
LINEAR STRUCTURE OF BANACH SPACES; ASYMPTOTIC VIEWV. MilmanSchool of Mathematical SciencesSackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv, IsraelOne of the main directions in Geometric Functional Analysis is the study of thelinear structure of an in�nite dimensional Banach space. But what do we understand bythe words \structure" or \linear structure" of a normed space? There is a \classical"understanding which has developed since the time of Banach: search for some special, nicebuilding blocks of a space; as extreme, say `p-subspaces or quotient spaces of a given space.Many beautiful results in this direction were proved in the 50's and 60's (see monographsof Lindenstrauss-Tzafriri [LT77] and [LT79], or survey [M70] and M71]).However, such understanding of a structure for a generic Banach space failed. We havetoday counter-examples to almost every conjecture on a structure of an abstract Banachspace in such classical direction (starting from Tsirelson space [Ts74], and most recentlymany examples of Gowers-Maurey and Gowers [GM93], [G1]).In two lectures below, I will describe brie
y two di�erent possibilities, two oppositeand, in a sense, complemented understanding of \linear structure" of in�nite dimensionalnormed spaces.The �rst of these approaches started and was developed much before the recent ex-amples appeared. We changed our thinking and considered a family of �nite dimensionalsubspaces (say, all �nite dimensional subspaces of a given in�nite dimensional Banachspace) emphasizing an asymptotic behavior when dimension increases to in�nity. Andthen such asymptotic view reveals regularities behind increasing (with increase of dimen-sion) diversity of spaces. We call this Local Theory, or Asymptotic Finite DimensionalTheory. A short discourse on this theory is given in the second lecture.This is the text of two lectures given at Wuhan International Conference on Banach Spaces(China); April 1994.



But in the �rst lecture I would like to describe another, very recent approach to visu-alizing some linear structure of in�nite dimensional space, some geometric purely in�nitedimensional phenomena; and our interest in this lecture is in phenomena which have no�nite dimensional analogues.1. Distortion and Asymptotic In�nite Dimensional TheoryThe start of this purely in�nite dimensional development stems from some facts ofLocal Theory. The following old observation may be seen today as just the \right" inter-pretation of the celebrated Dvoretzki theorem.Let (X; k � k), dimX =1, be a normed space and r(x) an equivalent norm on X. Welook for values a 2 R such that for every " > 0 and any integer n there exists a subspaceE, dimE = n and for every x 2 E, x 6= 0,a(1� ") � r(x)Ækxk � a(1 + ") :So, r is an almost isometry on E which is given by product on \a". We denote the collectionof such numbers a by 
(r) and call it the �nite dimensional spectrum of r (\spectrum ofisometry").Fact (see [M69]). The �nite dimensional spectrum of any equivalent norm on an in�nitedimensional space X is never empty: 
(r) 6= ; :Then, naturally, the following question arises:Does a number a 2 R exist such that for any " > 0 there is an in�nite dimensionalsubspace E such that for every x 2 E n 0a(1� ") � r(x)Ækxk � (1 + ")a ?The collection of all such numbers \a" we denote 
1(r) and call the in�nite-dimensionalspectrum of r(x). So, the question is:(i) Does 8X, dimX =1, 8 r(x), 
1(r) 6= ;?



