
The VLDB Journal (2012) 21:51–68
DOI 10.1007/s00778-011-0234-x

REGULAR PAPER

Type inference and type checking for queries over execution traces

Daniel Deutch · Tova Milo

Received: 20 August 2010 / Revised: 8 February 2011 / Accepted: 18 April 2011 / Published online: 5 May 2011
© Springer-Verlag 2011

Abstract We study here Type Inference and Type Checking
for queries over the execution traces of Business Processes.
We define formal models for such execution traces, allowing
to capture various realistic scenarios of partial information
about these traces. We then define corresponding notions of
types, and the problems of type inference and type checking
in this context. We further provide a comprehensive study of
the decidability and complexity of these problems, in various
cases, and suggest efficient algorithms where possible.

Keywords Business Processes · Type information ·
Execution traces

1 Introduction

A Business Process (BP) consists of some business activi-
ties undertaken by one or more organizations in pursuit of
some particular goal. BP management systems allow to trace
(log) the execution course of Business Processes; reposito-
ries of execution traces (abbr. EX-traces) obtained in such
manner are extremely valuable for companies: their analy-
sis allows to optimize business processes, reduce operational
costs, and ultimately increase competitiveness [3]. Since the
traces repository is typically very large, the analysis is often

This work has been partially funded by the Israel Science Foundation,
by the US-Israel Binational Science Foundation, and by the EU grant
MANCOOSI.

D. Deutch (B)
Ben Gurion University, Beer-Sheva, Israel
e-mail: deutchd@cs.bgu.ac.il

T. Milo
Tel Aviv University, Tel Aviv, Israel
e-mail: milo@post.tau.ac.il

done in two steps: the repository is first queried to select
portions of the traces that are of particular interest. Then,
these serve as input for a finer analysis that further queries
the sub-traces to derive critical business information [29].

Type information, i.e., knowledge about the possible struc-
ture of the queried (sub-) traces, is valuable for optimization
of this querying process [4]. Its role is analogous to that
of XML schema for XML query optimization; it allows to
eliminate redundant computations and simplify query evalu-
ation. In many cases, such type information is readily avail-
able for the original traces (via a specification of the Business
Process itself); however, this information is not available for
the intermediary sub-traces selected by the first-step queries
employed in the above-mentioned analysis. This calls for
Type Inference, i.e., algorithms that derive the type informa-
tion of the (sub-)traces that qualify to a given query. Addi-
tionally, when the tool used for finer analysis expects data
of particular type, one should verify that its input (i.e., the
(sub-)traces selected by the first-step queries) conforms to
this type. This calls for Type Checking.

We present in this paper a thorough study of Type Infer-
ence and Type Checking for queries over Execution Traces.
Before describing our results, we briefly explain the model
used here for Business Processes, their execution traces, and
queries over them.

First, the model that we use here for modeling BP speci-
fications is a natural abstraction of the BPEL standard (busi-
ness process execution language [6]) for BP specifications.
A BP is modeled as a nested DAG consisting of activi-
ties (nodes), and links (edges) between them, that detail the
execution order of the activities. The DAG shape allows
to describe parallel computations. Activities may be either
atomic or compound. In the latter case, their possible inter-
nal structures (called implementations) are also detailed as
DAGs, leading to the nested structure. A compound activity

123

52 D. Deutch, T. Milo

Table 1 Overview of
complexity results (data
complexity)

Selective Masked Naive

Type Inference PTIME EXPTIME, NP-complete Impossible
Type Checking Undecidable EXPTIME, NP-complete EXPTIME, NP-complete

may have multiple possible implementations, intuitively
corresponding to different user choices, variable values,
server availability, etc., and exactly one of them will be cho-
sen at run-time, for each activity instance.

An execution trace (abbr. EX-trace) of such a Business
Process can then be abstractly viewed as a nested DAG that
contains nodes representing the activation and completion
events of activities and edges that describe their flow order.
Tracing may vary in the amount of information that it records
on the run. We distinguish three families of execution traces,
with decreasing level of information: (1) naive traces that
“naively” provide a complete and exact record of the acti-
vation/completion events of all activities (2) masked traces
where the activation/completion events are all recorded, but
possibly with only partial information (“mask”) about their
origin activity, and (3) selective traces where only a selected
subset of the events is recorded (and those that are recorded
may be masked).

Different tracing systems may be employed for recording
the execution of a given BP specification. A tracing sys-
tem consists of (1) a renaming function on activities names
(whose role is to allow only partial information on the actual
activities that took place, e.g., by mapping two distinct activi-
ties names to the same name), and (2) a set of activities names
that are not recorded in the traces (“deletion set”). This allows
to capture naive, masked or selective tracing, with different
choices of which activities to disclose (in particular, for naive
tracing, the renaming function is the identity function, and
the deletion set is empty). A BP specification along with a
description of such tracing system is called a type.

For example, consider a Business Process describing the
operational logic of online travel agency, offering various
travel deals, including suggestions of flights, hotels and car
rentals. Assume also that the agency offers both luxury and
ordinary (i.e., non- luxury) deals but uses different billing
systems (represented by distinct billing activities) for the two
kinds of deals (e.g., a stricter credit check is done for luxury
reservations). An execution trace of the BP details a possible
execution of the online travel agency, including offers pre-
sented to the user, the choices that the user makes, etc. The
owners of the agency may wish to hide the fact that different
billing systems are used for the two kinds of reservations, in
which case masked tracing may be used, to give a generic
name to the two different billing activities. It may further be
the case that the treatment of luxury reservations involves the
use of other activities that do not have a counterpart in the

case of ordinary reservations (e.g., redirection to an external
credit check), in which case to hide the different treatment,
the additional activities should be omitted from record, using
a selective tracing.

