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One of the main directions in Geometric Functional Analysis is the study of the
linear structure of an infinite dimensional Banach space. But what do we understand by
the words “structure” or “linear structure” of a normed space? There is a “classical”
understanding which has developed since the time of Banach: search for some special, nice
building blocks of a space; as extreme, say £,-subspaces or quotient spaces of a given space.
Many beautiful results in this direction were proved in the 50’s and 60’s (see monographs
of Lindenstrauss-Tzafriri [LT77] and [LT79], or survey [M70] and M71]).

However, such understanding of a structure for a generic Banach space failed. We have
today counter-examples to almost every conjecture on a structure of an abstract Banach
space in such classical direction (starting from Tsirelson space [Ts74], and most recently
many examples of Gowers-Maurey and Gowers [GM93], [G1]).

In two lectures below, I will describe briefly two different possibilities, two opposite
and, in a sense, complemented understanding of “linear structure” of infinite dimensional
normed spaces.

The first of these approaches started and was developed much before the recent ex-
amples appeared. We changed our thinking and considered a family of finite dimensional
subspaces (say, all finite dimensional subspaces of a given infinite dimensional Banach
space) emphasizing an asymptotic behavior when dimension increases to infinity. And
then such asymptotic view reveals regularities behind increasing (with increase of dimen-

sion) diversity of spaces. We call this Local Theory, or Asymptotic Finite Dimensional

Theory. A short discourse on this theory is given in the second lecture.

This is the text of two lectures given at Wuhan International Conference on Banach Spaces
(China); April 1994.



But in the first lecture I would like to describe another, very recent approach to wvisu-
alizing some linear structure of infinite dimensional space, some geometric purely infinite
dimensional phenomena; and our interest in this lecture is in phenomena which have no

finite dimensional analogues.

1. Distortion and Asymptotic Infinite Dimensional Theory

The start of this purely infinite dimensional development stems from some facts of
Local Theory. The following old observation may be seen today as just the “right” inter-
pretation of the celebrated Dvoretzki theorem.

Let (X,]/-]|), dim X = oo, be a normed space and r(z) an equivalent norm on X. We
look for values a € R such that for every € > 0 and any integer n there exists a subspace

E, dim E = n and for every z € F, x # 0,
a(l —¢) <r(z)/|z]| <a(l+e) .

So, r is an almost isometry on E which is given by product on “a”. We denote the collection
of such numbers a by v(r) and call it the finite dimensional spectrum of r (“spectrum of

isometry”).

Fact (see [M69]).  The finite dimensional spectrum of any equivalent norm on an infinite

dimensional space X is never empty:

v(r) #0 .

Then, naturally, the following question arises:
Does a number a € R exist such that for any € > 0 there is an infinite dimensional

subspace E such that for every z € E'\ 0

a(l — &) < r()/|x] < (1+e)a?

(Y]

The collection of all such numbers “a” we denote v, () and call the infinite-dimensional
spectrum of r(z). So, the question is:

(i) Does VX, dim X = oo, Vr(x), Yoo (r) # 07



or
(ii) Does X exist and an equivalent norm r(z) on X such that vy, (r) = 07

If the case (ii) is realized then it is a pure infinite dimensional phenomenon. We see in
this example one of the main roles of positive facts of Local Theory in extracting potential
purely infinite dimensional phenomena as counter-examples to a natural extension of facts
of Local Theory to an infinite dimensional setting.

To continue, we need to develop some terminology:

For a subspace F, consider an oscillation interval I,.(E) = [a, b] where
a = inf {r(z)/|z| ‘ z€E\0}, b=sup{r(z)/|z] ‘ z€E\0} .