or(ii) Does X exist and an equivalent norm r(x) on X such that 
1(r) = ;?If the case (ii) is realized then it is a pure in�nite dimensional phenomenon. We see inthis example one of the main roles of positive facts of Local Theory in extracting potentialpurely in�nite dimensional phenomena as counter-examples to a natural extension of factsof Local Theory to an in�nite dimensional setting.To continue, we need to develop some terminology:For a subspace E, consider an oscillation interval Ir(E) = [a; b] wherea = inf �r(x)Ækxk �� x 2 E n 0	 ; b = sup�r(x)Ækxk �� x 2 E n 0	 :Obviously, either these exists a sequence of embedded subspaces fE1 � � � � � En � En+1 �� � �g such that Ir(En) = [an; bn], bn=an ! 1, i.e. [an; bn]! f�g, or there exists an intervalI = [�; �], � > �, and(i) 8" > 0, 9 a subspace E", I(E") � [�� "; � + "](ii) for every in�nite dimensional subspace E0 � E", I(E0) � (�; �).We denote the family of such intervals I by e
(r) and call it the tilda-spectrum of r(x).It is convenient to consider 
1 as being part of e
(r) (i.e. an interval-point I = f�g 2 e
(r)).Then the asymptotic multiplicative oscillation d(I = [�; �] j I 2 e
(r)) = �=� andd(r) = sup�d(I) �� I 2 e
(r)	 :So, we have an obvious alternative:Either d(r) = 1 (i.e. Spectrum 
(r) 6= ;)or d(r) > 1, and we call this case a distortion.We call space X distortable if there is a norm r(x) on X, s.t. d(r) > 1, i.e., ifd(X) = sup�d(r) �� r is an equivalent norm on X	 > 1 :At the end of the 60s, the following theorem was proved (see [M71]):Theorem 1. If d(x) = 1 then for any " > 0, X contains either (1 + ")-isometric copy of`p (for some 1 � p <1) or (1 + ")-isometric copy of co.[In fact, it is not important to consider a family of equivalent norms for such a con-clusion, but a family of functions of two variables. '�(x; y) = kx+ �yk (kxk = 1 = kyk),



which correspond to \curvature-type" behavior around point x on the unit sphere; and forsome spaces, such as Lp, such functions do not create \distortion".]The next step was the construction of a new type of normed spaces by Tsirelson [Ts74].The huge, not decreasing in
uence of this construction on the in�nite dimensional Banachspace theory we experience till now. Tsirelson built a normed space T which containsneither an isomorphic copy of `p (for any 1 � p < 1) nor c0. We de�ne this norm �rston c00 (i.e. on all �nite support vectors of R1). We write Ei = [ni;mi] � N, Ei < Ej ifmi < nj and n < E1 meaning n < n1. Also, let fekg11 be the natural basis of R1 and Exdenote the projection of x onto \interval E = [n;m]", i.e. E�P aiei� = Pmn aiei. Thenthe \T -norm" is the solution of the following equation: 8x 2 c00kxkT = max�kxkc0 ; 12 sup � nX1 kEixkT ���� n 2 N ; Ei are any intervals s.t.n < E1 < � � � < En� : (1:1)Then T is a Banach space receiving by the completion of (c00; k � kT ).I consider this to be the �rst \non-classical" normed space where the norm is de�nedby \an equation", and not by a \formula". This construction was immediately investigatedby [FJ74] and many consequent papers (see [CS89]). However, at this stage, the followingconsequence from Theorem 1 was not investigated: T is distortable, d(T ) > 1 (!) Notethat no \size" of distortion follows from Theorem 1. Only after 1988, answering a questionof H. Rosenthal, T. Odell �rst checked that d(T ) � 2 (and what the real value of d(T )is still an open question). Then Odell (unpublished) substituted 12 by 1� in the de�nition(1.1) of the space T (let us call such spaces T�) and he showed that d(T�) � �.So, we have learnt that there are spaces with (large) distortion.To continue, let us give a geometric interpretation of the phenomenon of distortion.Let d(r) > 1 and I = [�; �] 2 e
(r), � < �. Let Y be a subspace such that for every in�nitedimensional subspace E ,! Y , Ir(E) � (�; �). Fix 0 < " < ���2 . De�ne two subsets ofthe sphere of Y :A = �x; kxk = 1 �� r(x) � �+ "	 ; B = �x 2 S(Y ) �� r(x) � � � "	 :



