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Abstract

Let P be a set of n points and Q a convex k-gon in R2. We analyze in detail the topological
(or discrete) changes in the structure of the Voronoi diagram and the Delaunay triangulation of
P, under the convex distance function defined by Q, as the points of P move along prespecified
continuous trajectories. Assuming that each point of P moves along an algebraic trajectory of
bounded degree, we establish an upper bound of O(k4nλr(n)) on the number of topological
changes experienced by the diagrams throughout the motion; here λr(n) is the maximum length
of an (n, r)-Davenport-Schinzel sequence, and r is a constant depending on the algebraic degree
of the motion of the points. Finally, we describe an algorithm for efficiently maintaining the
above structures, using the kinetic data structure (KDS) framework.
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1 Introduction

Let P be a set of n points in R2, and let Q be a compact convex (not necessarily polygonal) set in
R2 with nonempty interior and with the origin lying in its interior. For an ordered pair of points
x, y ∈ R2, the Q-distance from x to y is defined as

dQ(x, y) = min{λ | y ∈ x + λQ};

dQ is a metric if and only if Q is centrally symmetric with respect to the origin (otherwise dQ need
not be symmetric). For a point of P, the Q-Voronoi cell of p is defined as

VorQ(p) = {x ∈ R2 | dQ(x, p) ≤ dQ(x, p′) ∀p′ ∈ P}.

If the points of P are in general position with respect to Q (see Section 2 for the definition), the
Voronoi cells of points in P are nonempty, have pairwise-disjoint interiors, and partition the plane
(see Figure 1(b)). The planar subdivision induced by these Voronoi cells is referred to as the
Q-Voronoi diagram of P and we denote it as VDQ(P).

(a) (b) (c)

Figure 1. (a) The Euclidean Voronoi diagram (dotted) and Delaunay triangulation (solid). (b) VDQ(P) and DTQ(P) for
an axis-parallel square Q, i.e., the diagrams VDQ and DTQ under the L∞-metric. (c) VDQ(P) and DTQ(P), for the same
Q as in (b), with an empty-interior support hull (VDQ(P) has no vertices in this case).

The Q-Delaunay triangulation of P, denoted by DTQ(P), is the dual structure of VDQ(P). Namely,
a pair of points p, q ∈ P are connected by an edge in DTQ(P) if and only if the boundaries of their
respective Q-Voronoi cells VorQ(p) and VorQ(q) share a Q-Voronoi edge, given by

epq = {x ∈ R2 | dQ(x, p) = dQ(x, q) ≤ dQ(x, p′) ∀p′ ∈ P}.

DTQ(P) can be defined directly as well: it is composed of all edges pq, with p, q ∈ P, for which
there exists a homothetic placement of Q whose boundary touches p and q and whose interior
contains no other points of P.1 Placements of Q with this latter property are called P-empty. If Q is

1We remark that VorQ(p) is often defined in the literature as the set Vor(p) = {x ∈ R2 | dQ(p, x) ≤ dQ(q, x) ∀q ∈
P} [3, 8, 25]. If Q is not centrally symmetric, then this definition of Vor(p) is not the same as the one given above.
Furthermore, under this definition, pq is an edge of DTQ(P) if there exists a P-empty homothetic placement of −Q (and
not of Q) whose boundary touches p and q.
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a circular disk then DTQ(P) (resp., VDQ(P)) is the well-known Euclidean Delaunay triangulation
(resp., Voronoi diagram) of P.

If P is in general position with respect to Q, then DTQ(P) is spanned by so called Q-Delaunay
triangles. Each of these triangles4pqr corresponds to the (unique) P-empty homothetic placement
Qpqr of Q whose boundary touches p, q, and r. That is, 4pqr corresponds to a Q-Voronoi vertex
vpqr that lies at equal Q-distances from p, q, and r, so that vpqr is the center of Qpqr (that is, vpqr
is the image of the origin under the homothetic mapping of Q into Qpqr). If Q is smooth (e.g., as
in the Euclidean case), then DTQ(P) is a triangulation of the convex hull of P; otherwise it is a
triangulation of a simply-connected polygonal subregion of conv(P), sometimes referred to as the
support hull of P (see [25] and Figure 1 (b)). The interior of the support hull may be empty, as shown
in Figure 1 (c).

In many applications of Delaunay/Voronoi methods (e.g., mesh generation and kinetic collision
detection), the points in P move continuously, so these structures need to be updated efficiently
as motion takes place. Even though the motion of the points of P is continuous, the topological
structures of VDQ(P) and DTQ(P) change only at discrete times when certain events occur.2 Assume
that each point of P moves independently along some known trajectory. Let pi(t) = (xi(t), yi(t))
denote the position of point pi at time t, and set P(t) = {p1(t), . . . , pn(t)}. We call the motion of
P algebraic if each xi(t), yi(t) is a polynomial function of t, and the degree of the motion of P is the
maximum degree of these polynomials.3

In this paper we focus on the case when Q is a convex k-gon and study the resulting Q-Voronoi
and Q-Delaunay structures as each point of P moves continuously along an algebraic trajectory
whose degree is bounded by a constant. Since Q will be either fixed or obvious from the context,
we will use the simplified notations Vor(p), VD(P), and DT(P) to denote VorQ(p), VDQ(P), and
DTQ(P), respectively.

Related work. There has been extensive work on studying the geometric and topological structure
of Voronoi diagrams and Delauany triangulations under convex distance functions; see e.g. [3] and
the references therein. In the late 1970s, O(n log n)-time algorithms were proposed for computing
the Voronoi diagram of a set of n points in R2 under any Lp-metric [13, 17, 18]. In the mid 1980s,
Chew and Drsydale [8] and Widmayer et al. [25] showed that if Q is a convex k-gon, VD(P) has
O(nk) size and that it can be computed in O(kn log n) time. Motivated by a motion-planning
application, Leven and Sharir [19] studied Voronoi diagrams under a convex polygonal distance
function for the case where the input sites are convex polygons. Efficient divide-and-conquer,
sweep-line, and edge-flip based incremental algorithms have been proposed to compute DT(P)
directly [9, 20, 24]. Several recent works study the structure of VD(P) under a convex polyhedral
distance function in R3 [6, 14, 16].

One of the hardest and best-known open problems in discrete and computational geometry
is to determine the asymptotic behavior of the maximum possible number of discrete changes
experienced by the Euclidean Delaunay triangulation during an algebraic motion of constant degree

2The topological structures of DTQ(P) and VDQ(P) are the graphs that they define. More specifically, the topological
structure of DTQ(P) and VDQ(P) consists of the set of triples of points defining the Voronoi vertices, and the sets of
Voronoi and Delaunay edges. As we will see later each Voronoi edge is a sequence of one or more edgelets. Each such
edgelet is defined by a pair of edges of Q. The sequences of pairs of edges of Q defining the edgelet structures of the
Voronoi edges are also part of the topological structure of VDQ(P).

3This assumption can be somewhat relaxed to allow more general motions, as can be inferred from the analysis in the
paper.
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of the points of P, where the prevailing conjecture is that this number is nearly quadratic in n.
A near-cubic bound was proved in [12]. After almost 25 years of no real progress, two recent
works by one of the authors [21, 22] substantiate this conjecture, and establish an almost tight
upper bound of O(n2+ε), for any ε > 0, for restricted motions where any four points of P can
become cocircular at most two times (in [21]) or at most three times (in [22]). In particular, the
latter result [22], involving at most three cocircularities of any quadruple, applies to the case of
points moving along lines at common (unit) speed. Only near-cubic bounds are known so far for
more general motions. Chew [7] showed that the number of topological changes in the Delaunay
triangulation under the L1 or L∞ metric is O(nλr(n)), where λr(n) is the almost-linear maximum
length of a Davenport-Schinzel sequence of order r on n symbols, and r is a constant that depends
on the algebraic degree of the motions of the points. Chew’s result also holds for any convex
quadrilateral Q. He focuses on bounding the number of changes in the Delaunay triangulation and
not how it changes at each “event,” so his analysis omits some critical details of how the Delaunay
triangulation and the Voronoi diagram change at an event; changes in the topological structure of
VD(P) are particularly subtle. Chew remarks, without supplying any details, that his technique
can be extended to general convex polygons.

Later, Basch et al. [4] introduced the kinetic data structure (KDS in short) framework for designing
efficient algorithms for maintaining a variety of geometric and topological structures of mobile data.
Several algorithms have been developed in this framework for kinetically maintaining various
geometric and topological structures; see [11]. The crux in designing an efficient KDS is finding
a set of certificates that, on one hand, ensure the correctness of the configuration currently being
maintained, and, on the other hand, are inexpensive to maintain as the points move. When a
certificate fails during the motion of the objects, the KDS fixes the configuration, replaces the failing
certificate(s) by new valid ones, and computes their failure times. The failure times, called events,
are stored in a priority queue, to keep track of the next event that the KDS needs to process. The
performance of a KDS is measured by the number of events that it processes, the time taken to
process each event, and the total space used. If these parameters are small (in a sense that may be
problem dependent and has to be made precise), the KDS is called, respectively, efficient, responsive,
and compact. See [4, 11] for details.

Delaunay triangulations and Voronoi diagrams are well suited for the KDS framework because
they admit local certifications associated with their individual features. These certifications fail
only at the events when the topological structure of the diagrams changes. The resulting KDS
is compact (O(n) certificates suffice) and responsive (each update takes O(log n) time, mainly to
update the event priority queue), but its efficiency, namely, the number of events that it has to
process, depends on the number of topological changes in DT(P), so a near quadratic bound on the
number of events for the Euclidean case holds only when each point moves along some line with
unit speed (or in similar situations when only three co-circularities can exist for any quadruple
of points). A KDS for DT(P) when Q is a convex quadrilateral was presented by Abam and de
Berg [1], but it is not straightforward to extend their KDS for the case where Q is a general convex
k-gon. Furthermore, it is not clear how to use their KDS for maintaining VD(P).

Our contribution. First, we establish a few key topological properties of VD(P) and DT(P) when
P is a set of n stationary points in R2 and Q is a convex k-gon (Section 2). Although these properties
follow from earlier work on this topic (see [3, Chapter 7]), we include them here because they are
important for the kinetic setting and most of them have not been stated in earlier work in exactly
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the same form as here.
Next, we characterize the topological changes that VD(P) and DT(P) can undergo when the

points of P move along continuous trajectories (Section 3). These changes occur at critical moments
when the points of P are not in Q-general position, so that some O(1) points of P are involved in a
degenerate configuration with respect to Q. The most ubiquitous type of such events is when four
points of P become Q-cocircular, in the sense that there exists a P-empty homothetic placement of Q
whose boundary touches those four points.