Obviously, either these exists a sequence of embedded subspaces {F1; D -+ D F,, D Fpy1 D
---} such that I.(F,) = [an, by,], bn/an, — 1, i.e. [ay, b,] — {a}, or there exists an interval
I =|a,p], B> a,and
(i) Ve > 0, 3 a subspace Fe, I(E.) C [a — ¢, + €]
(i) for every infinite dimensional subspace E’ C F., I(E') D («, ).
We denote the family of such intervals I by ¥(r) and call it the tilda-spectrum of r(x).
It is convenient to consider 7., as being part of ¥(r) (i.e. an interval-point I = {«a} € 5(r)).

Then the asymptotic multiplicative oscillation d(I = [«, 8] | I € ¥(r)) = 8/« and

d(r) =sup {d(I) | T € ¥(r)} .
So, we have an obvious alternative:
Either d(r) =1 (i.e. Spectrum ~(r) # ()
or d(r) > 1, and we call this case a distortion.

We call space X distortable if there is a norm r(z) on X, s.t. d(r) > 1, i.e., if
d(X) = sup {d(r) | r is an equivalent norm on X} > 1 .
At the end of the 60s, the following theorem was proved (see [MT71]):

Theorem 1. If d(x) = 1 then for any € > 0, X contains either (1 + ¢)-isometric copy of

¢, (for some 1 < p < 00) or (1 + ¢)-isometric copy of c,.

[In fact, it is not important to consider a family of equivalent norms for such a con-

clusion, but a family of functions of two variables. gy (z,y) = ||l + Ay|| (||z]| =1 = ||y]]),



which correspond to “curvature-type” behavior around point z on the unit sphere; and for
some spaces, such as Ly, such functions do not create “distortion”.]

The next step was the construction of a new type of normed spaces by Tsirelson [Ts74].
The huge, not decreasing influence of this construction on the infinite dimensional Banach
space theory we experience till now. Tsirelson built a normed space T which contains
neither an isomorphic copy of 4, (for any 1 < p < co0) nor ¢y. We define this norm first
on cop (i.e. on all finite support vectors of R>). We write F; = [n;,m;] C N, E; < E; if
m; < n; and n < Ey meaning n < ny. Also, let {ex}7° be the natural basis of R* and Ex
denote the projection of x onto “interval F = [n,m]”, i.e. E(Zaie,) = >""a;e;. Then

the “T'-norm” is the solution of the following equation: Va € cqq

n
|z||7 = max {Hx”cm 1 sup <Z |E;xz||7 | » € N, E; are any intervals s.t.
1 (1.1)
n<E1<---<En} .

Then T is a Banach space receiving by the completion of (cop, || - ||7)-

I consider this to be the first “non-classical” normed space where the norm is defined
by “an equation”, and not by a “formula”. This construction was immediately investigated
by [FJ74] and many consequent papers (see [CS89]). However, at this stage, the following
consequence from Theorem 1 was not investigated: T is distortable, d(T") > 1 (!) Note
that no “size” of distortion follows from Theorem 1. Only after 1988, answering a question
of H. Rosenthal, T. Odell first checked that d(7) > 2 (and what the real value of d(7T)
is still an open question). Then Odell (unpublished) substituted 1 by ; in the definition
(1.1) of the space T (let us call such spaces T) and he showed that d(Ty) > A.

So, we have learnt that there are spaces with (large) distortion.

To continue, let us give a geometric interpretation of the phenomenon of distortion.
Let d(r) > 1 and I = [a, 8] € ¥(r), @ < B. Let Y be a subspace such that for every infinite

e

dimensional subspace F — Y, I,.(E) D (a,f). Fix 0 < e < ﬁ% Define two subsets of

the sphere of Y:

A={z |z|=1]r(@@) <a+e}, B={zeSY)|r(x)>p-¢c}.



Then VE — Y, dimFE = oo, ANE # ) and BN E # (). We call such sets asymptotic sets
on S(Y).

So the geometric interpretation of distortion is the existence of two asymptotic sets A
and B on the sphere of some Banach space such that the distance d(A, B) > 0. Note, that
a similar phenomenon cannot hold for any (large) integer N: if, for any Banach space X,
A and B are such sets on S(X) that for any N-dimensional subspace F of X, AN E # ()
and BN E # (), then the distance d(A, B) = 0.