Then 8E ,! Y , dimE =1, A \E 6= ; and B \E 6= ;. We call such sets asymptotic setson S(Y ).So the geometric interpretation of distortion is the existence of two asymptotic sets Aand B on the sphere of some Banach space such that the distance d(A;B) > 0. Note, thata similar phenomenon cannot hold for any (large) integer N : if, for any Banach space X,A and B are such sets on S(X) that for any N -dimensional subspace E of X, A \ E 6= ;and B \E 6= ;, then the distance d(A;B) = 0.Let us return to the study of distortion. Schlumprecht [S1] put logn instead of � in(1.1) (it is enough then to consider 1 < E1 < � � � < En) and constructed the space S suchthat d(S) = 1. Moreover, this space has a sequence of asymptotic sets fAig1i=1 on itssphere such that distance d(Ai; Aj) � 1 for any i 6= j.[The existence of such a sequence of asymptotic sets was the starting point of all thefollowing constructions of spaces by Gowers and Maurey.]Till now, we have discussed a construction of special spaces which are distortable.But what about classical spaces? It is easy to see (James [J64]) that d(`1) = 1 as well asd(c0) = 1, i.e. `1 and c0 are not distortable. However, the similar question on `p spacesfor 1 < p < 1 was open from 1969 till the recent and very novel work of Odell andSchlumprecht.Theorem 2 ([OSch93]). For any p, 1 < p < 1, d(`p) = 1. Moreover, there are asymp-totic sets Ai � S(`2) such that, for i 6= j and 8x 2 Ai, 8 y 2 Aj��(x; y)�� < 1min(i; j) ;where (x; y) is the inner product in `2. Of course, the similar statement is true for every`p, 1 < p <1. [We call this a \biorthogonal distortion"].This is a new and purely in�nite-dimensional geometry of Hilbert spaces!Note that B. Maurey [Ma1], using Theorem 2, constructed a distorted norm r(x) on`2 which is a symmetric norm on `2.Combining Theorems 1 and 2, we see



Corollary. Every Banach space X which does not contain isomorphic copies of `1 and c0has a distortion norm: d(X) > 1 (so, d(X) = 1 implies X contains either an isomorphiccopy of `1 or an isomorphic copy of c0).However, how large can this distortion be? Can spaces X exist such that 1 < d(X) <1? We studied these questions with N. Tomczak-Jaegermann [MTJ93]. To formulatethe corresponding result, we have to introduce a new type of spaces and a di�erent view:classes of Banach spaces are de�ned by their asymptotic properties. We call space X witha basis feig11 a (stabilized) asymptotic `p-space if there is a constant C such that for anyinteger n, any n consecutive blocks fxign1 such that kxik = 1 and n < supp x1 < supp x2 <� � � < supp xn are C-equivalent to the natural basis of `np :1pC � nX1 jaijp�1=p � 



 nX1 aixi



 � pC� nX1 jaijp�1=p :The above Tsirelson space is an example of a stabilized asymptotic `1-space which isnot isomorphic to `1 and moreover it does not contain an isomorphic copy of `1. SimilarTsirelson spaces may be constructed for every 1 � p < 1 and c0: stabilized asymptotic`p-spaces which do not contain any isomorphic copies of `p.Theorem 3 [MTJ93]. IF space X has a bounded distortion, d(X) � d, then there is p,1 � p � 1, and a subspace E ,! X which is a stabilized asymptotic `p-space for constantC � d2.B. Maurey [Ma2] used this fact to prove that if X has an unconditional basis and typep > 1 then d(X) =1.Asymptotic in�nite-dimensional structure. To continue the line of [MTJ93] andto classify Banach spaces by their asymptotic properties we introduce in [MMT] the notionof asymptotic structure of space X.The main idea behind it is a stabilization at in�nity of �nite dimensional subspaceswhich appear everywhere far away. This further leads to an in�nite-dimensional construc-tion resulting in a notion of an asymptotic version of X.Let us describe the intuition of an asymptotic structure of an in�nite dimensionalBanach space X. Such a structure is de�ned by a family B(X) of in�nite dimensional