We then consider queries that are used to define EX-traces
or parts of them, that are of interest to the analyst. Queries are
defined using execution patterns (abbr. EX-patterns), gener-
alizing EX-traces similarly to the way tree patterns, used in
query languages for XML, generalize XML trees [8]. In more
details, an EX-pattern has the structure of an EX-trace, where
activities names are either specified, or left open using a spe-
cial any symbol and then may match any node. Edges in a
pattern are either regular, interpreted over edges, or transitive,
interpreted over paths. Similarly, activities may be regular or
transitive, for searching only in their direct internal flow or
for searching in any nesting depth, respectively.

The role of transitive edges is analogous to the role of
the “descendant of” operator in XPath [33], in the sense that
when a transitive edges between two activities nodes appears
in a pattern, a matching trace is required to include these two
activities with some path between them (but the path may be
of any length and the activities along this path may be any).
For instance, in our travel agency BP, analysts may be inter-
ested in traces in which a choice of a hotel is followed by
payment, but any sequence of activities may occur between
these two activities. The need for transitive nodes follows
from the nested structure of the execution traces (and cor-
respondingly of the patterns); when the pattern describes an
implementation of a non-transitive node, it means that the
specified implementation must appear in the direct imple-
mentation of the activity. But when the corresponding node
is transitive, then further nested implementations may par-
ticipate in realizing the corresponding part of the trace. For
instance, we may be interested in traces where the payment
was associated with a specific credit card, e.g., Visa (and
then the payment activity will occur in an implementation
of a non-transitive activity corresponding to “Visa”). Alter-
natively, we may only care if the payment was part of some
purchase activity (that invokes, in its implementation, some
credit activity that in turn invokes the payment activity); in
this case, we will use a transitive “Visa” activity node.

Our results. We study Type Inference and Type Checking
for Queries over Execution Traces, for all classes of traces
described above. Our results are summarized in Table 1.
We show a PTIME (in the size of the input type, with the

123

Type inference and type checking for queries over execution traces 53

exponent determined by the query size) Type Inference algo-
rithm when the types used are selective. The intuition behind
the algorithm comes from the algorithm for intersecting con-
text-free grammars (of which the Business Processes with
selective tracing can be thought of as a generalization), with
regular expressions (generalized by EX-patterns). However,
the algorithm is much more intricate, due to the graph struc-
ture of traces (in contrast to the string structure in context-free
grammars and regular expressions). For masked types, we
show that in general no polynomial size BP with a masked
tracing system can capture the type that is to be inferred,
but we give an EXPTIME algorithm (whose result includes
a BP of exponential size) for inferring the type. Intuitively,
this blowup is due to the need to support exponentially many
paths, which can not be done compactly with only masked
tracing. Consequently, we provide an EXPTIME algorithm.
Finally, we show that naive tracing is too weak to capture
in general the inferred types, i.e., in general query results
cannot be expressed by a type (BP specification) using only
naive tracing. For Type Checking, we provide an EXPTIME
algorithm for naive or masked trace types and show undecid-
ability of type checking for selective trace types. The unde-
cidability result is based on the observation that a BP with
selective tracing is a powerful enough formalism to capture
context-free grammars.

An extended abstract of this work had appeared in [12],
presenting only a brief high level description of the main
results. The present paper provides a comprehensive descrip-
tion of the various algorithms and the formal proofs of all
provided theorems.

The paper is organized as follows. Section 2 introduces
the definitions for our model and query language. Section 3
defines and details the results on Type Inference, and Sect. 4
defines and details the results on Type Checking. Related
work is considered in Sect. 5. We conclude in Sect. 6.

2 Preliminaries

We provide in this section the formal definitions for our basic
model of Execution Traces, Business Processes, and queries
over such traces and processes. We also explain the notion
of types used in this context and explain the roles that type
information plays in query optimization. We accompany each
definition with an intuitive example.

2.1 Execution traces

An execution trace can be viewed as a nested DAG,
containing node-pairs that represent the activation and com-
pletion of activities, and edges that represent flow ordering.
We assume the existence of two domains, N of nodes and
A of activity names, and two distinguished symbols act,

com, denoting, respectively, activity activation and com-
pletion. We first define the auxiliary notion of activation-
completion labeled DAGs and then use it to define execution
traces.

Definition 1 An activities DAG is a tuple (N , E, λ) in which
N ⊂ N is a finite set of nodes, E is a set of directed edges
with endpoints in N , and λ : N → A is a labeling function,
labeling each node by an activity name. The graph is required
to be acyclic.

An activation-completion (act-comp) DAG g is obtained
from an activities DAG by replacing each node n labeled by
some label a by a pair of nodes, n′, n′′, labeled (respectively)
by (a,act) and (a,com). Such pair of nodes is called an
activity pair. All of the incoming edges of n are directed to
n′ and all of the outgoing edges of n now outgo n′′. A single
edge connects n′ to n′′.

We assume that g has a singlestartnode without incom-
ing edges, and a single end node without outgoing edges,
denoted by start(g) and end(g), respectively.

Example 1 To illustrate, let us consider the act-comp DAG
S2 in Fig. 1 (ignore for now the “bubbles”). It contains four
activities (Search, Hotel, Flight, and Print), each
represented by an activity pair. In each pair, the node with
darker (lighter) background denotes the activity’s activation
(completion).

Definition 2 The set EX of execution traces (abbr.
EX-traces) is the smallest set 1 of graphs satisfying the fol-
lowing.

1. [single activity] If g is an act-comp DAG consisting of
a single activity pair, then g ∈ EX .

2. [nested trace] If g1 is in EX , (n1, n2) is an activity pair of
g1 s.t. n1 (respectively, n2) has a single outgoing (incom-
ing) edge, and g2 is some act-comp DAG, then the graph
consisting of g1, g2, and two new edges (n1,start(g2))

and (end(g2), n2) is in EX .

The two new edges added in Item 2 above are called zoom-in
edges. All other edges are called flow edges.

