0, with
a constant of proportionality that depends on ε and on α.
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(In the preceding analysis, we apply this bound within each of the O(r2 log2 r) cells of
the cutting, and obtain the overall bound O(N1+ε

T ), where NT is now the overall number of
triangles at the current recursive step.)

This completes the analysis,

Concluding remarks and open problems. In this paper we have managed to solve a
problem that has resisted a solution for over a decade. Yet, there is still a remaining small gap
between our upper bound on the complexity of the union of n α-fat tetrahedra and the lower
bound Ω(n2α(n)) (which we conjecture to be the actual upper bound). Closing this gap is a
challenging open problem.

A natural open problem is to extend the new machinery presented in this paper to the
problem of bounding the union of other families of geometric objects in 3-space. One such
problem concerns the union of cylinders (with arbitrary radii); a nearly-quadratic bound is
known only when all the cylinders have equal radii [1]. Another related problem is to obtain a
nearly-quadratic bound on the complexity of the union of n arbitrary α-fat convex objects of
constant description complexity (that is, convex objects c, for which there exist two concentric
balls, B ⊆ c ⊆ B′, such that the ratio between the radii of B′ and B is at most α, for some
fixed α > 1). Weaker goals would be to prove this only for nearly equal objects of this kind,
or obtaining a subcubic bound for the union of such objects of arbitrary sizes.

Finally, it will be interesting to incorporate our new machinery with the proof technique of
Matoušek et al. [20, 21] and Pach and Tardos [24], who studied the problem of bounding the
complexity of the union of fat triangles in the plane, in order to sharpen the upper bound on
this complexity.

Acknowledgments. The authors wish to thank Boris Aronov for useful discussions concern-
ing the problem, which have led to a simplified proof of Lemma 2.3. The authors also wish
to thank Mark de Berg for useful discussions on the problem at the 2005 Carleton-Eindhoven
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