Let us return to the study of distortion. Schlumprecht [S1] put logn instead of A in
(1.1) (it is enough then to consider 1 < E; < --- < E,,) and constructed the space S such
that d(S) = oco. Moreover, this space has a sequence of asymptotic sets {A;}72, on its
sphere such that distance d(A;, A;) > 1 for any i # j.

[The existence of such a sequence of asymptotic sets was the starting point of all the
following constructions of spaces by Gowers and Maurey.]

Till now, we have discussed a construction of special spaces which are distortable.
But what about classical spaces? It is easy to see (James [J64]) that d(£;) = 1 as well as
d(co) = 1, i.e. £1 and ¢ are not distortable. However, the similar question on ¢, spaces
for 1 < p < oo was open from 1969 till the recent and very novel work of Odell and

Schlumprecht.

Theorem 2 ([OSch93]). For any p, 1 < p < oo, d(£,) = co. Moreover, there are asymp-
totic sets A; C S(¢2) such that, for i # j andVz € A;,Vy € A;

1

|(z,y)| < min(i, )

where (x,y) is the inner product in £5. Of course, the similar statement is true for every

l,, 1 <p < oo. [We call this a “biorthogonal distortion”].

This is a new and purely infinite-dimensional geometry of Hilbert spaces!

Note that B. Maurey [Mal], using Theorem 2, constructed a distorted norm r(z) on

£5 which is a symmetric norm on /5.

Combining Theorems 1 and 2, we see



Corollary. Every Banach space X which does not contain isomorphic copies of £1 and cg
has a distortion norm: d(X) > 1 (so, d(X) = 1 implies X contains either an isomorphic

copy of £y or an isomorphic copy of ¢ ).

However, how large can this distortion be? Can spaces X exist such that 1 < d(X) <
oo? We studied these questions with N. Tomczak-Jaegermann [MTJ93]. To formulate
the corresponding result, we have to introduce a new type of spaces and a different view:
classes of Banach spaces are defined by their asymptotic properties. We call space X with
a basis {e;}7° a (stabilized) asymptotic £,-space if there is a constant C' such that for any
integer n, any n consecutive blocks {z;}} such that ||z;|| = 1 and n < supp z; < supp zs <

--+ < supp T, are C-equivalent to the natural basis of £}:

%(imip)l/pg i:ai%: S\/@(i:a”p)l/p.

1
The above Tsirelson space is an example of a stabilized asymptotic £;-space which is

not isomorphic to £; and moreover it does not contain an isomorphic copy of /1. Similar
Tsirelson spaces may be constructed for every 1 < p < oo and ¢q: stabilized asymptotic

¢,-spaces which do not contain any isomorphic copies of £,,.

Theorem 3 [MTJ93]|. IF space X has a bounded distortion, d(X) < d, then there is p,
1 <p < o0, and a subspace ' — X which is a stabilized asymptotic £,-space for constant

C ~ d?.

B. Maurey [Ma2] used this fact to prove that if X has an unconditional basis and type
p > 1 then d(X) = oo.

Asymptotic infinite-dimensional structure. To continue the line of [MTJ93] and
to classify Banach spaces by their asymptotic properties we introduce in [MMT] the notion
of asymptotic structure of space X.

The main idea behind it is a stabilization at infinity of finite dimensional subspaces
which appear everywhere far away. This further leads to an infinite-dimensional construc-
tion resulting in a notion of an asymptotic version of X.

Let us describe the intuition of an asymptotic structure of an infinite dimensional

Banach space X. Such a structure is defined by a family B(X) of infinite dimensional



subspaces of X satisfying a filtration condition which says that for any two subspaces from
B(X) there is a third subspace from B(X) contained in both of them; the main example is
the family B°(X) of all subspaces of finite codimension in X. Then, for every k, we define
the family { X }; of asymptotic k-dimensional spaces associated to this asymptotic structure
as follows (exact definitions are better given through the “game” approach introduced for
similar purposes by Gowers [G2] see [MMT]).