In the sequel, a subgraph g2, connected as in Item 2 of
Definition 2, by zoom-in edges, to an activity pair (n1, n2),
along with the zoom-in edges, is called a direct internal trace
of the activity. The subgraph consisting of the direct internal
trace of an activity, as well as the direct internal traces of its
activities, and of their internal activities, etc., is called a (full)
internal trace.

1 In the sense that every other set satisfying the constraints is a superset
of this set.

123

54 D. Deutch, T. Milo

Fig. 1 Business process

Example 2 Some example EX-traces are depicted in Fig. 2.
Let us focus first on EX-traces (a). It details a possible exe-
cution of a travel agency activity Trip for reserving trips.
Zoom-in edges are marked as dashed arrows, and following
them reveals the internal trace of the corresponding com-
pound activities. For each such compound activity, one zoom-
in edge originates at its activation node and points at the
start node of another (possibly nested) act-comp DAG
g, and another outgoes the end node of g, pointing to the
activity completion node. For example, zooming into Trip
reveals that a Search was performed, after which the cor-
responding hotel and flight were reserved (in parallel), by
the Hotel and Flight activities, respectively, and a con-
firmation was printed. Zooming into both reservation activi-
ties reveals some credit limit check, namely Credit1. The
EX-trace in Fig. 2b is another possible EX-trace of the travel
agency. Here, the user was looking for a luxury trip, invoking
the Luxury activity. The internal flow here is similar to that
of an ordinary trip reservation, except that luxury hotels and
flights are reserved (via the LuxHotel and LuxFlight
activities) and another type of credit check, Credit2, (pos-
sibly for higher credit limit check), is performed.

2.2 Types

To define EX-trace types, we use an intuitive model of BP
specifications as rewriting systems, an abstraction of the
BPEL standard [6]. A type consists of a BP specification
accompanied by a description of the sort of tracing (to be
defined in the sequel) employed for the BP. Intuitively, the
BP specification and tracing system serve as the schema of
the corresponding traces.

Among the activity names in A, we distinguish two
disjoint subsets A = Aatomic ∪Acompound , representing

atomic and compound activities, respectively. A BP spec-
ification is a collection of activation-completion DAGs,
along with a mapping of compound activity names to their
implementations.

Definition 3 A BP specification s is a triple (S, s0, τ), where
S is a finite set of act-comp DAGs , s0 ∈ S is a distinguished
DAG consisting of a single activity pair, called the root, and
τ : Acompound → 2S is a function, called the implementation
function, mapping compound activity names in S to sets of
DAGs in S.

The intuition here is that activities that are not connected
via a directed path are assumed to occur in parallel (similarly
to the BPEL construct Flow [6]), while those that are con-
nected via a directed path occur sequentially (corresponding
to the use of the BPEL construct Sequence). An additional
axis is the implementation axis: a compound activity may
be mapped, through the implementation function, to a set
of DAGs. They represent alternative possible implementa-
tions for the activity (one of which will be chosen at run-
time as the actual implementation), allowing to capture BPEL
Choice construct. Implementations may be recursive, thereby
implementing loops (and in particular the BPEL While con-
struct). Consequently (see [4]) our formalism is expressive
enough to capture the control flow constructs supported in
BPEL. A detailed study of the expressive power of our model,
compared to other formalisms such as Context-Free (Graph)
Grammars and (Recursive) State Machines, can be found
in [11].

Example 3 The BP specification s of an online travel
agency consists of the act-comp DAGs in Fig. 1. The com-
pound activities here are Trip, Luxury, Hotel, Flight,
LuxHotel, and LuxFlight. S0 is the root of the BP, and

123

Type inference and type checking for queries over execution traces 55

Fig. 2 Execution traces

the possible implementations of each compound activity are
given in bubbles.

The intuitive interpretation of this specification is as
follows. When a user starts searching for a trip, she may

choose between an ordinary trip (leading to S2), or a lux-
ury trip (leading to S1, that in turn leads to S3). Then, she
searches and reserves (luxury) flights and (luxury) hotels, as
described above.

123

56 D. Deutch, T. Milo

We consider three kinds of traces for a given BP specifi-
cation. The first, called naive EX-trace, provides a complete
record of the activation/completion events of all BP activi-
ties and the internal flow of all compound activities. Given
a BP specification s, the set of possible naive EX-traces of s
consists of all EX-traces obtained from the root activity of s
by attaching, recursively, to each compound activity one of
its possible implementations. We call this an expansion.

Definition 4 (Naive EX-traces) Given a BP specification
s = (S, s0, τ), an act-comp DAG g, and an activity pair
(n1, n2) of g labeled by some compound activity name a and
having no internal trace, we say that g→ g′ (w.r.t. τ) if g′ is
obtained from g by attaching to the pair some implementation
ga ∈ τ(a) through two new zoom-in edges (n1,start(ga))

and (end(ga), n2).
If p → p1 → p2 · · · → pk , we say that pk is an expan-

sion of p. pk is called a full expansion if it cannot be expanded
further. The set of possible naive EX-traces defined by a BP
specification s, denoted Naive(s), consists of all the full
expansions of s0.

Intuitively, naive EX-traces of a Business Process con-
tain the full information regarding the process execution. For
example, the two EX-traces in Fig. 2a, b are naive EX-traces
of the travel agency BP depicted in Fig. 1. They contain a full
record of both compound and atomic activities that partici-
pated in the execution, as well as the flow and zoom-in edges
connecting them. In general, Naive(s) may be infinite, in
the case of recursive activity implementations.

While naive EX-traces detail the execution flow fully,
there are cases where only partial information about the activ-
ities is recorded. For example, for confidentiality reasons, our
travel agency may wish not to disclose the fact that the billing
system that is invoked in the case of a luxury reservation is
different than the one invoked in case of an ordinary reser-
vation.