subspaces of X satisfying a �ltration condition which says that for any two subspaces fromB(X) there is a third subspace from B(X) contained in both of them; the main example isthe family B0(X) of all subspaces of �nite codimension in X. Then, for every k, we de�nethe family fXgk of asymptotic k-dimensional spaces associated to this asymptotic structureas follows (exact de�nitions are better given through the \game" approach introduced forsimilar purposes by Gowers [G2] { see [MMT]).Fix k and " > 0. Consider a \large enough" number N1, a \far enough" subspaceE1 of codimE1 = N1, and an arbitrary vector x1 2 S(E1). Next consider a numberN2 = N2(x1), depending on x1 and again \large enough", a \far enough" subspace E2 � E1of codimension N2(x1) and an arbitrary vector x2 2 S(E2). In the last kth step, we havealready chosen normalized vectors x1; : : : ; xk�1 and subspaces Ek�1 � � � � � E2 � E1;we then choose a \far enough" Ek � Ek�1 with codimEk = Nk(x1; : : : ; xk�1) and anarbitrary vector xk 2 S(Ek).We call a space E = span[x1; : : : ; xk] a permissible subspace (up to " > 0) andfxigk1|a permissible k-tuple if for an arbitrary choice of Ni and Ei (with codimEi = Ni)we would be able to choose normalized vectors fyi 2 Eig so that a basic sequence fyigk1 is(1 + ")-equivalent to fxigk1 .Now we can also clarify the imprecise notion of \far enough" subspaces Ei: by thiswe mean that an arbitrary choice as above of xi 2 Ei results in a permissible (up to" > 0) k-tuple fxigk1 and a permissible (up to " > 0) subspace E = span[xi; : : : ; xk]. Theexistence of such subspaces \far enough" and of associated Ni's, is proved by a compactnessargument.If F (k; ") is the set of all k-dimensional "-permissible subspaces then we put fXgk =T">0 F (k; "), and we call every space from fXgk a k-dimensional asymptotic space of X.Thus , permissible subspaces are (1 + ")-realizations of asymptotic spaces.Finally, a Banach space Y is an asymptotic version of X, if Y has a monotone basisfyig11 and for every n, fyign1 is a basis in an asymptotic space of X i.e. span[yi]n1 2 fXgn.Families of asymptotic spaces and asymptotic versions of a given Banach space haveinteresting properties and reveal a new structure of the original space. For example, weproved in [MMT] that for a �xed p, with 1 � p <1, if X is a Banach space such that there



exists C such that for every n, every space E 2 fXgn is C-isomorphic to `np , then everyasymptotic version Y of X is isomorphic to `p and the natural basis of Y is equivalent tothe natural basis of `p. It means that in such a space (called an asymptotic lp-space) allpermissible subspaces lie only along its natural lp basis.Some properties of families of asymptotic spaces fXgn can be demonstrated throughthe notion of envelopes. For any sequence with �nite support a 2 c00 the upper envelopeis a function r(a) = sup kPi aieik, where the supremum is taken over all natural basesfeig of asymptotic spaces E 2 fXgn and all n. Similarly, the lower envelope is a functiong(a) = inf kPi aieik, where the in�mum is taken over the same set. Remarkably, thefunctions r and g are always very close to some lp- (and lq)-norms. An interesting generalproperty of asymptotic versions is that some of them are, in a sense, stable under iteration.Precisely, for an arbitrary space X there is a special asymptotic version Y , called universal,such that its asymptotic structure is the same as for X. In particular this implies that notevery space X, even with an unconditional basis, can be a universal asymptotic version ofany Banach space. We direct the reader to [MMT] to receive more precise information onthis subject.2. Local Theory/Asymptotic view of high dimensional spaces in FunctionalAnalysis and Convex GeometryIn this lecture we discuss results in Local Theory which stand between Geometryand Functional Analysis. The theory was built during the last two decades. It consid-ers geometric problems via a Functional Analysis point of view. Consequently, typicalfor geometry \isometric" problems and view are substituted by \isomorphic" ones. Thisbecame possible with the asymptotic approach (with respect to dimension increasing toin�nity) to the study of high dimensional spaces. My goal in this lecture is to demonstrate,with some examples, a new intuition which corresponds to high dimensional spaces andpresent a few results to support our point of view. We recommend the following books:[MSch86], [P86], [P89], [TJ89] and surveys [M88a], [M92],[L92], [LM93]. Consider a �-nite dimensional normed space X = (Rn; k � k). Such a space is de�ned by its unit ballKX = fx 2 Rn; kxk � 1g. Inversely, if K is a convex centrally-symmetric body in Rn,