Fix k and € > 0. Consider a “large enough” number N, a “far enough” subspace
E; of codim E; = Nj, and an arbitrary vector z; € S(E7). Next consider a number
Ny = Na(z1), depending on z; and again “large enough”, a “far enough” subspace Ey C E;
of codimension Ny(z1) and an arbitrary vector xo € S(Fs). In the last kth step, we have
already chosen normalized vectors xq,...,2xr_1 and subspaces Fp_1 C --- C Ey C Fu;
we then choose a “far enough” Fj C Ej 1 with codim Ey, = Ng(z1,...,25 1) and an
arbitrary vector zp € S(E}).

We call a space E = span[zy,..., x| a permissible subspace (up to € > 0) and
{x;}%¥ a permissible k-tuple if for an arbitrary choice of N; and F; (with codim E; = N;)
we would be able to choose normalized vectors {y; € F;} so that a basic sequence {y;}% is
(1 + ¢)-equivalent to {z;}%.

Now we can also clarify the imprecise notion of “far enough” subspaces F;: by this
we mean that an arbitrary choice as above of z; € FE; results in a permissible (up to
g > 0) k-tuple {z;}¥ and a permissible (up to € > 0) subspace E = span[z;,...,7;]. The
existence of such subspaces “far enough” and of associated N;’s, is proved by a compactness
argument.

If F(k;e) is the set of all k-dimensional e-permissible subspaces then we put {X}; =
Neso F'(k;€), and we call every space from {X }; a k-dimensional asymptotic space of X.
Thus , permissible subspaces are (1 + ¢)-realizations of asymptotic spaces.

Finally, a Banach space Y is an asymptotic version of X, if Y has a monotone basis

{y:}3° and for every n, {y;}7T is a basis in an asymptotic space of X i.e. span[y;]T € {X },.

Families of asymptotic spaces and asymptotic versions of a given Banach space have
interesting properties and reveal a new structure of the original space. For example, we

proved in [MMT] that for a fixed p, with 1 < p < oo, if X is a Banach space such that there



exists C such that for every n, every space E € {X},, is C-isomorphic to ¢, then every
asymptotic version Y of X is isomorphic to £, and the natural basis of Y is equivalent to
the natural basis of £,. It means that in such a space (called an asymptotic l,-space) all
permissible subspaces lie only along its natural [, basis.

Some properties of families of asymptotic spaces {X },, can be demonstrated through
the notion of envelopes. For any sequence with finite support a € cog the upper envelope
is a function r(a) = sup || ), aie;||, where the supremum is taken over all natural bases
{e;} of asymptotic spaces F € {X},, and all n. Similarly, the lower envelope is a function
g(a) = inf||Y". ae;||, where the infimum is taken over the same set. Remarkably, the
functions r and g are always very close to some [,- (and /,)-norms. An interesting general
property of asymptotic versions is that some of them are, in a sense, stable under iteration.
Precisely, for an arbitrary space X there is a special asymptotic version Y, called universal,
such that its asymptotic structure is the same as for X. In particular this implies that not
every space X, even with an unconditional basis, can be a universal asymptotic version of
any Banach space. We direct the reader to [MMT] to receive more precise information on

this subject.