In terms of the examples above, rather than labeling
the EX-trace activity nodes by the exact activity names
Credit1 and Credit2, we would like to label them by
a generic Credit label. This is captured by the following
definition of masked EX-traces.

Definition 5 (Masked EX-traces) Given a BP specification
s and a renaming function π from activity names in s to
activity names in A, the set of masked EX-traces defined
by s and π , denoted Masked(s, π), consists of all the
EX-traces e obtained from the naive EX-traces e′ ∈Naive(s)
by replacing each label a in e′ by π(a).

Example 4 To continue with our running example, Fig. 2c, d
are masked EX-traces of our travel agency BP, for a renaming
function π s.t. π(Credit1) = π(Credit2) = Credit,
and where π is the identity function for all other activities.

These two masked EX-traces are obtained, respectively, from
the naive EX-traces in Fig. 2a, b. The trace reveals that some
credit checks were issued, but not which ones.

For readers familiar with XML schemas, masked
EX-traces can be viewed as the BP analog of XML trees
defined by DTDs with specialization [28]. In both cases, the
nodes’ labels give only partial information about the origin
of the node (the corresponding BP activity, for EX-traces, or
the DTD type, for XML trees).

In some cases, an even more selective tracing is desired,
where the occurrence of some activities is not recorded at all.
For instance if some activities are completely confidential,
we may want to avoid including any memory of them in the
trace. Similarly, some activities (e.g., standard input integ-
rity checks) may simply be uninteresting for the business
analysts and may be omitted to avoid overloading the logs
with redundant information. To model these type of traces,
we introduce the notion selective EX-traces.

Definition 6 (Selective EX-traces) Given a BP specification
s, a set A of activity names in s, satisfying condition (*)
below, and a renaming function π from activity names in s
to activity names in A, the set of selective EX-traces defined
by s, A, and π , denoted Selective(s, A, π), consists of all
EX-traces e obtained from the naive EX-traces of s by delet-
ing all activity pairs with labels in A 2 and then replacing
each label a of the remaining nodes by π(a).

Condition (*): A does not include the root activity of s, and
for each activation-completion graph g in s, the graph g′
obtained from g by removing the atomic activity pairs with
names in A is itself an activation-completion graph (as in
Definition 1), or is empty.

The intuition behind condition (*) in Definition 6 is that
from a practical point of view, it is reasonable to assume that
the graph obtained after each loss of information still bears
the shape of a trace, otherwise the loss is easily observable.
For instance, removing also the Search activity pair will
result in a graph in which two different zoom-in edges are
going out ofTrip, pointing at two different nodes. This con-
tradicts the definition of an EX-trace. Condition (*) assures
that this does not happen.

Example 5 If our travel agency also wishes to keep as a
secret the fact that reservations of different types are treated
differently, then not only the credit checks need to be

2 When an atomic activity pair (n1, n2) is deleted, the edges incoming
to n1 are now connected to the nodes previously pointed by n2. For
compound activities, the incoming(outgoing) edges of n1 (n2) are now
being connected to the start/end nodes of the implementation sub-graph.

123

Type inference and type checking for queries over execution traces 57

relabeled, but also the LuxHotel and the LuxFlight,
and the record of the Luxury activity should be omitted
altogether. Here, A = {Luxury}, and π(Credit1) =
π(Credit2) = Credit , π(LuxHotel) = Hotel, and
π(LuxFlight) = Flight.

Figure 2e shows the selective EX-trace obtained from the
naive EX-traces in Fig. 2b. Note that the same graph (up
to node isomorphism) is also the selective EX-trace obtained
from the naive EX-traces in Fig. 2a. Thus, given such a selec-
tive trace, there is no way to tell from which naive EX-trace
(of ordinary or luxury trip reservation) it originated, and the
goal of secrecy is achieved.

We denote Naive= {E | ∃s s.t. E = Naive(s)},
Masked= {E | ∃s, π, s.t. E = Masked(s, π)}, Selec-
tive= {E | ∃s, π, A, s.t. E = Selective(s, A, π)}. We
next show that there is a strict inclusion relationship between
the classes, and that they do not capture all the possible sets
of EX-traces.

Theorem 1 Naive⊂Masked⊂Selective⊂2EX .

Proof The inclusion follows naturally from the definitions.
We prove next its strictness, using examples that highlight
some of the key properties of the various trace classes. These
properties will be useful in the sequel.
Naive ⊂ Masked Consider the BP specification s

depicted in Fig. 3a (ignore, for now, the text next to the
nodes). The depicted BP includes Trip as its root activity,
whose implementation is a sequence of two compound activ-
ities labeled Hotel1 and Hotel2. The implementation of
Hotel1 (respectively, Hotel2) contains the single atomic
activity, Credit1 (Credit2). Now, consider a renaming
function π that maps both Hotel1 and Hotel2 to a sin-
gle activity name, Hotel, and is the identity function for
the remaining activity names. Here, the set of masked traces
E = Masked(s, π) of s contains the single EX-trace e,
depicted in Fig. 3b. e contains two Hotel-labeled activities,
with the implementation of the first (second) beingCredit1
(Credit2).