We provide the first comprehensive and rigorous asymptotic analysis of the maximum number
of topological changes that VD(P) and DT(P) can undergo during the motion of the points of P
(Section 4). Specifically, if Q has k vertices, then VD(P) and DT(P) experience O(k4nλr(n)) such
changes, where λr(n) is the almost-linear maximum length of a Davenport-Schinzel sequence
of order r on n symbols, and r is some constant that depends on the algebraic degree of the
motions of the points. Some of these changes occur as components of so-called singular sequences, in
which several events that affect the structure of VD(P) and DT(P) occur simultaneously, and their
collective effect might involve a massive change in the topological structures of these diagrams.
These compound effects are a consequence of the non-strict convexity of Q, and their analysis
requires extra care. Nevertheless, the above near-quadratic bound on the number of changes also
holds when we count each of the individual critical events in any such sequence separately.

Finally, we describe an efficient algorithm for maintaining VD(P) and DT(P) during an alge-
braic motion of P, within the standard KDS framework (Section 5). Here we assume an algebraic
model of computation, in which algebraic computations, including solving a polynomial equation
of constant degree, can be performed in an exact manner, in constant time. The precise sense of this
assumption is that comparisons between algebraic quantities that are defined in this manner can be
performed exactly in constant time. This is a standard model used widely in theory [23, Section
6.1] and nowadays also in practice (see, e.g., [10]). This model allows us to perform in constant
time the various computations that are needed by our KDS, the most ubiquitous of which are the
calculation of the failure times of the various certificates being maintained; see Section 5 for details.

Stable Delaunay edges. Our study of Voronoi diagrams under a convex polygonal distance
function, to a large extent, is motivated by the notion of stable Delaunay edges, introduced by the
authors in a companion paper [2], and defined as follows: Let pq be a Delaunay edge under the
Euclidean norm, and let 4pqr+ and 4pqr− be the two Delaunay triangles adjacent to pq. For a
fixed parameter α > 0, pq is called an α-stable (Euclidean) Delaunay edge if its opposite angles in these
triangles satisfy ∠pr+q +∠pr−q ≤ π− α. An equivalent and more useful definition, in terms of the
Voronoi diagram, is that pq is α-stable if the equal angles at which p and q see their common (Euclidean)
Voronoi edge epq are at least α each. It is shown in [2] that if pq is α-stable in the Euclidean Delaunay
triangulation, then it also appears, and at least α/8-stable, in the Q-Delaunay triangulation DTQ(P)
for any shape Q that is sufficiently close to (in terms of its Hausdorff distance from) the unit disk.
The results in this paper, along with the aforementioned result, imply that by maintaining DTQ(P),
where Q is a regular (convex) k-gon, for k = Θ(1/α), we can maintain (a superset of) the stable
edges of the Euclidean Delaunay triangulation, as a subgraph of DTQ(P), and that we have to
handle only a nearly quadratic number of topological changes if the motion of the points of P is
algebraic of degree bounded by a constant. See [2] for details.
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2 The topology of VD(P)

In this section we state and prove a few geometric and topological properties of the Q-Voronoi
diagram of a set of stationary points when Q is a convex polygon.

Some notations. Let Q be a convex k-gon with vertices v0, . . . , vk−1 in clockwise order, whose
interior contains the origin. For each 0 ≤ i < k, let ei denote the edge vivi+1 of Q, where index
addition is modulo k (so vk = v0). We refer to the origin as the center of Q and denote it by o. A
homothetic placement (or placement for short) Q′ of Q is represented by a pair (p, λ), with p ∈ R2 and
λ ∈ R+, so that Q′ = p + λQ; p is the location of the center of Q′, and λ is the scaling factor of Q′

(about its center). The homothets of Q thus have three degrees of freedom.
There is an obvious bijection between the edges (and vertices) of Q′ and of Q, so, with a slight

abuse of notation, we will not distinguish between them and use the same notation to refer to
an edge or vertex of Q and to the corresponding edge or vertex of Q′. For a point u ∈ R2, let
Q[u] denote the homothetic copy of Q centered at u such that its boundary touches the dQ-nearest
neighbor(s) of u in P, i.e., Q[u] is represented by the pair (u, λ) where λ = minp∈P dQ(u, p). In other
words, Q[u] is the largest homothetic copy of Q that is centered at u whose interior is P-empty.

Q-general position. To simplify the presentation, we assume our point set P to be in general
position with respect to the underlying polygon Q. Specifically, this means that

(Q1) no pair of points of P lie on a line parallel to a boundary edge or a diagonal of Q,

(Q2) no four points of P lie on the boundary of the same homothetic copy Q′ of Q, and

(Q3) if some three points in P lie on the boundary of the same homothetic copy Q′ of Q, then each
of them is incident to a relatively open edge of ∂Q′ (and all the three edges are distinct, due to
(Q1)), as opposed to one or more of these points touching a vertex of Q′.

The above conditions can be enforced by an infinitesimally small rotation of Q or of P.

Bisectors, corner placements, and edgelets. The bisector between two points p and q, with respect
to the distance function dQ induced by Q, denoted by bpq or bqp, is the set of all points x ∈ R2 that
satisfy dQ(x, p) = dQ(x, q). Equivalently, bpq is the locus of the centers of all homothetic placements
Q′ of Q that touch p and q on their boundaries; Q′ does not have to be P-empty, so it may contain
additional points of P \ {p, q}. If p and q are not parallel to an edge of Q (assumption (Q1)), then
bpq is a one-dimensional polygonal curve, whose structure will be described in detail momentarily.

A homothetic placement Q′ centered along bpq that touches one of p and q, say, p, at a vertex,
and touches q at the relative interior of an edge (as must be the case in general position) is called a
corner placement at p; see Figure 2 (a). Note that a corner placement at which a vertex vi of (a copy
Q′ of) Q touches p has the property that the center o′ of Q′ lies on the fixed ray emanating from p
in direction ~vio.

A non-corner placement Q′ centered on bpq can be classified according to the pair of edges of
Q′, say, ei and ej, that touch p and q, respectively. We may assume (by (Q1)) that ei 6= ej. Slide
Q′ so that its center o′ moves along bpq and its size expands or shrinks to keep it touching p and
q at the edges ei and ej, respectively. If ei and ej are parallel, then the center o′ of Q′ traces a line
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(a) (b)

Figure 2. Possible placements of Q′ on bpq. (a) A corner placement at p. The center of Q′ lies on the fixed ray emanating
from p in direction ~vio. (b) A placement of Q′ with edge contacts of ei and ej at p and q, respectively. (The centers of)
such placements trace an edgelet of bpq with label (ei, ej).

segment in the direction parallel to ei and ej; otherwise o′ traces a segment in the direction that
connects it to the intersection point ξij of the lines containing (the copies on ∂Q′ of) ei and ej. See
Figure 2 (b) for the latter scenario. We refer to such a segment g as an edgelet of bpq, and label it by
the pair ψ(g) = (ei, ej) (or by (i, j) for brevity). The orientation of the edgelet depends only on the
corresponding edges ei, ej, and is independent of p and q. The structure of bpq is fully determined
by the following proposition, with a fairly straightforward proof that is omitted from here.

Lemma 2.1. An edgelet g with the label ψ(g) = (ei, ej) appears on bpq if and only if there is an oriented
line parallel to ~pq that crosses ∂Q at (the relative interiors of) ei and ej, in this order.

(2,3)

(1,5)

(1,4)

(2,4)
2

1

5

4

3

b�pq

p

q
Cqp

Cpq

Figure 3. The edgelets of bpq. The breakpoints of bpq correspond to corner placements of Q. We have Cpq = 〈2, 1〉 and
Cqp = 〈3, 4, 5〉. The terminal edgelets of bpq are the rays with labels (1, 5) and (2, 3).

See Figure 3 for an illustration. The endpoints of edgelets are called the breakpoints of bpq. Each
breakpoint is the center of a corner placement of Q; If ei and ej are adjacent, then the edgelet labeled
(i, j) is a ray and the common endpoint of ei, ej is one of the two vertices of Q extremal in the
direction orthogonal to ~pq (i.e., these vertices have a supporting line parallel to ~pq).

Assuming Q-general position of P, Lemma 2.2 below implies that bpq is the concatenation of
exactly k− 1 edgelets. Let Cpq and Cqp denote the two chains of ∂Q, delimited by the vertices that
are extremal in the direction orthogonal to ~pq, such that p lies on an edge of Cpq and q on an edge
of Cqp at all placements of Q touching p and q and centered along the bisector bpq. We orient both
Cpq, Cqp so that they start (resp., terminate) at the vertex of Q that is furthest to the left (resp., to the
right) of ~pq; see Figure 3.

Our characterization of bpq is completed by the following lemma, which follows from Lemma
2.1 and the preceding discussion.
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Lemma 2.2. Let (e11, e21), . . . , (e1h, e2h) be the sequence of labels of the edgelets of bpq in their order along
bpq when we trace it so that p lies on its left side and q on its right side. Then e11, . . . , e1h appear (with
possible repetitions as consecutive elements) in this order along Cpq, and e21, . . . , e2h appear (again, with
possible repetitions) this order along Cqp. Furthermore, the following additional properties also hold:

(a) All the edges of Cpq (resp., Cqp) appear, possibly with repetitions, in the first (resp., second) sequence.

(b) The elements of Cqp appear in clockwise order and the elements of Cpq in counterclockwise order along
∂Q.

(c) Assuming general position, the passage from a label (e1i, e2i) to the next label (e1(i+1), e2(i+1)) is
effected by either replacing e1i by the following edge on Cpq or by replacing e2i by the following edge
on Cqp. In the former (resp., latter) case, the common endpoint of the two edgelets corresponds to the
corner placement of p (resp., q) at the common vertex of e1i and e1(i+1) (resp., e2i and e2(i+1)).

The proof of the lemma, whose details are omitted, proceeds by sweeping a line parallel to ~pq,
and keeping track of the pairs of edges of Q that are crossed by the line, mapping each position of
the line to a homothetic placement of Q that touches p and q at the images of the two intersection
points.

For 0 ≤ i < j < k, let θij be the orientation of the line passing through the vertices vi and vj of Q,
and let Θ be the set of these orientations. Θ partitions the unit circle S1 into a collection I of O(k2)
angular intervals (for a regular k-gon, the number of intervals is only Θ(k)). Lemmas 2.1 and 2.2
implies the following corollary:

Corollary 2.3. The sequence of edgelet labels along bpq is the same for all the ordered pairs of points p, q
such that the orientation of the vector pq lies in the same interval of I.

The following additional property of bisectors is crucial for understanding the topological
structure of VD(P).

Lemma 2.4. Let p, q1, q2 be three distinct points of P. The bisectors bpq1 , bpq2 can intersect at most once,
assuming that p, q1 and q2 are in Q-general position.