2. Local Theory/Asymptotic view of high dimensional spaces in Functional

Analysis and Convex Geometry

In this lecture we discuss results in Local Theory which stand between Geometry
and Functional Analysis. The theory was built during the last two decades. It consid-
ers geometric problems via a Functional Analysis point of view. Consequently, typical
for geometry “isometric” problems and view are substituted by “isomorphic” ones. This
became possible with the asymptotic approach (with respect to dimension increasing to
infinity) to the study of high dimensional spaces. My goal in this lecture is to demonstrate,
with some examples, a new intuition which corresponds to high dimensional spaces and
present a few results to support our point of view. We recommend the following books:
[MSch86], [P86], [P89], [TJ89] and surveys [M88a], [M92],[L.92], [LM93]. Consider a fi-
nite dimensional normed space X = (R"™,|| - ||). Such a space is defined by its unit ball

Kx = {z € R", |jz| < 1}. Inversely, if K is a convex centrally-symmetric body in R™,



then Xx = (R"™, || ||k) is the normed space with the unit ball K. Let || be the canonical
euclidean norm in R™, (z,y) be the standard inner product and D denote the standard

euclidean ball, i.e. D = KR~ |.|)-

A few examples.

We start with two observations:

a) [MP89] Fix 0 < § < 3. Define the floating body K of K as the intersection of the
half spaces {z € K | (z,0) < ms(0)}, 6 € R™, where ms(60) is defined by

Vol{z € K | (z,0) > ms(0)} =6 Vol K .

Then, there is a number C(9), independent of dimension n or K C R™, such that
for any symmetric convexr body K the floating body Ks is uniformly, up to a factor C(J),

1somorphic to an ellipsoid; this means that there is an ellipsoid £, s.t.
ECKsCC(O)E .

[Note that the initial body K could be very far from any ellipsoid; it could be, say, a
crosspolytope (= the unit ball of £7) or a cube, but described above “regularization” by
cutting a fixed portion of volume in any direction brings us to a C'(d)-neighborhood of an
ellipsoid.]

Moreover, this ellipsoid is homothetic to the Legendre ellipsoid of inertia of K.

Let us formally introduce a multiplicative geometric distance d(-,-) between convex
bodies K and T: d(K,T) = inf{b/a | K C bT and aT C K}. The Banach-Mazur distance
between two normed spaces Xx and Xp is d(Xg, Xp) = inf{d(K,uT) | u € GL,}.

b) Lattice tiling. Let the inner part I%# (. Denote K; = K + x; for x; € R". We
call {K;} a tiling of R™ (and say that K produces a tiling by shifts) if (i) | J K; = R™ and

i

(ii) 10(7 N [O(i: () for i # j. A lattice tiling is a tiling such that the set {z;} is a lattice,
i.e. {x;} = AZ"™, where A is an invertible linear map and Z™ C R" is the set of all integer
vectors of R™.

Trivially, an affine image of the cube [—1, 1] produces a lattice tiling and the euclidean

ball does not. However, do uniformly isomorphic versions K,, of the euclidean balls D,,



exist which produce a tiling? Surprisingly, the answer is “Yes”. Exactly, for any integer
n there is a conver symmetric body K,, C R", D,, C K,, C 3-D,,, such that K,, produces
a lattice tiling of R™. (This observation of Alon-Milman follows immediately from some
known results on lattice covering-packing; see [M92] for details and references.)

The above two examples lead us to a notion of “isomorphic ellipsoid”: a family of
convex bodies {K,} represents an “isomorphic ellipsoid” if there is a constant C and
a family of ellipsoids {£,} such that &, ¢ K, C C&, for every K, in the family, i.e.
d(K4,E.) < C. So, in example a) we can state that for a fixed §, 0 < 6 < %, the family of
d-floating bodies {Ks | Vn VK C R™} is an isomorphic ellipsoid.

Our next example is already a non-trivial theorem originally proved in 1988 (see

[M92)).

Theorem 1a. There is a constant C such that for any integer n, any K C R™ (centrally
symmetric, convex body) two operators u us € GL,, exist such that for some ellipsoid £,
d(€,Q) < C where Q = conv(P UusP) and P = K Nuy K. So, the corresponding family

{Q} is an isomorphic ellipsoid.