It is easy to see, however, that no BP specification
s′ can have e as its single naive EX-trace! This is because
for e to be in Naive(s′), Hotel must have at least two
alternative implementations in s′, one containing Credit1
and the other containing Credit2. But if this is the
case, Naive(s′) also contains three additional EX-traces:
one where both Hotel occurrences have Credit1 as
internal traces, one where they both have Credit2, and
one where the first has Credit2 and the second
Credit1.
Masked ⊂ selective Consider the class of BPs

where the implementation graphs of all compound activ-
ities are chains. For each such BP s, consider the selec-
tive traces obtained by deleting all compound activities
and keeping the names of the atomic and root activities
unchanged. That is, the set A of deleted activities con-
sists of all compound activities appearing in s, and π is
the identify function. The resulting EX-traces consist of a
root activity whose direct internal trace is a sequence of
atomic activities. Viewing the sequence of activity names
that appear in the chain as a word, and the set of words
represented by the selective traces of a given BP as a lan-
guage, it is easy to see that for each BP s, Selective(s, A, π)
defines a context free-language. (Its context-free grammar
follows naturally from the BP specification). Conversely,
for every context-free language L , we can define a BP s
(and A, π) s.t. the words in Selective(s, A, π) are pre-
cisely those of L . (Here again, s’s specification resembles
L’s grammar). In contrast, for every BP s, its naive (or
masked) EX-traces that contain only the root activity and
atomic activities have a shape that is specified by the direct
implementation of the root activity, hence are of bounded
length and cannot capture all context-free (or infinite) lan-
guages.
selective⊂2EX Since EX is infinite, 2EX is uncount-

able. In contrast, there are only countably many BPs with
selective tracing systems, and there can be no more languages
than the number of such encodings, thus only countable many

Fig. 3 A Business Process and
an Execution Trace

123

58 D. Deutch, T. Milo

Fig. 4 A query and its results

languages may be captured by BPs with selective tracing
systems. �	

2.3 Queries

We now consider queries. As mentioned in the Introduction,
the query language that we use was originally introduced
in [3,4]. Queries are defined using execution patterns (abbr.
EX-patterns). EX-patterns generalize EX-traces similarly to
the way tree patterns generalize XML trees. EX-patterns are
EX-traces where activity names are either specified, or left
open using a special any symbol. Edges in a pattern are either
regular, interpreted over edges, or transitive, interpreted over
paths. Similarly, activity pairs may be regular or transitive,
for searching only in their direct internal trace or zooming-in
transitively inside it. We next give the syntactic definition of
an EX-pattern, then define its semantics (including in partic-
ular the role of transitive activities and edges).

Definition 7 An execution pattern, abbr. EX-pattern, is a
pair p = (ê, T N , T E) where ê is an EX-trace whose nodes
are labeled by labels from A ∪ {any}, and T N (T E) is a
distinguished set of activity pairs (respectively, edges) in ê,
called transitive activities and edges, respectively.

Example 6 An example EX-pattern is depicted in Fig. 4a.
The pattern seeks for all possible EX-traces where the user
may make a reservation of a trip and finalize the reser-
vation by performing the credit check. The query looks,
visually, very similar to an EX-trace: it has compound activ-
ities (such as Trip) to which an implementation is attached
through implementation edges, and atomic activities (such as
Credit). Two distinctions are apparent in the figure: first,
the Trip activity node is doubly bounded, signaling that
it is transitive. Intuitively, this means that we wish to seek
for the occurrence of Credit in its indirect implementation
(i.e., in the implementation ofTrip, or in an implementation
of one of the compound nodes appearing in its implementa-

tion, etc.). Another difference is that the implementation edge
connecting Trip and Credit is also transitive. This means
that it may match any path of activity nodes appearing, in the
EX-trace of interest, between the Trip and the Credit
nodes.

If the Trip activity node would have been non-transitive
then the semantics would imply that the Credit activity
must appear in its direct implementation (and not in an
implementation of activities within its implementation and
so on). Similarly, if the edge from Trip to Credit would
have been non-transitive then it would imply that there must
appear a direct edge connecting Trip and Credit (in this
particular case, since this edge is also an implementation
edge, this would mean that Credit must be the root of the
direct implementation of Trip). In general, transitive edges
are useful also as non-implementation edges, and then they
simply imply the existence of some path between the two
nodes.

To evaluate a query, the EX-pattern is matched against a given
EX-trace. A match is represented by an embedding.

Definition 8 (Embedding) Let p = (ê, T N , T E) be an
EX-pattern and let e be an EX-trace. An embedding of p
into e is a homomorphism ψ from the nodes and edges in
p to nodes, edges and paths in e s.t.

1. [root] the root of p is mapped to the root of e.
2. [nodes] activity pairs in p are mapped to activity pairs

in e, preserving node labels and formulas; a node labeled
by any may be mapped to nodes with any activity name.
For non-transitive compound activity pairs in p, nodes in
their direct implementation are mapped to nodes in the
direct implementation of the corresponding activity pair
in e.

3. [edges] each (transitive) edge from node m to n in p is
mapped to an edge (path) from ψ(m) to ψ(n) in e.

The result defined byψ is the image of p in e underψ . I.e., it
is a sub-graph of e induced by restricting to nodes and edges
in the range of ψ .

For an EX-pattern p and an EX-trace e, the result of
p when applied to e, denoted p(e), is the set of all results
of all possible embeddings of p into e. Finally, given a set
E of EX-traces, we will also use p(E) to denote the set of
all possible outputs of p when applied on EX-traces in E ,
namely p(E) =⋃

e∈E p(e).

Example 7 For example, let us now match the EX-pattern
in Fig. 4a to the EX-trace in Fig. 2c. Two embeddings are
possible here, yielding the results in Fig. 4b, c. In the first
embedding, the pattern transitive edge outgoing (incoming)
the Trip activity is matched to the EX-pattern path pass-
ing through the Flight activity. In the second embedding,

123

Type inference and type checking for queries over execution traces 59

it is matched to the path traversing the Hotel activity. It is
important to note that the same query (EX-pattern), but with
a non-transitive Trip activity, would yield here an empty
result, as it would search for Credit activities in the direct
internal trace (implementation) of Trip (while in the given
EX-trace it appears only deeper in the implementation hier-
archy). Similarly, if the edge connecting Trip and Credit
was non-transitive, again the empty result would have been
obtained, as this revised query seeks for a direct edge con-
nectingTrip andCredit, while in the given EX-trace they
are connected via a path of length greater than 1.