then XK = (Rn; k � kK) is the normed space with the unit ball K. Let jxj be the canonicaleuclidean norm in Rn, (x; y) be the standard inner product and D denote the standardeuclidean ball, i.e. D = K(Rn;j�j).A few examples.We start with two observations:a) [MP89] Fix 0 < Æ < 12 . De�ne the 
oating body KÆ of K as the intersection of thehalf spaces fx 2 K j (x; �) � mÆ(�)g, � 2 Rn, where mÆ(�) is de�ned byVol�x 2 K �� (x; �) > mÆ(�)	 = ÆVolK :Then, there is a number C(Æ), independent of dimension n or K � Rn, such thatfor any symmetric convex body K the 
oating body KÆ is uniformly, up to a factor C(Æ),isomorphic to an ellipsoid; this means that there is an ellipsoid E, s.t.E � KÆ � C(Æ)E :[Note that the initial body K could be very far from any ellipsoid; it could be, say, acrosspolytope (= the unit ball of `n1 ) or a cube, but described above \regularization" bycutting a �xed portion of volume in any direction brings us to a C(Æ)-neighborhood of anellipsoid.]Moreover, this ellipsoid is homothetic to the Legendre ellipsoid of inertia of K.Let us formally introduce a multiplicative geometric distance d(�; �) between convexbodies K and T : d(K;T ) = inffb=a j K � bT and aT � Kg. The Banach-Mazur distancebetween two normed spaces XK and XT is d(XK ; XT ) = inffd(K;uT ) j u 2 GLng.b) Lattice tiling . Let the inner part ÆK 6= ;. Denote Ki = K + xi for xi 2 Rn. Wecall fKig a tiling of Rn (and say that K produces a tiling by shifts) if (i) Si Ki = Rn and(ii) ÆKi \ ÆKi= ; for i 6= j. A lattice tiling is a tiling such that the set fxig is a lattice,i.e. fxig = AZn, where A is an invertible linear map and Zn � Rn is the set of all integervectors of Rn.Trivially, an aÆne image of the cube [�1; 1]n produces a lattice tiling and the euclideanball does not. However, do uniformly isomorphic versions Kn of the euclidean balls Dn



exist which produce a tiling? Surprisingly, the answer is \Yes". Exactly, for any integern there is a convex symmetric body Kn � Rn, Dn � Kn � 3 � Dn, such that Kn producesa lattice tiling of Rn. (This observation of Alon-Milman follows immediately from someknown results on lattice covering-packing; see [M92] for details and references.)The above two examples lead us to a notion of \isomorphic ellipsoid": a family ofconvex bodies fK�g represents an \isomorphic ellipsoid" if there is a constant C anda family of ellipsoids fE�g such that E� � K� � CE� for every K� in the family, i.e.d(K�; E�) � C. So, in example a) we can state that for a �xed Æ, 0 < Æ < 12 , the family ofÆ-
oating bodies fKÆ j 8n 8K � Rng is an isomorphic ellipsoid.Our next example is already a non-trivial theorem originally proved in 1988 (see[M92]).Theorem 1a. There is a constant C such that for any integer n, any K � Rn (centrallysymmetric, convex body) two operators u;u2 2 GLn exist such that for some ellipsoid E ,d(E ; Q) � C where Q = conv(P [ u2P ) and P = K \ u1K. So, the corresponding familyfQg is an isomorphic ellipsoid.In the language of Functional Analysis, the same fact can be reformulated in thefollowing form:Theorem 1b. For every �nite dimensional normed space X = (Rn; k � k) there are threelinear operators T1; T2; T2 � GLn, such that the following relation holds:Consider p(x) = kT1xk+ kT2xk and a convolutionq(x) = p(x) � p(T3x) [by de�nition p(x) � p(ux) � infy+z=x�p(y) + p(uz)	] ;then q(x) is C-isomorphic to the standard euclidean norm in Rn:jxj � q(x) � Cjxj :Note, C does not depend on the dimension n or on the initial norm k � k.