In the language of Functional Analysis, the same fact can be reformulated in the

following form:

Theorem 1b. For every finite dimensional normed space X = (R"™,|| - ||) there are three

linear operators Ty, Ts, Ty C GL,,, such that the following relation holds:

Consider p(z) = ||T1z|| + ||T2z|| and a convolution

a(x) = p(x) «p(Tsz)  [by definition p(x) «p(uz) = inf {p(y) +p(uz)}] ;
then ¢(z) is C-isomorphic to the standard euclidean norm in R™:

2 < qla) < Cla] .

Note, C' does not depend on the dimension n or on the initial norm || - ||.



Geometric inequalities.

We are going to outline a few geometric ideas and concepts behind the technique of
Asymptotic Theory. Because my only goal in this lecture is to give a feeling of a new
intuition of high-dimensional normed spaces, I am leaving aside some crucial concepts and
theorems, such as notions of ‘type’ and ‘cotype’, ideal operator norms, factorizations and

distances between spaces.

Isomorphic isoperimetric inequalities/concentration phenomenon.
We start with the simplest example. Let S®~! C R"™ be the standard euclidean
sphere (i.e. S™ ! = 0D,), p — the geodesic distance on S™ !, u — rotation invariant

probability measure on S"~!. Consider a closed set A C S"~1, u(A) > I, and denote

2
A, = {z € S" ' | p(x,A) < e}. Then the classical isoperimetric inequality on S™~!
(proved first for the application described here by P. Levy in 1919) implies: u(A.) >
p(e — extension of a semisphere) > 1 — %6_52"/2 (see [MSch86] for details). So, for
n large, whatever remains from the sphere after taking e-neighborhood of (any) set of
half-measure has an exponentially (by n ) small measure. We apply this to a study of
1 — Lip functions f(z) (i.e. [f(z) — f(y)| < p(z,y)). Denote L being the median of f(x),
ie. p{fw € "7 | f(x) > Ly} > 1 and p{w € S"7' | f(z) < Ly} > 1. Then

e € 8771 15@) ~ Lyl < e} 21 [Feme

So, if dimension n is large then values of Lipschitz function “concentrate” by a measure
around one value. It is, in fact, a general property of high dimensional metric proba-
bility spaces which we call “concentration phenomenon”. Many different technique were
developed to treat different examples of metric probability spaces and to prove concentra-
tion phenomenon for them (see survey [M88a]). Let us describe just one more example

considered by B. Maurey [Ma79].

Let I1,, be the group of permutations of [1,. .., n] equipped with the counting probabil-
€L () £b(0)}

n

ity measure p(A):% (for any A C II,,) and Hamming distance p(s, )
for any two permutations s,¢ C II,,. Then u(A:) > 1 — cle_CQEQ" for absolute constants

¢y and c¢o where p(A C I1,,) > % and A. = {t € T1,, | p(t, A) < e}. Again, we have an



inequality of “isoperimetric type” but in a new, isomorphic vision, which is enough for
what we call “concentration phenomenon”.

This phenomenon is responsible for many “unexpected”, “strange” properties of high
dimensional spaces. Behind intuitively expected properties of high dimensional spaces
stands the behavior of e-entropy which increases exponentially with increase in dimension.
However, this exponential increase is compensated by also exponential effect of concen-
tration phenomenon. As a result, we often observe only linear behavior where a priori

intuition expects an exponential. Some Examples:

Approximation by Minkowski sums.

Let A+ B={z+y|x € A,y € B} be the Minkowski sum of two sets A and B in R".
Let I; = [~x;,z;] C R™ be intervals of length, say, 1. Consider T' = Zfil I;,. We want to
approximate a Euclidean ball by such sums, that is, for a given € > 0 we would like to have
d(T, D) < 1+e&. Obviously, if N = n then d(T, D) > y/n and, by an entropy consideration,
it looks as if we need at least an exponential by n of a number of intervals to achieve a good
approximation to D. However, as was observed in [M86], an easy geometric interpretation
of an old result from [FLM76] shows that there exist intervals I; C R™, i =1,..., Ny, for
No <cZ logi (¢ is a numerical constant) such that d( ]1V° I;, D) <1+e.