Finally, since an embedding is a homomorphism, multiple
query nodes may be mapped to the same EX-trace nodes and
edges (or paths).

3 Type inference

We next define the type inference problem that we study here.
Three variants of the problem correspond to the three families
of trace types, as follows. With naive tracing, we are given an
EX-pattern p and a set of naive EX-traces defined by some BP
s and would like to find a BP specification s′ s.t. Naive(s′) =
p(Naive(s)).3 With masked tracing, we are similarly given
a set of masked EX-traces defined by a BP specification s
and a renaming function π , and wish to infer s′, π ′ such that
Masked(s′, π ′) = p(Masked(s, π)). Finally, in the selec-
tive tracing setting, we are further given a deletion set A,
and wish to infer s′, A′, π ′ such that Selective(s′, A′, π ′) =
p(Selective(s, A, π)).

Section organization. Recall Table 1, indicating that to obtain
a Type Inference algorithm, we must allow the output type
to use (at least) masked tracing. Indeed, we start by suggest-
ing an algorithm that uses masked tracing for its generated
output type (and allows masked tracing for its input type); in
the worst case, if the query contains transitive edges, then the
complexity of the algorithm may be EXPTIME with respect
to the size of the input type. Then, we modify the algorithm
into a PTIME (with respect to the input type, with the expo-
nent determined by the query size) algorithm, allowing the
output type to use selective tracing.

Last, we provide lower bounds. We start by showing that
the use of naive tracing is not expressive enough to allow
capturing inferred types in general (even when the input type
uses naive tracing as well); then we show that when using
masked tracing for the output type, the exponential blowup
w.r.t. the input type is unavoidable for queries with transi-
tive edges; last, we show that the exponential dependency on

3 For EX-trace equality, we use graph isomorphism up to node identifi-
ers. Equality of sets of EX-traces is defined w.r.t. this equality relation.

the query size is unavoidable unless P=NP even when using
selective tracing in the input type.

3.1 Basic (EXPTIME) algorithm

We next explain Algorithm MASKED-TYPE-INFERENCE,
depicted in Algorithm 1. The algorithm assumes that no tran-
sitive nodes exist in the pattern (but transitive edges may
exist); we explain below the extension of the algorithm to
handle transitive nodes.

Algorithm 1: MASKED-TYPE-INFERENCE (no
transitive nodes)

Input: Input type s, π ; EX-pattern p;
Output: Output type s′, π ′
foreach activity pair ns in s do1

foreach activity pair n p in p with label equal to that of ns , or2
Any do

a← π(λ(ns)) ;3
Add to s′ the activity name [n p, ns , a] ;4
Define π ′([n p, ns , a]) = a ;5
if ns is compound then6

PatternI mp← the direct internal trace of n p ;7
foreach direct implementation I mp of a in s do8

embs ←9
ComputeEmbeddings(PatternI mp, I mp) ;
Add embs as implementations of [n p, ns , a] ;10

end11
if No embeddings were found then12

Mark [n p, ns , a] as failure;13
end14

end15
end16

end17
RemoveFailureActivi ties(s′) ;18

The algorithm input is a BP specification s along with a
renaming function (i.e., a masked tracing system) π , and an
EX-pattern p. Its output is a BP specification s′ along with
a renaming function π ′; s′, π ′ intuitively capture the “inter-
section” of the set of EX-traces of the original BP s, with the
set of EX-traces defined by the pattern p. We next explain
how s′, π ′ are constructed by the algorithm.

For every two activity pairs ns ∈ s and n p ∈ p where
n p is labeled either by the same (compound) activity name
as ns , or by any, we use a new activity name [n p, ns, a],
where a = π(λ(ns)), to represent the “intersection” of
activity pairs (lines 1–5 in Algorithm 1). For compound
(non-transitive) activities, the possible implementations in
s′ (computed in lines 7–10 of the algorithm) of [n p, ns, a]
consist of a DAG for each possible embedding of the direct
internal trace of n p in p into the possible direct imple-
mentations of ns in s. These embeddings are computed by
ComputeEmbeddings, described in the sequel. If no em-
beddings were found, [n p, ns, a] is marked as a failure

123

60 D. Deutch, T. Milo

Fig. 5 BP specifications

(lines 12–13). As a final step of the algorithm, we perform
“garbage collection”, by invoking (line 18) the procedure
RemoveFailureActivi ties that recursively marks as fail-
ure, activities for which all possible implementations contain
failure activities, and then removes from s′ all implementa-
tions that contain such failure activities.

ComputeEmbeddings. We next explain the operation of Algo-
rithm ComputeEmbeddings, used in Line 9 of the type infer-
ence algorithm. When the EX-pattern contains no transitive
edges (recall that we also assume no transitive nodes), then
the embeddings may be found using conventional algorithms
for subgraph homomorphism [26]. For each such homomor-
phism h that we find, the resulting embedding has the shape of
the pattern, but each activity pair n p is assigned an activity
name [n p, h(n p), λ(h(n p))]. When the query pattern con-
tains transitive edges, then the algorithm also defines a new
activity name for every transitive edge ep ∈ p and activity
ns ∈ s, and maps each transitive edge ep ∈ p (that connects
two pattern nodes) to a path in the BP (connecting the two
corresponding BP nodes).4 Each such matching path is rep-
resented in a different embedding. In the resulting graph, a
BP node ns (with label a) that appear on such path is labeled
by the triplet [ep, ns, a].
Handling transitive nodes. Recall that we have assumed
above that the pattern p contains no transitive nodes. With
transitive nodes in the pattern, the algorithm becomes some-
what more complex. For a transitive node n p appearing in a
pattern graph G p, part of the direct internal trace of n p can
be matched with the direct implementation of ns , while other
parts may be matched at deeper levels of the implementation.