Geometric inequalities.We are going to outline a few geometric ideas and concepts behind the technique ofAsymptotic Theory. Because my only goal in this lecture is to give a feeling of a newintuition of high-dimensional normed spaces, I am leaving aside some crucial concepts andtheorems, such as notions of `type' and `cotype', ideal operator norms, factorizations anddistances between spaces.Isomorphic isoperimetric inequalities/concentration phenomenon.We start with the simplest example. Let Sn�1 � Rn be the standard euclideansphere (i.e. Sn�1 = @Dn), � { the geodesic distance on Sn�1, � { rotation invariantprobability measure on Sn�1. Consider a closed set A � Sn�1, �(A) � 12 , and denoteA" = fx 2 Sn�1 j �(x;A) � "g. Then the classical isoperimetric inequality on Sn�1(proved �rst for the application described here by P. Levy in 1919) implies: �(A") ��(" { extension of a semisphere) � 1 � p�8 e�"2n=2 (see [MSch86] for details). So, forn large, whatever remains from the sphere after taking "-neighborhood of (any) set ofhalf-measure has an exponentially (by n %) small measure. We apply this to a study of1� Lip functions f(x) (i.e. jf(x)� f(y)j � �(x; y)). Denote Lf being the median of f(x),i.e. �fx 2 Sn�1 j f(x) � Lfg � 12 and �fx 2 Sn�1 j f(x) � Lfg � 12 . Then��x 2 Sn�1 �� jf(x)� Lf j < "	 � 1�r�2 e�"2n=2 :So, if dimension n is large then values of Lipschitz function \concentrate" by a measurearound one value. It is, in fact, a general property of high dimensional metric proba-bility spaces which we call \concentration phenomenon". Many di�erent technique weredeveloped to treat di�erent examples of metric probability spaces and to prove concentra-tion phenomenon for them (see survey [M88a]). Let us describe just one more exampleconsidered by B. Maurey [Ma79].Let �n be the group of permutations of [1; : : : ; n] equipped with the counting probabil-ity measure �(A)=#An! (for anyA � �n) and Hamming distance �(s; t)=#fi2[1;:::;n]js(i)6=t(i)gnfor any two permutations s; t � �n. Then �(A") � 1 � c1e�c2"2n for absolute constantsc1 and c2 where �(A � �n) � 12 and A" = ft 2 �n j �(t; A) � "g. Again, we have an



inequality of \isoperimetric type" but in a new, isomorphic vision, which is enough forwhat we call \concentration phenomenon".This phenomenon is responsible for many \unexpected", \strange" properties of highdimensional spaces. Behind intuitively expected properties of high dimensional spacesstands the behavior of "-entropy which increases exponentially with increase in dimension.However, this exponential increase is compensated by also exponential e�ect of concen-tration phenomenon. As a result, we often observe only linear behavior where a prioriintuition expects an exponential. Some Examples:Approximation by Minkowski sums.Let A+B = fx+y j x 2 A; y 2 Bg be the Minkowski sum of two sets A and B in Rn.Let Ii = [�xi; xi] � Rn be intervals of length, say, 1. Consider T =PNi=1 Ii. We want toapproximate a Euclidean ball by such sums, that is, for a given " > 0 we would like to haved(T;D) � 1+". Obviously, if N = n then d(T;D) � pn and, by an entropy consideration,it looks as if we need at least an exponential by n of a number of intervals to achieve a goodapproximation to D. However, as was observed in [M86], an easy geometric interpretationof an old result from [FLM76] shows that there exist intervals Ii � Rn, i = 1; : : : ; N0, forN0 � c n"2 log 1" (c is a numerical constant) such that d�PN01 Ii; D� � 1 + ".This direction was recently treated intensively in [BLM89] and [BLM88]. It is shownthere that the above situation is essentially preserved when we substitute intervals by otherconvex bodies or if we consider approximation by sums of other convex bodies instead ofD. For exampleTheorem 2 [BLM88]. Let a convex compact body K � Rn be given. There exist or-thogonal operators Ai 2 SOn, i = 1; : : : ; N0 for N0 < c n"2 log 1" such that T = 1N0 PN01 AiKsatis�es d(T;D) � 1 + " (as usual, c is a numerical constant).The family of positions. One of the best known and important geometric inequalitiesis the Brunn-Minkowski inequality which states that for any two measurable sets A and Bin Rn �Vol(A+ B)�1=n � (VolA)1=n + (VolB)1=n : (�)