This direction was recently treated intensively in [BLM89] and [BLMS88|. Tt is shown
there that the above situation is essentially preserved when we substitute intervals by other

convex bodies or if we consider approximation by sums of other convex bodies instead of

D. For example

Theorem 2 [BLMS88]. Let a convex compact body K C R™ be given. There exist or-
thogonal operators A; € SO,,i=1,..., Ny for Ny < cZy log% such that T = Nig iVo A; K

satisfies d(T, D) < 1+ ¢ (as usual, ¢ is a numerical constant).

The family of positions.  One of the best known and important geometric inequalities
is the Brunn-Minkowski inequality which states that for any two measurable sets A and B
in R"

[Vol(A+ B)]"" > (Vol A)/™ + (Vol B)/™ (%)



The isoperimetric inequality in R™ is the direct consequence of (x). We will discuss below
only the case of convex bodies A and B. In what sense can we hope to satisfy the inverse

to (x)? Does a constant C' exist such that

1/n

(Vol(A+ B)) '™ < C[(Vol A)™ + (Vol B)Y/™]] 7

Trivial examples show that such a constant C does not exist. However, for every K C R"
there exists a linear transform ux € SL,, such that for K = ur K the situation is different.

We call a position of K any affine image uK for u € GL,,. Clearly, every position of K
produces the unit ball of isometrically the same normed space as Xg. It is an interesting
feature of the(asymptotic) high dimensional theory of convex sets that we are, in fact,
forced to consider the family of all positions of a given K (that is, all affine images uK,
u € GL,) even when we are aiming at some volume inequalities or other properties of an

individual K.

Theorem 3 (see [M88b]). There is a constant C' such that for any integer n and any
convex bodies K and T' in R" there are volume preserving positions K =uK and T = vT

for u,v € SL,, and
Vol(K +T)Y™ < C[(Vol K)Y/™ 4 (Vol T)*/] .

The main step in the proof of this isomorphic inequality is the existence of a special
ellipsoid (Mg-ellipsoid) associated to a convex body K and such that from the point of
view of volume radius, any K behaves as a suitable ellipsoid. Precisely:

For any convex compact body K there exists an ellipsoid Mg such that vol . K =
vol . Mg and for any other convex body T

% vol (M +T) < vol .(K +T) < C" vol .(Mx +T)

(C' is a universal constant).
In the above fact the family of ellipsoids does not play a special role. We could take

any fixed P and replace the ellipsoid Mg by some affine image of P.



Quotient of subspace theorem ([M85]). In the heart of the above global results
stand methods of Functional Analysis which were developed to understand the structure
of subspaces of a given space. Dvoretzky’s theorem was initial result in this direction. But
it had to develop a long way before this structure was understood so well that it could be
used for the study of global properties of space. One of the crucial links between linear

structure (the so called “local properties”) and global structure is the following theorem:

Theorem 4. Fix 0 < A < 1. Every finite dimensional normed space X = (R",| -
||) contains a subspace sX and a quotient q(sX) = qsX of the subspace sX such that
i) k=dim(gsX) > An and ii) d(¢gs X, €5) < C(A) ~ 115 log 2.

We finish this lecture with a few remarks on polarity. In the above theorem we use two
“polar” operations: taking subspace and quotient. And this brought an improvement from
the logarithmic estimate on euclidean section in Dvoretzky theorem to (any) proportion
An of original dimension. Similarly, in Theorem la (or 1b) the dual pair of operations
(intersection and convex hull of the union; or sum of norms and convolution of norms)
gave, by one step, regularization of the initial norm to a euclidean one. I still consider this
role of duality to be mystical. I direct the reader to [M91] for more facts and observations

in this direction.
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