Proof. Suppose to the contrary that bpq1 , bpq2 intersect at two points. Then there exist two homothetic
copies Q1 and Q2 of Q such that p, q1, q2 ∈ ∂Q1 ∩ ∂Q2. However, it is well known that homothetic
placements of Q behave like pseudo-disks, in the sense that the portion of the boundary of each of
them outside the other homothetic placement is connected; see, e.g., [15]. Therefore, ∂Q1 and ∂Q2
intersect in at most two connected portions, each of which is either a point or a segment parallel
to some edge of Q. Clearly, one of these connected components of ∂Q1 ∩ ∂Q2 must contains two
out of the three points p, q1, and q2, in contradiction to the fact that the points are in Q-general
position.

The following lemma provides additional details concerning the structure of the breakpoints of
the bisectors in case Q is a regular k-gon.

Lemma 2.5. Let Q be a regular k-gon, and let p and q be two points in general position with respect to
Q. The breakpoints along the bisector bpq correspond alternatingly to corner placements at p and corner
placements at q.
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q

b�pq

p

Figure 4. The bisector bpq for a regular octagon Q; it has seven edgelets and the centers of the corner placements along
bpq alternate between p (hollow circles) and q (filled circles).

Proof. Refer to Figure 4. Suppose that two consecutive breakpoints of bpq correspond to corner
placements at p. From Lemmas 2.1 and 2.2, we obtain that these corner placements are formed
by two adjacent vertices, say v0 and v1 of Q, and q lies in the relative interior of (the homothetic
copies of) the same edge e of Q at these placements. This implies that the projections of v0 and
v1 in direction ~pq lie in the interior of the projection of the edge e of Q in direction ~pq, which is
impossible if Q is a regular k-gon. Indeed, the convex hull of e0 = v0v1 and of e is an isosceles
trapezoid τ, which implies that, for any other strip σ bounded by two parallel lines through v0
and v1, e cannot cross both boundary lines of σ. We note that if σ is the strip spanned by τ, then
e touches both lines bounding σ but does not cross any of them. This completes the proof of the
lemma.

Voronoi cells, edges, and vertices. Each bisector bpq partitions the plane into open regions Hpq =
{x | dQ(p, x) < dQ(q, x)} and Hqp = {x | dQ(q, x) < dQ(p, x)}. Hence, for each point p ∈ P, its
Q-Voronoi cell Vor(p) can be described as

⋂
q∈P\{p} Hpq.

By Q-general position of P, for any p ∈ P, ∂Vor(p) is composed of Q-Voronoi edges, where each
such edge is a maximal connected portion of the bisector bpq, for some other point q ∈ P, that lies
within ∂Vor(p) ∩ ∂Vor(q). The portion of bpq within this common boundary can be described as

bpq ∩
⋂

r 6=p,q

Hpr = bpq ∩
⋂

r 6=p,q

Hqr.

That is, this portion is the locus of all centers x of placements of Q for which the equal distances
dQ(x, p) = dQ(x, q) are the smallest among the distances from x to the points of P. Note that the
homothetic copy x + dQ(x, p)Q of Q touches p and q and is P-empty.

Since P is in Q-general position, Lemma 2.4 guarantees that this portion of bpq is either connected
or empty. Therefore, any bisector bpq contains at most one Q-Voronoi edge, which we denote by
epq. This edge is called a corner edge if it contains a breakpoint (i.e., a center of a corner placement);
otherwise it is a non-corner edge—a line segment.

The endpoints of Q-Voronoi edges epq are called Q-Voronoi vertices. By the Q-general position
of P, each such vertex is incident on exactly three Voronoi cells Vor(p), Vor(q), and Vor(r). This
vertex, denoted by νpqr, can be described as the center of the unique homothetic P-empty placement
Q′ = Q[νpqr] of Q, whose boundary contains only the three points p, q, and r of P. From the
Delaunay point of view, DT(P) contains the triangle4pqr.
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We say that g is an edgelet of epq if (i) g is an edgelet of bpq, and (ii) the Voronoi edge epq either
contains or, at least, overlaps g. We refer to an edgelet g of epq as external if it contains one of the
endpoints of epq, namely, a vertex of VD(P), and as internal otherwise. In general position, an
external edgelet of epq is always properly contained in an edgelet of bpq.

We conclude this section by making the following remarks. If assumption (Q3) does not hold,
then a Voronoi vertex may coincide with a breakpoint of an edge adjacent to it; if (Q2) does not
hold then a Voronoi vertex may have degree larger than three; if the segment pq connecting a pair
p, q ∈ P is parallel to a diagonal of Q, then an edgelet of a Voronoi edge may degenerate to a single
point; and if such a segment pq is parallel to an edge of Q then bpq may be a two-dimensional region
(Figure 7 middle). These degenerate configurations are discussed in detail in the next section.

3 Kinetic Voronoi and Delaunay diagrams

As the points of P move along continuous trajectories, VD(P) also changes continuously, namely,
vertices of VD(P) and breakpoints of edgelets trace continuous trajectories, but, unless the motion
is very degenerate, the topological structure of VD(P) changes only at discrete times, at which
an edgelet in a Voronoi edge appears/disappears, a Voronoi vertex moves from one edgelet to
another, or two adjacent Voronoi cells cease to be adjacent or vice versa (equivalently, an edge
appears or disappears in DT(P)), because of a Q-cocircularity of four points of P. In this section we
discuss when do these changes occur and how does VD(P) change at such instances. To simplify
the presentation, (i) we assume that the orientations of the edges and diagonals vivj, for all pairs of
vertices vi, vj of Q, are distinct, and that they are different from those of ovi, for any vertex vi; (ii)
we make certain general-position assumptions on the trajectories of P; and (iii) we augment P with
some points at infinity. At the end of the section, we remark what happens if we do not make these
assumptions or do not augment P in this manner.

Augmenting P. We add points to P so that the convex hull of the augmented set does not change
as the (original) points move, and the boundary of DT(P) is this stationary convex hull at all times.
Specifically, for each vertex vi of Q, we add a corresponding point qi at infinity, so that qi lies
in the direction ~vio. Let P∞ denote the set of these k new points. We maintain VD(P ∪ P∞) and
DT(P ∪ P∞). It can be checked that DT(P ∪ P∞) contains all edges of DT(P), some “unbounded”
edges (connecting points of P to points of P∞), and k edges at infinity (forming the convex hull
of P ∪ P∞). Furthermore, every edge of DT(P ∪ P∞) incident on at least one point of P is adjacent
to two triangles; only the edges at infinity are “boundary” edges of the triangulation. During the
motion of the points of P, the points of P∞ remain stationary.

Let 4 be a triangle of DT(P ∪ P∞). There is a (P ∪ P∞)-empty homothetic copy Q4 of Q
associated with4, whose boundary touches the three vertices of4. If two vertices of4 belong to
P and one vertex of4 is a point qi at infinity, then Q4 is a wedge formed by the two corresponding
consecutive edges ei−1 and ei of Q, each touching a vertex of4 not in P∞ (e.g., C1 in Figure 5). If
only one vertex of4, say p, belongs to P, then4 is of the form4pqiqi+1 (for some 0 ≤ i < k), and
there are arbitrarily large empty homothetic copies of Q incident on p at the edge ei = vivi+1 (e.g.,
C2 in Figure 5). The number of triangles of the latter kind is only k, one for each edge of Q. Abusing
the notation slightly, we will use P to denote P ∪ P∞ from now on.
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Figure 5. The extended DT(P) under the L∞-metric (where Q is an axis-parallel square) for the set of points in Figure 1,
with four points q1, . . . , q4 added at infinity in directions (±1,±1). Each of the four shaded triangles has two vertices at
infinity, and the unbounded half-strips between them represent triangles with one vertex at infinity. The empty wedge
C1 corresponds to412q1 (the half-strip right above the left shaded triangle), and the arbitrarily large empty square C2 (a
halfplane in the limit) corresponds to49q2q3 (the right shaded triangle).

Q-general position for trajectories. We assume that the trajectories of the points of P are in Q-
general position, which we define below. Informally, if the motion of each point of P is algebraic
of bounded degree, as we assume, then the time instances at which degenerate configurations
occur, namely, configurations violating one of the assumptions (Q1)–(Q3), can be represented
as the roots of certain constant-degree polynomials in t. The present “kinetic” general-position
assumption for the trajectories says that none of these polynomials is identically zero (so each of
them has O(1) roots), that each root has multiplicity one (so the sign of the polynomial changes in
the neighborhood of each root), and that the roots of all polynomials are distinct. We now spell out
these conditions in more detail and make them geometrically concrete.

(T1) For any pair of points p, q ∈ P, p(t) 6= q(t) for all t, namely, p and q do not collide during the
motion.

(T2) For any pair of points p, q ∈ P, there exist at most O(1) times when the segment pq is parallel
to any given edge or diagonal vivj of Q, and at each of these times p properly crosses the line through
q parallel to vivj, which moves continuously, together with q (and q does the same for the parallel
line through p).

(T3) For any ordered set of three points p, q, r ∈ P and for any vertex vp and a pair of edges eq, er of
Q, there exist at most O(1) times when q touches eq and r touches er at a corner placement Q′ of Q
at p in which p touches vp. Furthermore, given that eq is not adjacent to vp, at each such time the
point r either enters or leaves the interior of the unique P-empty homothetic copy of Q that touches
p at vp and q at eq.

(T4) For any four points p, q, a, b ∈ P and any ordered quadruple ep, eq, ea, eb of edges of Q, such
that at least three of these edges are distinct, there are only O(1) times at which there exists a
placement Q′ of Q such that p, q, a, b touch the respective relative interiors of ep, eq, ea, eb. We
say that p, q, a, b are Q-cocircular at these O(1) times. At any such Q-cocircularity, the four points
p, q, a, b are partitioned into two pairs, say, (p, q) and (a, b), so that right before the cocircularity
there exists a homothetic copy of Q that is disjoint from a and b and whose boundary touches p

10



and q, and right afterwards there exists a homothetic copy of Q that is disjoint from p and q and
whose boundary touches a and b.

(T5) Events of type (T2)–(T4) do not occur simultaneously, except when two points p and q become
parallel to an edge of Q. In this case there could be many events of type (T3) and (T4) that occur
simultaneously, each of which involves p, q; see below for more details.

Events. Since the motion of P is continuous, the topological changes in VD(P) occur only when
some points of P are involved in a degenerate configuration, i.e., they violate one of the assumptions
(Q1)–(Q3). However not every degenerate configuration causes a change in VD(P). We define an
event to be the occurrence of a P-empty placement of a homothetic copy of Q whose boundary
contains two, three, or four points of P that are in a Q-degenerate configuration. The center of such
a placement lies on an edge or at a vertex of VD(P). The subset of points involved in the degenerate
configuration is referred to as the subset involved in the event. The event is called a bisector, corner, or
flip event if assumption (Q1), (Q2), or (Q3), respectively, is violated.