4 Note that the number of such possible paths is possibly exponential
in the BP size.

To account for that, the algorithm considers all possible splits
of the (internal traces of activities in the) implementation of
n p. For a pattern graph G ′p, p0, p1, . . . , pm is a split (of size
m) of G ′p if each pi is a sub-graph of G ′p and every node
or edge of G ′p appears in pi . Now, denote as a the label of
the specification node n, in which a given transitive node was
embedded. Then, for each direct implementation G of a, con-
taining m nodes n1, . . . , nm that are labeled with compound
activities, we try all possible splits p0, p1, . . . , pm , of size m,
of the pattern p. We generate a new implementation graph for
a, bearing the same shape as G, but where each node label ai

of ni is replaced by [pi , ni , ai]. Intuitively, implementations
of [pi , ni , ai] are “committed” to include an embedding of
pi . We also test for the existence of embedding of p0 in G.
If such an embedding does not exist, we mark the activity as
failure. Otherwise, we recursively continue testing for exis-
tence of an embedding of pi in all possible implementations
of ai . We repeat the process for all possible splits. Finally,
the last step of “garbage collection” removes all activities
marked as failure, as described above.

Example 8 Consider the BP s from Fig. 5a with π being the
identity mapping, and the EX-pattern p of Fig. 6. The anno-
tations next to the query and BP activity pairs represent their
identifiers. The BP s′ constructed by the algorithm is depicted
in Fig. 3a. Its activity names are of the form [qi , s j , a], where
qi (s j) is the identifier of a pattern (specification) activity
node (ignore now the labels appearing within the nodes; the
new activities names appear next to the nodes). The renam-
ing function π ′ maps [qi , s j , a] to a. Note that s′, π ′ define
a single masked EX-trace, of the shape depicted in Fig. 3b,
which is indeed the only answer of the query p when applied
on the naive (or masked) traces of s.

123

Type inference and type checking for queries over execution traces 61

Fig. 6 Query

We next explain the manner in which s′ is constructed by
the algorithm. The construction of s′ begins by matching the
query root q1 to the specification root s1, and forming a new
activity name [q1, s1, T rip]. Then, the implementation of
q1 is matched against the single possible implementation of
s1, thus embedding q2 (q3) in s2 (respectively, s3), forming a
new activity name [q2, s2, Hotel] ([q3, s3, Hotel]). This is
a main point of the algorithm: a unique activity name Hotel
that labeled two nodes of the original BP specification s (the
nodes identified by s2 and s3), yielded two distinct activity
names in s′. Consequently, each of these two activities names
can now have distinct implementations that comply with the
(different) conditions that the query imposes on their struc-
ture. Indeed, we proceed by embedding the implementation
of q2 in the possible implementations of Hotel. There exist
two such possible implementations, one of which contains
Credit1 and the second contains Credit2. In the latter,
there is no embedding of the implementation of q2; in the
former, there exists an embedding, yielding a node labeled
[q4, s4,Credit1]. Similarly, we construct the only imple-
mentation of [q3, s3, Hotel], containing [q5, s5,Credit2].

Complexity. The time complexity of the algorithm depends
on the number of possible sub-patterns that should be consid-
ered, for handling transitive nodes (exponential in the size of
the EX-pattern p) and the number of possible embeddings of
these sub-patterns into the activation-completion DAGs in s.
Note that while, for each sub-pattern, the number of possible
embeddings for nodes is polynomial in the size of the DAGs
(with the exponent determined by the size of the sub-pattern),
the number of possible embeddings of transitive edges may
be exponential in the size of the DAGs in s: transitive edges
are mapped to paths and the number of paths in a DAG may
be exponential. The following theorem holds:

Theorem 2 The complexity of Algorithm MASKED-TYPE-
INFERENCE is exponential in the size of the input BP
specification and in the size of the query.

3.2 Improved (PTIME) algorithm using selective tracing

We have shown above an EXPTIME Type Inference
Algorithm for masked tracing. Evidently, when selective
tracing may be used in the output type, we can obtain a
PTIME algorithm (with respect to the input BP specification
size). A first easy step is to extend the algorithm to sup-
port selective tracing in the input type: let (s, A, π) be
the input type, then we may construct an output type
(s′, A′, π ′), where s′, π ′ are constructed exactly as in algo-
rithm MASKED-TYPE-INFERENCE, and A′ is such that
[n p, ns, a] ∈ A′ if a ∈ A. But this algorithm still incurs
EXPTIME. Interestingly, when the output type is allowed to
use selective tracing systems, we are able to improve the algo-
rithm and achieve an algorithm with PTIME data complexity.

The improved type inference algorithm, namely SELEC-
TIVE-TYPE-INFERENCE, is based on the following
observation. Consider the manner in which transitive edges
are handled by ComputeEmbeddings, used in Algorithm
MASKED-TYPE-INFERENCE. It treats each embedding of
the sub-patterns of p into the BP s individually, contributing
one graph to the output BP specification s′. For a transitive
edge, this means that each of the paths between the nodes
matched to its endpoints is treated separately, hence the expo-
nential blowup. To avoid this, we use the added expressive
power of selective traces. For every two specification nodes
n1, n2 to which the end-nodes of a transitive edge (in the
query) are mapped, consider all paths in-between n1 and n2.
For each such path, we view the sequence of activity names
in the path as a string, and the set of strings obtained from all
such paths as a string language L . As we show below, we can
define a regular string grammar G describing L . Then, we use
G to define a BP s′′, along with A′′ and π ′′, s.t. the graphs of
Selective(s′′, A′′, π ′′) are paths, and the word constructed
by following the labels along them are precisely those of L .
Finally, s′′ is then “plugged” into s′. In the sequel, we explain
in details these three modifications.
Generating the string grammar G. Algorithm 2 is given as
input an implementation graph in a given BP specification
s (initially consisting only of the specification root s0), and
two nodes n1, n2 and generates a string grammar capturing
all paths between n1 and n2. The grammar non-terminals
correspond to the different nodes (activities pairs) of s while
terminals correspond to activities names.