The isoperimetric inequality in Rn is the direct consequence of (�). We will discuss belowonly the case of convex bodies A and B. In what sense can we hope to satisfy the inverseto (�)? Does a constant C exist such that�Vol(A+ B)�1=n � C�(VolA)1=n + (VolB)1=n]� ?Trivial examples show that such a constant C does not exist. However, for every K � Rnthere exists a linear transform uK 2 SLn such that for K̂ = uKK the situation is di�erent.We call a position of K any aÆne image uK for u 2 GLn. Clearly, every position of Kproduces the unit ball of isometrically the same normed space as XK . It is an interestingfeature of the(asymptotic) high dimensional theory of convex sets that we are, in fact,forced to consider the family of all positions of a given K (that is, all aÆne images uK,u 2 GLn) even when we are aiming at some volume inequalities or other properties of anindividual K.Theorem 3 (see [M88b]). There is a constant C such that for any integer n and anyconvex bodies K and T in Rn there are volume preserving positions K̂ = uK and T̂ = vTfor u; v 2 SLn and Vol(K̂ + T̂ )1=n � C�(VolK)1=n + (VolT )1=n� :The main step in the proof of this isomorphic inequality is the existence of a specialellipsoid (MK-ellipsoid) associated to a convex body K and such that from the point ofview of volume radius, any K behaves as a suitable ellipsoid. Precisely:For any convex compact body K there exists an ellipsoid MK such that vol :K =vol :MK and for any other convex body T1Cn vol :(MK + T ) � vol :(K + T ) � Cn vol :(MK + T )(C is a universal constant).In the above fact the family of ellipsoids does not play a special role. We could takeany �xed P and replace the ellipsoid MK by some aÆne image of P .



Quotient of subspace theorem ([M85]). In the heart of the above global resultsstand methods of Functional Analysis which were developed to understand the structureof subspaces of a given space. Dvoretzky's theorem was initial result in this direction. Butit had to develop a long way before this structure was understood so well that it could beused for the study of global properties of space. One of the crucial links between linearstructure (the so called \local properties") and global structure is the following theorem:Theorem 4. Fix 0 < � < 1. Every �nite dimensional normed space X = (Rn; k �k) contains a subspace sX and a quotient q(sX) = qsX of the subspace sX such thati) k = dim(qsX) � �n and ii) d(qsX; `k2) � C(�) � 11�� log 11�� .We �nish this lecture with a few remarks on polarity. In the above theorem we use two\polar" operations: taking subspace and quotient. And this brought an improvement fromthe logarithmic estimate on euclidean section in Dvoretzky theorem to (any) proportion�n of original dimension. Similarly, in Theorem 1a (or 1b) the dual pair of operations(intersection and convex hull of the union; or sum of norms and convolution of norms)gave, by one step, regularization of the initial norm to a euclidean one. I still consider thisrole of duality to be mystical. I direct the reader to [M91] for more facts and observationsin this direction. References[BLM88] J. Bourgain, J. Lindenstrauss, V. Milman, Minkowski sums and symmetriza-tions, GAFA-Seminar Notes '86-87, Springer Lecture Notes in Math. 1317,44-66 (1988).[BLM89] J. Bourgain, J. Lindenstrauss, V. Milman, Approximation of zonoids by zono-topes, Acta Math. 162, 73-141 (1989).[CS89] P.G. Casazza, T. Shura, Tsirelson's Space, Lecture Notes in Math. 1363,Springer Verlag (1989).[FJ74] T. Figiel, W.B. Johnson, A uniformly convex Banach space which contains nolp, Compositio Math. 29, 179-190 (1974).[FLM76] T. Figiel, J. Lindenstrauss, V.D. Milman, The dimension of almost sphericalsections of convex bodies, Acta Math. 139:1-2, 53-94 (1977).[G1] W.T. Gowers, A Banach space not containing l1 or c0 or a re
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