An event is called singular if some pair among the (constantly many) points involved in the
event span a line parallel to an edge of Q. Otherwise, we say that the event is generic. The Q-
general-position assumption on the trajectories of the points of P implies, in particular, that (i) no
generic event can occur simultaneously with any other event, and (ii) all singular events that occur
at a given time, must involve the same pair of points p, q that span a line parallel to an edge of Q.

The changes in VD(P) are simple and local at a generic event, but VD(P) can undergo a major
change at a singular event. We therefore first discuss the changes at a generic event and then
discuss singular events.

3.1 Generic events

Recall that the orientation of pq, for every pair p, q ∈ P, at a generic event is different from that of
any edge of Q, which implies that no two points of P lie on the same edge of a homothetic copy of
Q at a generic event.

Bisector event. A pair of points p, q ∈ P are incident to the vertices vi and vj, respectively, of
a P-empty homothetic copy of Q so that the vertices vi and vj are not consecutive along ∂Q. In
particular, epq is an edge in VD(P).

Recall that in our notation, vi is adjacent to the consecutive edges ei−1, ei, and vj is adjacent to
the consecutive edges ej−1, ej; in the present scenario, these four edges are all distinct. Without
loss of generality, we may assume that before the event, there is an oriented line parallel to ~pq that
intersects ei−1 and ej−1 in this order, and there is no such line after the event. Similarly, after the
event there is an oriented line parallel to ~pq that intersects ei and ej in this order, and there is no
such line before the event. Hence, Lemma 2.1 and assumption (T2) imply that epq loses a bounded
edgelet with label (i− 1, j− 1), which is replaced by a new bounded edgelet with label (i, j). Our
assumption (T5) implies (i − 1, j− 1) cannot be an external edgelet of epq. Hence, (i − 1, j− 1)
appears shortly before the event as an internal edgelet of epq, shrinks to a point and is replaced by
the new internal edgelet (i, j); see Figure 6 (a). This is the only topological change in VD(P) at this
event.

Notice that whenever the direction of ~pq coincides with that of a diagonal vivj of Q, p and q are
incident to the vertices vi and vj, respectively, of a unique copy of Q. If this copy contains further
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Figure 6. Different types of generic events for a pentagon Q: (a) a bisector event, (b) a corner event, and (c) a flip event.
Thick segments denote an appropriate portion of DT(P) and the elements of VD(P) that change at the event.

points of P, then the bisector bpq still loses an edgelet (i − 1, j− 1), which is replaced by a new
edgelet (i, j). However, both of these edgelets now belong to the portion of bpq outside epq, so the
discrete structure of VD(P) does not change (and, therefore, no bisector event is recorded).

Corner event. A corner event occurs when there is a P-empty homothetic copy Q′ = Q[νpqr] of Q
with a corner placement of a vertex of v ∈ Q at p and two other points q and r lie on two distinct
edges of Q, none of which is incident to v. We refer to such an event as a generic corner event of p.

This event corresponds to a vertex νpqr of VD(P), an endpoint of an edge epq, coinciding with a
breakpoint of bpq. Then νpqr, also an endpoint of the Voronoi edge epr, coincides with a breakpoint
of bpr as well. By assumption (T3), one of the Q-Voronoi edges epq and epr gains a new edgelet and
the other loses an edgelet at this event; see Figure 6 (b).

Flip event. A flip event occurs when there is a P-empty homothetic copy Q′ of Q that touches
four points p, p′, q, q′ at four distinct edges of Q′, in this circular order along ∂Q′. By assumption
(T4), up to a cyclic relabeling of the points, the Voronoi edge epq flips to a new Voronoi edge ep′q′ at
this event; see Figure 6 (c). Note that epq (resp., ep′q′ ) is a non-corner edge immediately before (resp.,
after) the flip event, as both the vanishing edge epq and the newly emerging edge ep′q′ are “too
short” to have breakpoints near the event (this is a consequence of the kinetic Q-general position
assumptions).

This completes the description of the changes in VD(P) at a generic event. We remark that a
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Voronoi edge newly appears or disappears only at a flip event, so, by definition, DT(P) changes
only at a flip event. Suppose the Voronoi edge epq flips to the edge ep′q′ at a flip event. Then
p, q, p′, q′ are vertices of two adjacent triangles 4pqp′ and 4pqq′ immediately before the event,
the edge pq of DT(P) flips to p′q′ at the event, and the Delaunay triangles 4pqp′,4pqq′ flip to
4p′q′p,4p′q′q at the event; again, see Figure 6 (c).

ρ+

ρ−
q

p

vi+1

ζ

q

p

vi+1

vi
p
vi

vi+1

vi

q

Figure 7. A singular bisector event. The ray ρ− of bpq is replaced instantly by the ray ρ+, and the entire shaded wedge is
part of bpq at the event itself.

3.2 Singular events

Recall that a singular event occurs, at time t0, if two points p, q ∈ P lie on an edge ei = vivi+1 of a
P-empty homothetic copy of Q. Hence, a singular bisector event (involving p and q) occurs at t0. We
may assume that neither p nor q is in P∞ since in such a case the orientation of pq remains fixed
throughout the motion (namely, it is ~ovi) and, as we have assumed, different from the orientations
of the edges of Q.

Changes in bisectors. Assume that pq becomes parallel to the edge ei, and, without loss of
generality, assume that ~pq and ~vivi+1 have the same orientation, as in Figure 7 (center). When this
occurs, the set of placements Q′ of Q at which both p and q touch ei is a wedge W0 whose boundary
rays ρ− and ρ+ have respective directions ~vio and ~vi+1o, and whose apex ζ corresponds to the
placement at which p and q touch vi and vi+1 respectively; see Figure 7 (center).

Let t−0 (resp., t+0 ) denote an instance of time immediately before (resp., after) t0, so that no event
occurs in the interval [t−0 , t0) (resp., (t0, t+0 ]). Then the terminal ray of bpq that becomes the wedge
W0 at time t0 is either in direction ~vio or ~vi+1o at time t−0 . Without loss of generality, throughout
the present discussion of the singular event, we assume that this ray is in the direction ~vio, i.e.,
it consists of all placements with ei touching q and ei−1, the other edge adjacent to vi, touching
p. This ray is parallel to ρ− and approaches ρ− as time approaches t0; see Figure 7 (left). By
assumption (T2), the bisector bpq at time t+0 contains a terminal ray parallel to ρ+, which consists of
all placements with ei touching p, and with the other edge ei+1 adjacent to vi+1 touching q. At time
t0 this ray coincides with ρ+, which is clearly different from ρ−. See Figure 7 (right). That is, the
terminal ray of bpq instantly switches from ρ− to ρ+ at time t0.

Changes in VD(P). All topological changes in VD(P) at the time t0 of a singular event occur on
the boundaries of the Q-Voronoi cells Vor(p) and Vor(q). Since p and q are not in P∞, both of these
cells are bounded.
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Figure 8. Changes in VD(P) at the time t0 of a singular bisector event. (a): VD(P(t−0 )); (b):VD(P(t0)): the terminal ray
of bpq instantly switches from ρ− to ρ+ and the cell Vor(p) loses the entire region W to Vor(q); (c): VD(P(t+0 )).

Refer to the state of VD(P) at times t−0 , t0, and t+0 , as illustrated in Figure 8. For t ∈ [t−0 , t0), let
ρ−(t) be the edgelet of the bisector bpq that is parallel to ρ− at time t, and let η−(t) be the Voronoi
vertex which is incident to epq ∩ ρ−(t) and to some other pair of edges epr− and eqr− . Similarly, for
t ∈ (t0, t+0 ], let ρ+(t) be the edgelet of the bisector bpq that is parallel to ρ+ at time t, and let η+(t)
be the Voronoi vertex which is incident to epq ∩ ρ+(t) and to some other pair of edges epr+ and eqr+ .

Let η− (resp., η+) be the limit of η−(t) (resp., of η+(t)) as t ↑ t0 (resp., t ↓ t0). Alternatively, η−

is the center of a P-empty corner placement of Q that touches, at time t0, p at vi, and also touches q
(at ei) and r−. As is easily checked, the edgelets epr− and eqr− incident on η− are collinear at time t0,
but just before that time they were separated by another short edgelet that has shrunk to a point;
see Figure 8 (a). Similarly, η+ is the center of a P-empty corner placement of Q that touches, at time
t0, q at vi+1, and also touches p (at ei) and r+. Here too the edgelets of epr+ and eqr+ incident on
η+ are collinear at t0, and get separated from each other by a newly emerging short edgelet; see
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Figure 8 (c).
Let γ be the polygonal chain connecting η− and η+ at time t0, consisting of all centers of

placements touching p and q (at ei) and some other point ri of P. At time t0 the degenerate Voronoi
edge epq includes a two-dimensional star-shaped polygonal region, denoted by W, bounded by
ζη−, ζη+, and γ. (It is a portion of the wedge W0 discussed earlier.)

At time t0 the terminal edgelet of epq instantly switches from ζη− to ζη+, the Voronoi cell Vor(p)
loses the entire region W to Vor(q). As a result, VD(P) can experience Ω(n) topological changes at
time t0 (in addition to the obvious change of the edgelet structure of epq, as just discussed).

Specifically, let epr− = epr0 , epr1 , . . . , eprs = epr+ be the edges of Vor(p) at times t ∈ [t−0 , t0) that
also overlap γ at t0 (listed in the order their appearance along ∂Vor(p)). Right after time t0, the
point η+ = ρ+ ∩ epr+ becomes a new Voronoi vertex instead of η− = ρ− ∩ epr− .

Assuming s ≥ 1 (or alternatively, r− 6= r+), every old edge eprj of Vor(P), that is completely
contained in γ (such edges exist only if s ≥ 2), is instantly relabeled as the new edge eqrj of Vor(q).
The edge epr− , which was incident at times t ∈ [t−0 , t0) to η−(t), loses its portion within γ to the
adjacent edge eqr− . Symmetrically, the old edge epr+ of Vor(p), which is hit by ρ+(t), for t ∈ (t0, t+0 ]
is split at η+ into eqr+ (its portion within γ) and epr+ (its portion outside γ).

Changes in DT(P). If s ≥ 1 then each of the old Delaunay edges prj, for j = 0, . . . , s− 1, flips in
DT(P) to the new edge qrj+1; see Figure 9. These are the only changes that DT(P) experiences at
time t0.

Singular sequences While we can regard the overall change in VD(P) and DT(P) at a singular
event as a single compound event, it is more convenient for our analysis, for the KDS implemen-
tation presented in Section 5, and perhaps also for a better intuitive perception of this change, to
consider it as a sequence of individual separate singular corner and flip events, as we describe next.
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Figure 9. Topological changes in DT(P) at the time t0 of a singular bisector event; five singular flip events occur at t0,
where pr0, . . . , pr4 (left) flip to qr1, . . . , qr5 (right).

To do so, we “stretch” the time t0 and continuously rotate the terminal ray ρ of bpq from ρ− to
ρ+. Hence, the intersection point η = ρ ∩ γ traces γ from η− to η+; see Figure 10. At any given
moment during this virtual rotation, ρ hits some old Voronoi edge eprj , for 0 ≤ j ≤ s, which is split
by the current η into eprj (the portion not yet swept by ρ) and eqrj (the swept portion). That is, we
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can interpret η as an instantaneous Q-Voronoi vertex νpqrj which is incident to three Voronoi edges,
namely, epq, eprj and eqrj (since epq is two-dimensional, this does not fix the vertex and indeed leaves
it with one degree of freedom, of moving along the appropriate portion of γ). The topological
structure of VD(P) changes (during the above rotation) only at the following two kinds of events,
which closely resemble their generic counterparts in Section 3.1.

ζ

ρ
η

r4

r+ = r5

ρ+

Vor(p)

ρ−

r1
r2 r3

η+

eqr4

epr4
epr5

Vor(q)
q p

r− = r0

η−

Figure 10. “Stretching” the time t0. As the terminal ray ρ of bpq continuously rotates from ρ− to ρ+, the vertex η = ρ ∩ γ
traces γ from η− to η+. We only show the intersection of the rays ρ−, ρ, and ρ+ with epq. In the depicted snapshot ρ hits
γ within the old edge epr4 , splitting it into epr4 and eqr4 . Hence, η is the Voronoi vertex adjacent to Vor(p), Vor(q), and
Vor(r4).

Singular corner event. This occurs when the Voronoi vertex η = νpqrj coincides with a breakpoint
of γ ⊆ bprj = bqrj , occurring along the corresponding Voronoi edge. There are three types of
singular corner events, depending on whether the corner placement occurs at p, q, or rj for some
0 ≤ j ≤ s. Each of the first two types occurs just once at a singular bisector event, whereas the third
type may occur multiple times.

(i) η = νpqrj is the center of a corner placement at p along eprj . This occurs at η = η−, i.e., at the
starting point of the rotation, for Q[η−] is indeed a corner placement at p. We refer to this event as
the initial corner event of the singular sequence.

As already discussed, Q[η−] touches p at the vertex vi, q on the edge vivi+1, and the third point
r− at some other edge e− (see Figure 8 (a)—the figure depicts what happens just before t0; the
limiting situation is depicted in Figure 8 (b)). Immediately after the singular corner event of p (in
the sense of stretching the time during the virtual rotation of ρ), the Q-Voronoi edge epr− loses an
edgelet (denoted as g in that figure), namely the edgelet corresponding to p touching ei−1 and r−

touching e−. It is interesting to note that, unlike at a generic corner event, epq does not gain an
edgelet. (The only edgelet that it could have gained is the one that encodes the double contact of p
and q at ei, which is not a real edgelet.) Note also that the external edgelet of eqr− becomes aligned
with the next edgelet of epr− , and as η starts rotating, begins to “annex” it.

(ii) η = νpqrj is the center of a corner placement at q along eqrj . This event occurs only at the end of
the rotation, when ρ = ρ+ and η coincides with the Voronoi vertex η+ = νpqr+ newly created at this
singular event. We refer to this event as the final corner event of the singular sequence.

The situation is symmetric to that in (i). Specifically, Q[η+] touches q at the vertex vi+1, p at the
edge vivi+1, and the third point r+ at some other edge e+. Immediately after the singular corner
event at q (as the “real” time t increases past t0), the Q-Voronoi edge eqr+ gains an edgelet (marked
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by h in Figure 8 (c)), but epq does not lose an edgelet. The external edges of epr+ and of eqr+ , which
were aligned as η approaches η+, begin to shift apart from each other, with h in between them.
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η

r4

r+ = r5

ρ− ρ+

r3
r2

r1

η+

Vor(p)
pq

eqr4

epr4

Vor(q)

η−

Figure 11. A singular corner event at r4. A corner of Q[η] touches r4, so η coincides with a breakpoint on each of the
overlapping bisectors bpr4 and bqr4 .

(iii) η = νpqrj coincides with the center of a corner placement at rj along the currently traced edge
eprj (see Figure 11). Let Q[η] = Q[νpqrj ] be the resulting corner placement of Q at rj, which touches
also p and q, both on the edge ei = vivi+1 of Q[η]. We refer to this event as an intermediate corner
event of the singular sequence. Immediately after a singular corner event of rj (again, in the sense
of the stretched time), the Q-Voronoi edge eprj loses an edgelet, and the adjacent Q-Voronoi edge
eqrj gains an edgelet.

Singular flip event. The moving vertex η = νpqrj coincides with a Q-Voronoi vertex νprjrj+1 , which
is the common endpoint of the Voronoi edges eprj and eprj+1 along γ (thinking of the scenario just
before t0; see Figure 12). In the stretched time during the rotation of ρ, the Q-Voronoi edge eprj

shrinks (or, more precisely, “overtaken” by eqrj ) and disappears from VD(P). The new edge eqrj+1

is born, as η starts moving along the old edge eprj+1 of Vor(p), annexing a portion of it for Vor(q).
The growing portion of that edge between νqrjrj+1 and η becomes eqrj+1 , and eprj+1 is the shrinking
remainder of that edge. Accordingly, the edge prj of DT(P) flips to qrj+1.

Analogous to a generic flip event, eprj is a non-corner edge when the above flip event occurs. It
shrinks to a point at the event, and the four points p, q, rj, rj+1, which are Q-cocircular, are vertices
of the two adjacent triangles 4prjq and 4prjrj+1 of DT(P) (sharing the edge prj). The event is
singular because p and q are on the same edge of Q[η] (with label ei), and the remaining two points
rj and rj+1 are incident to some pair of other distinct edges of Q[η].

We remark that, unless j = 0, the edge qrj does not belong to DT(P) at time t−0 . It becomes an
edge of DT(P) only after executing the previous singular flip, which adds it to DT(P). In other
words, the rotational order in which ρ generates these events is such that each flip event facilitates
the next one, by introducing the appropriate edges qrj into the diagram.

We refer to the entire sequence of events that are triggered by a singular bisector event (including
the singular bisector event itself) as a singular sequence. The above order, in which the events of
a singular sequence are encountered during the continuous rotation of the terminal edgelet ρ, is
called the rotational order of this sequence.

A crucial property of this interpretation of a singular event is that, in the stretched time, the
various singular corner and flip events occur in the order at which η encounters the various
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Figure 12. A singular flip event involving p, q, r3 and r4. (a): The Voronoi perspective. The vertex η coincides with the
common endpoint νpr3r4 of epr3 and epr4 . The corresponding copy Q[η] touches p, q, r3 and r4 in this clockwise order. (b):
The Delaunay perspective. The previously Delaunay edge pr3 flips into qr4.

breakpoints and vertices along γ. At each instance of the rotation, only one singular event, namely
the next one in the sequence, is locally consistent with the current structure of the diagrams, in the
sense that it can be effected by the appropriate local rule—a flip of Delaunay and Voronoi edges, or
the passage of an edgelet from one Voronoi edge to another.

Remark. (i) If we allow Q to have several mutually parallel diagonals, then several interior edgelets
(up to Θ(k) in the worst case) of bpq are simultaneously replaced by new ones when pq becomes
parallel to all of them. We treat each of them as a separate bisector event. Similarly, at a singular
event, besides the changes discussed above, some interior edgelets of bpq may also change (if the
relevant edge of Q is parallel to some diagonals).
(ii) If the trajectories of P are not in general position, as defined above, we can perform symbolic
perturbation, using the framework proposed by Yap [26], to simulate general position.
(iii) If we do not augment P with P∞, the set of points at infinity, some of the edges of DT(P) are
adjacent to only one triangle, i.e., the edges of the support hull of P (defined in the introduction,
cf. Figure 1 (b,c)), and this set can change over time with the motion of P. Consequently, besides
edge flips, edges need to be inserted into or deleted from DT(P). From the Voronoi diagram
perspective, some of the Voronoi cells of P will be unbounded, and their status from bounded
to unbounded will change over time, as their defining sites become or cease to be vertices of
the support hull of P. Consequently, at some singular biscetor events involving a pair p, q, the
two-dimensional region of bpq (the polygonal region W in Figure 8) may be unbounded. Therefore
extra care is needed while performing the rotational sweep to process the singular sequence of
these events. Adding P∞ simplifies and unifies all these special handlings.

4 Bounding the number of events

In this section we show that the overall number of events, at which the topological structure of
VD(P) changes, during the motion of the points is only nearly quadratic in n. The bounds on
the number of events hold even if the trajectories of points in P are not in Q-general position,
but for simplicity, the proofs are presented under the general-position assumption. We can use a
symbolic-perturbation based argument to extend the proof when trajectories are not in general
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position; see for example [23, Chapter 5]. PANKAJ SAYS: I changed the previous sentence; see if this is ←−
palatable to everyone.

The number of bisector events. The number of generic (resp., singular) bisector events is O(k2n2)
(resp., O(kn2)) since the orientation of the segment pq for a given pair p, q ∈ P, can become parallel
to a fixed diagonal vivj (resp., a fixed edge ei = vivi+1) of Q only O(1) times, as implied by our
kinetic general position assumption.

Each time the orientation of pq becomes parallel to a fixed diagonal or edge of Q there are O(1)
topological changes in the structure of epq. Therefore, all the Q-Voronoi edges epq undergo a total of
O(k2n2) changes in their edgelet structure. Note that we only count the bisector events themselves
in the O(kn2) bound on the number of singular bisector events, and not the singular sequences of
corner and flip events associated with them; these other events will be bounded separately in what
follows.

The number of corner events. The number of corner events (which can be either generic or
singular) is bounded by the following lemma.

Lemma 4.1. Let Q be a convex k-gon, and let P be a set of n moving points in R2 along algebraic trajectories
of bounded degree. The overall number of corner events (generic and singular) in DT(P) is O(k2nλr(n)),
where r is a constant that depends on the degree of the motion of the points of P.

Proof. Fix a point p and a vertex vi of Q, and consider all the corner events in which (for an
appropriate homothetic copy of Q) the vertex (with label) vi touches p. As noted above, at any such
event the center c of Q lies on the ray ui[p] emanating from p in direction vio (where o denotes the
center of Q). Note that, since p is moving, ui[p] is a moving ray, but its orientation remains fixed.
For every other point q ∈ P \ {p}, let ϕi[p, q](t) denote the distance, at time t, from p along ui[p] to
the center of a homothetic copy of Q that touches p (at vi) and q.

Each function ϕi[p, q](t) is well defined only when q lies strictly in the wedge between two
rays emanating from p, one in the direction ~vivi−1 and the other in the direction ~vivi+1. Since the
segment pq becomes parallel to ei−1 or to ei only O(1) times, the domain in which ϕi[p, q](t) is
defined consists of O(1) open intervals.

The value minq ϕi[p, q](t) represents the intersection of ∂Vor(p) with ui[p] at time t (recall that
Vor(p) is the Voronoi cell of p in VD(P)). The point q that attains the minimum defines the Voronoi
edge epq of Vor(p) that ui[p] intersects. At appropriate discrete times, the minimum may be attained
by more than one point q, and then ui[p] hits a vertex of Vor(p).

In other words, we have a collection of n− 1 partially defined functions ϕi[p, q], for q ∈ P \ {p},
and the breakpoints of their lower envelope (where two different functions attain the envelope
simultaneously) represent the corner events that involve the contact of vi with p.

By our assumption on the motion of P, each function ϕi[p, q], within each interval of its domain,
is piecewise algebraic, with O(k) pieces. Each piece encodes a continuously varying contact of q
with a specific edge of Q, and has constant description complexity. Hence (see, e.g., [23, Corollary
1.6]) the complexity of the envelope is at most O(kλr(n)), for an appropriate constant r that depends
on the degree of the motion of the points of P. Repeating the analysis for each point p and each
vertex vi of Q, we obtain the bound asserted in the lemma.
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To complete the proof, we also need to take into account the initial and the final corner events
of each singular sequence. The number of these events, though, is subsumed by the bound asserted
in the lemma, and the proof is completed.

The number of flip events. We distinguish between generic flips and their singular counterparts,
handling the singular flip events first.

Lemma 4.2. Let Q be a convex k-gon, and let P be a set of n moving points in R2 along algebraic trajectories
of bounded degree. The number of singular flip events in DT(P) is O(k3nλr(n)), where r is the same
constant as in the statement of Lemma 4.1.

Proof. We choose three arbitrary edges e1, e2, e3 of Q, and analyze the number of singular flips at
which two points of P touch e1 and one point of P lies on each of e2 and e3. The overall bound
on the number of singular flips is obtained by repeating our analysis for the O(k3) such triples of
edges.

Let Q̃ be the convex hull of e1, e2 and e3, with at most six vertices. Every singular flip event with
respect to Q that involves e1, e2, and e3 in the manner stated in the preceding paragraph is also a
singular flip event with respect to Q̃. To bound the number of singular flip events for Q̃, we first
show how to charge each of them to a singular corner event (again, with respect to Q̃) so that each
corner event is charged only O(1) times, and then make use of Lemma 4.1.

Consider the homothetic copy of Q̃ associated with a singular flip involving four points
p, q, r, s ∈ P; we abuse the notation slightly, as we did earlier, and refer to this copy also as
Q̃. Suppose, more concretely, that p and q touch e1, r touches e2, and s touches e3. We continuously
slide Q̃ so that it maintains its contacts with p, q at e1, and with r at e2, and moves4 away from s.
Specifically, the segments pr, qr partition Q̃ into three parts: the portion that touches s, the triangle
4pqr, and the third complementary portion (bounded by pr). During the continuous motion of Q̃,
the part that was previously incident to s shrinks, the triangle4pqr does not change (as a portion of
Q̃), and the third part expands; see Figure 13 (a). The motion of Q̃ stops when one of the following
situations is reached:

r
s

(a) (b)

e2

e1

e3

e1

e3

e2

Q̃ Q̃

e12

r

p q

s

p q

w

Figure 13. Charging a singular flip event. We slide Q̃ while maintaining the contacts with p, q, r: (a) one of the points
runs into a vertex, (b) ∂Q̃ touches a new point. Thick polygons denote the corner event to which the flip event is charged.

4Note that our continuous motion argument refers to the stationary point set P = P(t0), where t0 is the time of the
singular flip event. Thus we move Q̃ (for the purpose of the analysis) but the points of P remain fixed.
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(i) One of the points p, q, r runs into a vertex of Q̃; see Figure 13 (a) (where r is that point): This is a
singular corner event of p, q or r, which can be charged for our singular flip event. This is because
both events occur simultaneously, and any corner event is charged only O(1) times in this manner
(reversing the sliding process, the fourth point s is the first new point that the expanding part of Q̃
hits).
(ii) The boundary of the expanding third portion of Q̃ touches a new point w of P; see Figure 13 (b). In this
case e2 cannot be adjacent to e1, because then there would be no expanding portion of Q̃, and no
new point could be reached. Let e12 be the (unique) edge of Q̃ joining e1 and e2. Since e3 belongs
to the shrinking portion of Q̃, the boundary of the expanding portion of Q̃ consists of e12 and of
portions of e1, e2, and thus w must lie on e12; see Figure 13 (b). We now slide Q̃ along its contacts
with p, q, and w and away from r. Since e12 is adjacent to e1, the motion now stops, as in case (i),
when one of p, q, w reaches a vertex of Q̃. We charge the flip event to this corner event. There are
O(1) possible ways to backtrack from the resulting corner event to the original singular flip (first
by expanding until r is reached, and then by expanding again until s is reached), which occurs
simultaneously with it. Hence, each corner event is charged in this manner only O(1) times.

By Lemma 4.1, the number of singular corner events with respect to Q̃ is O(nλr(n)), so the
number of singular flip events with respect to Q̃ is also O(nλr(n)). Multiplying this bound by the
number O(k3) of triples of edges e1, e2, e3 yields the bound asserted in the lemma.

Lemma 4.3. Let Q be a convex k-gon, and let P be a set of n moving points in R2 along algebraic trajectories
of bounded degree. The number of generic flip events in DT(P) is O(k4nλr(n)), where r is the same constant
as in the statement of Lemma 4.1.

Proof. Each generic flip event involves a placement of an empty homothetic copy Q′ of Q that
touches simultaneously four points p1, p2, p3, p4 of P, in this counterclockwise order along ∂Q′, so
that the Voronoi edge ep1 p3 , which was a non-corner edge before the event, shrinks to a point and is
replaced by the newly emerging non-corner edge ep2 p4 right after the event. Let ei denote the edge
of Q′ that touches pi, for i = 1, 2, 3, 4. Since this is a generic flip, the ei’s are distinct.

We fix the quadruple of edges e1, e2, e3, e4, analyze the number of flip events involving a quadru-
ple contact with these edges, and sum the bound over all O(k4) choices of four edges of Q. For a
fixed quadruple of edges e1, e2, e3, e4, we replace Q by the convex hull Q̃ of these edges, which is at
most octagonal, and note that any flip event of Q involving these four edges is also a flip event for
Q̃. We therefore restrict our attention to Q̃, which is a convex k0-gon, for some k0 ≤ 8, and argue
that the number of generic flip events for Q̃, with contacts at the above four edges e1, . . . , e4, is
O(nλr(n)).

We note that if pq is a Delaunay edge containing an edgelet which is the locus of centers of
placements of copies Q̃′ of Q̃ where p and q touch two adjacent edges of Q̃′, then pq must be a
corner edge. Indeed, shrinking Q̃′ towards the vertex common to the two edges, so that it continues
to touch p and q, will keep it empty, and eventually reach a placement where either p or q touches
a corner of Q̃′.

Consider the situation just before the critical event takes place, as depicted in Figure 14 (a).
The Q̃-Voronoi edge ep1 p3 (to simplify the notation, we write this edge as e13, and similarly for the
other edges and vertices in this analysis) is delimited by two Q̃-Voronoi vertices ν123 and ν143, so
that Q̃[ν123] touches p1, p2, p3 at the respective edges e1, e2, e3, and Q̃[ν143] touches p1, p4, p3 at the
respective edges e1, e4, e3.
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Figure 14. (a) The edge e13 in the diagram VD(P) before it disappears. The endpoint ν123 (resp., ν143) of e13 corresponds
to the homothetic copy of Q̃ whose edges e1, e2, e3 (resp., e1, e4, e3) are incident to the respective points p1, p2, p3 (resp.,
p1, p4, p3). (b) The tree of non-corner edges that contains e13. In the “worst-case” scenario depicted here, all five solid
edges belong to the tree, and the dashed edges are all corner edges.

Let T be the maximum connected component of the union of the non-corner Q̃-Voronoi edges
that contains e13. We claim that T is a tree with at most five edges; specifically, it can include only
e13 itself, e12, e23 (the edges adjacent to ν123), and e14, e34 (the edges adjacent to ν143); see Figure 14(b).
To see this, consider, for specificity, the neighboring edge e12 incident to the vertex ν123, and assume
that e12 is a non-corner edge (otherwise it does not belong to T, by construction), so e12 is part of T.
As we move the center of Q̃ along that edge away from ν123, Q̃ loses the contact with p3, shrinks
on the side of p1 p2 that contains p3 (and p4, already away from Q̃), and expands on the other side.
Being a non-corner edge, the other endpoint of e12 is a placement at which the (artificial) edge
e12 of Q̃ between e1 and e2 touches another point p5 (while p1 and p2 continue to touch e1 and e2,
respectively). Since e12 is adjacent to both edges e1, e2, the new Voronoi edges e15 and e25 must both
be corner edges. The same argument applies for the other three Voronoi edges adjacent to e13, and
we conclude that T is a tree consisting of at most five edges.

We note that as long as no discrete change occurs at any of the surrounding corner edges of T,
it can undergo only O(1) discrete changes because all its edges are defined by a total of O(1) points
of P (and the size of Q̃ is independent of k). Furthermore when a corner edge undergoes a discrete
change, this can affect only O(1) adjacent non-corner trees of the above kind.

Hence, the number of changes in non-corner edges, and in particular the number of flip events
they are involved in, is proportional to the number of corner events, because only corner events
affect the actual number of breakpoints on an edge. More specifically, if e is an edge adjacent to T,
its interaction with T can change only when its last edgelet (the one nearest to T) changes, and that
can happen only at a corner event. By Lemma 4.1 and the reasoning preceding it (applied to Q̃), the
number of corner events is O(nλr(n)) (the same r as in the previous lemmas). Multiplying by the
O(k4) choices of quadruples of edges of Q, we conclude that the total number of generic flip events
is O(k4nλr(n)).

Combining the above three lemmas, we obtain the following summary result.

Theorem 4.4. Let P be a set of n moving points in R2 along algebraic trajectories of bounded degree, and
let Q be a convex k-gon. Then the number of topological changes in VD(P) (and in DT(P)) with respect to
Q, is O(k4nλr(n)), where r is a constant that depends on the degree of the motion of the points of P.
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5 A KDS for kinetic maintenance of VD(P) and DT(P)

In this section we turn the detailed analysis of the kinetic behavior of VD(P) and DT(P), as
studied in Section 3, into an efficient algorithm for their kinetic maintenance, using the KDS
framework of Basch et al. [4]. In particular, as the points of P move continuously, DT(P) and
VD(P) are maintained using a collection of local certificates (Boolean predicates) that assert the
correctness of the topological structure of the current Voronoi diagram (and thus also of the
Delaunay triangulation). When one of these certificates fails, one of the events discussed in
Section 3 takes place and the KDS repair mechanism updates VD(P), DT(P), and the certificates. A
global event queue is used to determine when the next certificate fails. For simplicity, the KDS is
described under the assumptions that the orientations of all edges and diagonals of Q are distinct,
the trajectories of points in P are in Q-general position (i.e., satisfy (T1)–(T5)), and P is augmented
with the points of P∞. In cases where these assumptions do not hold, we apply an infinitisimal
symbolic perturbation of the vertices of Q, thereby putting it in general position, and ensuring
the distinctness of the orientations of all the edgese and diagonals of Q. With suitable (minor)
adjustments, this will allow our KDS to operate in such degenerate situations too.
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Figure 15. A Delaunay edge pq and its two adjacent triangles41,42. We have δ(v1, p) = 2, δ(v1, q) = 0, δ(v2, p) = 3,
and δ(v2, q) = 6, using the edge numbering given on the right, where vi is the Voronoi vertex corresponding to4i, for
i = 1, 2. The edgelets appearing in epq are labeled (2, 0), (2, 7), (3, 7), and (3, 6).

We need the following definitions and notation to describe the KDS. For a Voronoi vertex ν of
some Voronoi region Vor(p), where p is a point of P not lying at infinity (so p is a vertex of the
Delaunay triangle4ν corresponding to ν), we define δ(ν, p) to be the edge of Q[ν] that touches p
(at a generic time instance, p does not lie at a vertex of Q[ν]); see Figure 15.

Let epq be a Voronoi edge with endpoints ν1 and ν2. Let g1 (resp., g2) be the edgelet of bpq that
contains the endpoint v1 (resp., v2). Writing ψ(g1) = (i1, j1) and ψ(g2) = (i2, i2), we have δ(ν1, p) =
i1, δ(ν2, p) = i2, δ(ν1, q) = j1, and δ(ν2, q) = j2. That is, δ(ν1, p) and δ(ν1, q) together encode the
edgelet of bpq containing ν1, which is an external edgelet of epq, and an analogous property holds for
ν2, so the mapping δ(·, ·) encodes the external edgelets for all edges of VD(P). If epq is a non-corner
edge of VD(P), then g1 = g2, and therefore δ(ν1, p) = δ(ν2, p) and δ(ν1, q) = δ(ν2, q).

We focus on the more detailed representation of VD(P); DT(P) is easier to represent, and for
the ongoing analysis we regard it merely as the dual of VD(P). We assume for now that VD(P) is
represented explicitly; that is, each Voronoi edge is represented as a sequence of its edgelets. We
represent VD(P) (and DT(P) too, if so desired) using the so-called doubly connected edge list (DCEL)
data structure [5], a commonly used structure for representing planar subdivisions. It stores a
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record for each face, edgelet, and vertex (a Voronoi vertex or a breakpoint) of the subdivision, along
with some adjacency information. The basic entities in this representation are half-edges, where
each half-edge is an oriented copy of some Voronoi edgelet. Each half-edge stores pointers to its
endpoints (each of which is a breakpoint or a Voronoi vertex), the Voronoi cells adjacent to it, its
neighboring edgelets, and its label (i, j). Each Voronoi cell Vor(p) is associated with its input point
p, which stores its trajectory. With each breakpoint or vertex ν we can either store its trajectory,
or compute it on the fly from the trajectories of the two or three points defining ν, and the edges
of Q[ν] that they touch (we can determine the identity of these edges of Q[ν] from the labels of
the edgelets adjacent to ν). Note that as long as no event happens, the trajectories of each vertex
and breakpoint are algebraic of constant complexity. See [5] for more details on the DCEL data
structure. This explicit representation of VD(P) requires O(nk) space.

5.1 Certificates

We maintain three types of certificates, each corresponding to a different type of event. Each
certificate is stored at the event queue, with its next future failure time as its priority. In addition,
we store with each certificate information that will be needed to update the diagram and the event
queue when the certificate fails.

Bisector certificates. For each internal edgelet g of each Voronoi edge epq, with ψ(g) = (i, j), we
maintain a certificate asserting that the orientation of pq lies between the two extreme orientations
of lines that cross both edges ei and ej of Q (these are the orientations of vivj and vi+1vj+1). We
recall that i and j are not consecutive for internal edgelets. This certificate fails when ~pq attains
one of these extreme orientations; See Figure 16. The failure causes g to shrink and disappear and
be replaced by a new internal edgelet g′ with ψ(g′) = (i − 1, j− 1) or ψ(g′) = (i + 1, j + 1), as
appropriate. To efficiently perform the required updates when this certificate fails, the certificate
also stores a direct pointer to the edgelet itself (in the DCEL). We call this certificate a generic bisector
certificate.

p

q

vi
vi+1

vj

vj+1

Figure 16. The generic bisector certificate corresponding to an internal edgelet g such that ψ(g) = (i, j). It fails when ~pq
becomes parallel to ~vivj or ~vi+1vj+1

External edgelets of an edge epq come in two types: edgelets that are portions of non-terminal
(bounded) edgelets of the bisector bpq, and edgelets that are portions of the terminal rays of bpq; see
Figure 3. Our general position assumption (T5) implies that we do not have to associate bisector
events with edgelets of the former type, because before such an edgelet shrinks to a point, as an
edgelet of bpq, it will disappear as an edgelet of epq, at a corresponding corner event, if epq is a
corner edge, or at a flip event, if epq is a non-corner edge.
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Consider then external edgelets of the latter type. Each such edgelet g has a label of the form
ψ(g) = (i, i + 1), and its bisector certificate fails when the corresponding points p and q are such
that ~pq becomes parallel to either ei or ei+1. This is a singular bisector event. We refer to such a
certificate as a singular bisector certificate.

(Voronoi) Vertex certificates. For each vertex ν of VD(P) not lying at infinity and for each point
p ∈ P such that Vor(p) is adjacent to ν and p is not at infinity, we maintain a certificate asserting
that δ(ν, p) = vivi+1 for a suitable index i, i.e., p lies on the edge vivi+1 of the homothetic copy Q[ν]
of Q. Because the motion of p is continuous, the certificate fails only when p coincides with vi or
vi+1 in Q[ν]; that is, the failure occurs at a corner event. This certificate stores pointers to ν, p. The
index i and δ(ν, p) can be identified using the labels of the edgelets adjacent to ν in the DCEL.

Let q and r be the other two points of P defining ν; i.e. ν = νpqr. The corner event is either
generic, when the vertex of Q with which p coincides is not adjacent to δ(ν, q) or to δ(ν, r), or
singular, when this vertex is adjacent to one of these edges, say to δ(ν, q). In the latter case, this is
the first singular corner event in the singular sequence associated with the corresponding singular
bisector event involving p and q at which ~pq is parallel to δ(ν, q). When the singular corner event
happens the placement Q[ν] is a placement at which p lies at the common vertex of δ(ν, p) and
δ(ν, q), and q lies on the adjacent edge δ(ν, q). In the terminology of Section 3.2, ν = η−; see there
for more details. We refer to a vertex certificate that fails at a generic corner event as a generic vertex
certificate and to a vertex certificate that fails at a singular corner event as a singular vertex certificate.

For any sequence of singular events, only the initial corner event is detected through the failure
of a singular vertex certificate; the remaining corner events are detected and treated separately, as
described below.

(Voronoi) Edge certificates. For each non-corner Voronoi edge epq, we maintain the following
certificate. Let νpqr and νpqw be the two endpoints of epq, i.e.,4pqr and4pqw are the two Delaunay
triangles adjacent to the edge pq. We maintain the certificate asserting that epq exists, namely, that
νpqr 6= νpqw; since the trajectories of these vertices are available, and each of them is of constant
complexity (as long as no other event affecting these vertices occurs), we can compute the failure
time of this certificate in O(1) time. The edge certificate fails when νpqr = νpqw (while maintaining
δ(νpqr, p) = δ(νpqw, p) 6= δ(νpqr, q) = δ(νpqw, q) 6= δ(νpqr, r) 6= δ(νpqw, w)), that is when p,q,r, and w
become Q-circular while touching distinct edges of Q. This is a generic flip event.

Singular flip events, occurring as part of a compound singular bisector event, as described in
Section 3.2, are detected and treated separately, as described below.

5.2 Handling certificate failures

We now describe the KDS repair mechanism that updates VD(P), DT(P), the certificates, and the
event queue, when a certificate fails. The queue contains the failure times of generic bisector and
vertex certificates, edge certificates, and singular bisector and vertex certificates. Note that singular
certificates come in pairs, each consisting of a singular bisector certificate and a singular vertex
certificate, both failing at the same time. When we extract from the queue one certificate of such pair,
we immediately extract its sibling too, and process them together, as will be described later. We
note that, except for this kind of simultaneous failure of two distinct certificates, assumption (T5)
implies that there are no other duplications of failure times in the queue.

The processing of the failure of a certificate, when it is extracted from the queue, is handled
according to its type, and proceeds as follows.
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Generic bisector certificates. Consider such a certificate involving the shrinking of some edgelet
g of some Voronoi edge epq. We remove g from VD(P) and replace it by a new (internal) edgelet
g′. We compute ψ(g′) from ψ(g), by adding or subtracting 1 from its two indices, as appropriate,
generate the new bisector certificate for g′, compute its failure time, and insert it into the queue.

Generic vertex certificates. Let ν := νpqr be a Voronoi vertex such that one of its certificates,
say δ(ν, p) = ei, fails, and suppose that this is a generic vertex certificate. This happens when p
coincides with one of the endpoints of ei, say, vi, in the homothetic copy Q[ν] of Q (and δ(ν, q)
and δ(ν, r) are not adjacent to vi). Then ν lies at a breakpoint of epq and at a breakpoint of epr, and
we detect a generic corner event, at which, without loss of generality, epq loses an edgelet g and
epr gains an edgelet g′. We remove g from the DCEL, including its adjacent breakpoint (which is
“overtaken” by ν), create the new edgelet g′ on epr and the corresponding new breakpoint delimiting
it, and update the DCEL accordingly. We next update the certificates as follows.

(i) We find the new edge e′ of Q (which is either ei−1 or ei+1) that supports p after the event,
replace the old certificate with a new certificate asserting that δ(ν, p) = e′, compute the failure time
of the new certificate, and update the event queue.

(ii) Since p lies on a new edge of Q[ν] after the event, the algebraic representation of the
trajectory of ν changes, and thus we also update the failure times of the vertex certificates that
specify δ(νpqr, q) and δ(νpqr, r).

(iii) The new edgelet g′ is an external edgelet of epr. If its label consists of two consecutive edges
of Q then g′ generates a singular bisector certificate, which we process into the queue (otherwise,
as noted earlier, no action is needed here).

(iv) The edgelet of epr adjacent to g′ may now become internal, and then we generate the
corresponding generic bisector certificate. Otherwise epr was a non-corner edge before the event
and becomes now a corner edge, so we remove the edge certificate associated with epr from the
queue.

(v) The edgelet g+ of epq adjacent to g becomes external. We first remove the generic bisector
certificate of g+. Next, if epq becomes a non-corner edge, then we generate a new edge certificate
associated with epq.

(vi) If the third Voronoi edge eqr adjacent to ν is a non-corner edge then its certificate failure
time has to be updated, because of the new trajectory of ν.

Edge certificates. If a non-corner edge epq, with endpoints νpqr and νpqw, shrinks to a point, i.e.,
p, q, r, w become Q-cocircular, then the edge certificate associated with epq fails. We replace in
VD(P) the non-corner edge epq with the non-corner edge erw and the vertices νpqr and νpqw with
νrwp and νrwq (these are the endpoints of the new edge). The edge pq in DT(P) is flipped to rw, and
4pqr,4pqw are replaced with4rwp and4rwq.

Next, we remove the six vertex certificates associated with the vertices νpqr and νpqw. We add the
edge certificate corresponding to the edge erw and the six vertex certificates corresponding to the
vertices νrwp and νrwq. Finally, since the endpoints of the edges epr, eqr, epw, and eqw have changed, if
any of them is a non-corner edge then we also update the certificate corresponding to that edge,
recompute its failure time, and update the queue.

Singular bisector and vertex certificates. Finally we turn to the processing of a pair of a singular
bisector certificate and a singular initial corner certificate that fail simultaneously. Let p and q be
the points generating the bisector event, such that at the corresponding corner event p touches Q at
a vertex vi and q lies on, say, the edge vivi+1. Following the notations of Section 3, we denote by
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η− = νpqr− the Voronoi vertex at which the corner event occurs, where r− is the third point defining
this event, and by ρ− the terminal ray of bpq that contains η−.

Let g be the edgelet of epr− that disappears at the event. We remove g from the DCEL structure,
and remove its two endpoints, one of which is η−. We also remove the external edgelet of epq
contained in ρ− and the certificates associated with these features. Recall (see Section 3.2) that the
next edgelet g+ of epr− and the external edgelet g− of eqr− adjacent to η− were parallel before the
event and become aligned after the event.

We now execute a process that effectively simulates the rotational sweep of ρ from ρ− to ρ+, as
described in Section 3.2, continuously traversing the corresponding portion γ of ∂Vor(p) between
η− and η+ with the endpoint η = ρ ∩ γ of epq, and transferring this portion to Vor(q). Specifically,
we iterate over the edges and edgelets of γ in order, starting with the edgelet g+ following g on
epr− , and do the following. Let f be the edgelet currently traversed by η, of some old Voronoi edge
epr. Notice that epr is now split by η = vpqr into eqr, the portion already traversed by ρ, and the
remainder epr, still labeled as such. We test whether η+ ∈ f , that is, whether the terminal corner
event, where q lies at vi+1, occurs before f ends.

Suppose first that η+ 6∈ f . In this case the entire f becomes an edgelet of the new edge eqr when
η coincides with the other endpoint ν of f . If ν is a breakpoint, this corresponds to a singular corner
event. Otherwise, ν is an old Voronoi vertex νprr′ , so its coincidence with η indicates a singular flip
event of epr to eqr′ . In both cases, we replace the old bisector certificate associated with f , if there
was one, by a corresponding certificate in which q replaces p. In case of a singular flip event, we
replace it by νqrr′ and update its vertex certificates. In addition, if the old edge epr was non-corner,
we also replace its edge certificate by the corresponding edge certificate in which q replaces p again.

A somewhat special treatment applies to the first edgelet g+ in the sequence. If η+ 6∈ g+ then
we remove g+, as it now merges with the last edget g− of epr− into a common larger edgelet, and
we replace the endpoint of g− (which was η−) by the endpoint of g+. The handling of this endpoint,
if it is a vertex, is done exactly as just described. Finally, if eqr− was a non-corner edge, we remove
its certificate from the queue as it is now obsolete. If in addition g+ ends at a Voronoi vertex, eqr−

continues to be non-corner, and we generate a new edge certificate for it.
Finally, consider the case where η+ lies on the current edgelet f . In this case we create (i) a

new breakpoint w, for which q touches Q[w] at vi+1 (indicating the final corner event), (ii) the new
Voronoi vertex η+ = νpqr, and (iii) three new edgelets f1, f2, and f3 that replace f , where f1 is the
portion of f preceding w, f2 is the new edgelet between w and η+ (which is denoted by h in Figure
8(c)), and f3 is the remainder of f ; f1 and f2 are now part of eqr while f3 is still an (external) edgelet
of epr. We also add a new external edgelet epq, which is contained in ρ+ and is adjacent to η+. We
generate new certificates associated with these new features of the diagram and delete the old ones,
similar to the preceding discussion.

This completes the description of the KDS repair mechanism.
The KDS as we described it maintains O(nk) certificates, so its event queue takes O(nk) space

(in addition to VD(P) which also takes O(nk) space). When a generic certificate fails we make O(1)
changes to the diagram in O(1) time and O(1) changes to the event queue in O(log n) time. The
simulation of the rotational sweep when we process a singular bisector event may take a long time.
But it makes O(1) changes to the diagram in O(1) time and O(1) changes to the event queue in
O(log n) time, for each singular corner or flip event along γ, and the analysis of Section 4 bounds
the overall number of these singular sub-events. The formulation of the following theorem (and of
Theorem 5.2) assumes this point of view.
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Putting everything together, obtain the following main result of this paper.

Theorem 5.1. Let P be a set of n moving points in R2 along algebraic trajectories of bounded degree, and let
Q be a convex k-gon. Then both DT(P) and VD(P), including the sequence of edgelets of each Voronoi edge,
can be maintained using a KDS that requires O(nk) storage, encounters O(k4nλr(n)) events, and processes
each event in O(log n) time, in a total of O(k4nλr(n) log n) time. Here r is a constant that depends on the
degree of the motion of the points of P.

5.3 Implicit representation of VD(P)

The drawback of the maintenance of the explicit representation of VD(P), including the edgelets
comprising each Voronoi edge, is that it uses O(nk) storage. We can reduce the storage to O(n) by
completely ignoring the edgelets, and storing each Voronoi edge as a single entity in the DCEL
connecting the two Voronoi vertices that delimit it (breakpoints are not maintained either).

This in fact simplifies the KDS, because there is no need anymore to maintain bisector certificates
or detect bisector events. That is, we only maintain generic and initial singular corner certificates,
and generic edge certificates. We also store δ(ν, p), δ(ν, q), and δ(ν, r) explicitly with each vertex
ν = νpqr. As discussed before, δ(ν, p), δ(ν, q), and δ(ν, r) encode the labels of the external edgelets
adjacent to ν.5 Suppose that a generic vertex certificate asserting that δ(ν, p) = ei = vivi+1 fails
when p reaches one of the endpoints vi or vi+1 of ei. We compute using δ(ν, p), δ(ν, q), δ(ν, r),
which among the edges epr and eqr gains an edgelet and which loses an edgelet, and the labels of
the new external edgelets of epr and eqr that touch ν. We compute the new vertex certificates of ν
and insert them into the queue replacing the old vertex certificates associated with ν. We check, by
comparing the external edgelets of epr and eqr, if any of these edges changes its type from a corner
edge to a non-corner edge or vice versa. If indeed the type of such edge changes, we remove or
add the corresponding edge certificate, as appropriate. In addition we update the edge certificate
of epq if it is a non-corner edge and update δ(ν, p). The processing of a flip event is similar to its
processing when the diagram is explicit.

When an initial singular corner event is detected, we run the same process as in the previous
subsection, simulating the rotational sweep of Section 3.2. We perform this process by traversing
the corresponding portion γ of ∂Vor(p) between η− and η+, essentially as before, but here we
compute the sequence of edgelets of each edge epr along γ on the fly, starting and ending at its
external edgelets (which are encoded by the δ values of the vertices adjacent to epr). The tracing
of the edgelets is needed only for finding the edgelet containing η+, so that we can generate the
relevant vertex certificates involving δ(η+, p), δ(η+, q), and δ(η+, r+) (where r+ is the third point
defining η+).

Putting everything together, we obtain the following theorem.

Theorem 5.2. Let P be a set of n moving points in R2 along algebraic trajectories of bounded degree, and
let Q be a convex k-gon. Then both DT(P) and VD(P) (without the edgelet subdivision of its edges) can be
maintained using a KDS that requires O(n) storage, encounters O(k4nλr(n)) events, and processes each
event in O(log n) time, in a total of O(k4nλr(n) log n) time. Here r is a constant that depends on the degree
of the motion of the points of P.

5We cannot compute these values now from the labels of the external edgelets as we do not maintain the edgelets.
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6 Conclusion

In this paper we have presented a detailed and comprehensive analysis of kinetic Voronoi diagrams
and Delaunay triangulations under a convex distance function induced by a convex polygon. We
have shown that the number of topological changes, when the input points move along algebraic
trajectories of constant degree, is nearly quadratic in the input size, and that the diagrams can
be maintained kinetically by a simple KDS, which is efficient, compact, and responsive, in the
terminology of [4]. As stated in the introduction, our result, along with the result in the companion
paper [2], lead to a compact, responsive, and efficient KDS for maintaining the stable edges of the
Euclidean Delaunay triangulation of P, as defined earlier, that processes a near-quadratic number
of events if the motion of P is algebraic of bounded degree. See [2] for further details.

An interesting open problem is to improve the dependence on k of the bounds on the number
of events, as obtained in Section 4. We tend to conjecture a near-quadratic dependence on k (down
from the current factor k4). A more challenging question is to develop an efficient KDS for Voronoi
diagrams under polyhedral distance functions in R3. Of course, the major open problem on this
topic is to extend the recent result by Rubin [22] to the case when the points of P move with different
speeds.
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