The regular grammar is constructed bottom up, starting
with the current node ncurr being n2 and generating a sin-
gle derivation rule N2 → λ(n2) (lines 6–8). For each atomic
activity pair n prev such that there exists an edge from n prev to
ncurr in the specification graph (lines 9–13), we design a rule
Nprev → λ(n prev)Ncurr , and continue recursively (line 13).
For a non-terminal Nprev corresponding to a compound activ-
ity node labeled by A with implementations s1, . . . , sk (lines
16–20), we design new derivation rules N → start (si)

123

62 D. Deutch, T. Milo

Algorithm 2: GENERATE-STRING-GRAMMAR
Input: An implementation graph s in a BP specification, activity

pairs n1, n2
Output: A string grammar representing all paths from n1 to n2
Generate a grammar G with a non-terminal for every activity pair1
in s, and a terminal for every activity name in s ;
if n1 = n2 then2

Set the initial non-terminal of G to be the non-terminal3
corresponding to n1 ;
return ;4

end5
Add to G a derivation rule n2 → λ(n2) ;6
ncurr ← n2 ;7
Ncurr ← the non-terminal corresponding to ncurr ;8
foreach edge (n prev, ncurr) do9

if n prev is atomic then10
Nprev ← the non-terminal corresponding to n prev ;11
Add to G a derivation rule Nprev → λ(Nprev)Ncurr ;12
GENERATE-STRING-GRAMMAR(s, n1, n prev) ;13

end14
else15

foreach implementation si of n prev do16
Add to G the derivation rules Nprev → λ(start (si))17
and end(si)→ λ(end(si))Ncurr ;
if a grammar for si was not already generated then18

GENERATE-STRING-GRAM-19
MAR(si , start (si), end(si))

;
end20

end21
end22

end23

for i = 1, . . . , k and end(si) → λ(end(si))Ncurr , where
start (si) (end(si)) is the non-terminal corresponding to the
start (end) node of si . We then recursively generate a gram-
mar for all paths in-between start (si) and end(si) (if such
grammar was not generated yet). The process terminates
when we reach n1 (where N1 is its corresponding non-
terminal), and we set the grammar root to be N1, the non-
terminal corresponding to n1 (lines 1–3).

Recall that each non-terminal in G corresponded to a node
in s. We use real(G) to denote the set of non-terminals that
originated from compound activity pairs, and temp(G) for
all other non-terminals (those generated for atomic activity
pairs).

Transforming G into s′′. We next explain how to generate a
BP s′′ along with a selective tracing system A′′ and π ′′, such
that each graph in Selective(s′′, A′′, π ′′) is in fact a path
whose labels sequence is a word in the language defined
by G. The compound activities of s′′ are simply the non-
terminals of G. The implementation function follows the
derivation rules of G, but the string appearing in the right-
hand side of each such derivation rule is replaced by a chain
graph where each label of the string is represented by a node
bearing the same label as its activity name, and edges con-
nect nodes standing for subsequent such labels. Finally,

A′′ consists of all activities names corresponding to non-
terminals in temp(G). π ′′ = π (the renaming function used
for the input BP specification).
Plugging s′′ into s′. Whenever the algorithm reaches the ori-
gin of a transitive edge N1 → N2, we simply add a new
compound activity rs′′ that is the root of s′′ (constructed as
explained above). Also, we add to the deletion set A′ of s′,
all activity names in A′′, and we continue the algorithm oper-
ation.

Note that the exponential blow-up incurred in Algorithm
MASKED-TYPE-INFERENCE is now avoided, via the use
of a string grammar. The following theorem follows:

Theorem 3 The complexity of Algorithm SELECTIVE-
TYPE-INFERENCE is O(| s ||q|). where | s | is the size
of the input BP specification, and | q | is the query size.

3.3 Lower bounds

We have suggested above an EXPTIME Type Inference algo-
rithm when using masked tracing. We next show that this is
the best that can be achieved.

Theorem 4 There exists an infinite set S of BPs of increasing
sizes, and an EX-pattern p (with only three activity pairs),
s.t. for each BP s ∈ S, every s′ s.t. Masked(s′, π ′) =
p(Naive(s)) for some π ′ is of size �(2|s|).

Proof The BPs in the class S have the form depicted in
Fig. 5b, where the root implementation starts with an activ-
ity pair a, then splits into two activities pairs b and c, then
merges again into another a activity, splits again into b and
c, and so forth. The k-th BP in S contains k repetitions of
this form. The EX-pattern p consists of a root activity pair
whose internal trace contains a start and end activity pairs
both labeled a, and a single transitive edge between them.
Each EX-trace in p(Naive(s)) has a root activity with an
internal trace that is one of the individual paths from the start
to the end activity. There is an exponential number of such
paths. Thus, each specification generating all of these masked
traces must contain each path as an explicit implementation
of the root, and hence the result size must be �(2|s|).

Next, we show that the use of at least masked (rather than
naive) tracing is necessary to obtain a Type Inference algo-
rithm (of any complexity):

Theorem 5 There exist a BP specification s and an
EX-pattern p s.t. there is no BP specification s′ where
Naive(s′) = p(Naive(s)).

Proof Consider the BP specification s whose act-comp
DAGs are depicted in Fig. 5a and the EX-pattern p in Fig. 6
(ignoring now the labels next to the nodes). The EX-pattern
requires an occurrence of Credit1 and Credit2. Here,

123

Type inference and type checking for queries over execution traces 63

p(Naive(s)) contains only the trace in Fig. 3b. However, as
explained in the proof of theorem 1, no BP specification s′
can have this EX-trace as its single naive EX-trace, because
for it to be in Naive(s′), Hotel must have at least two
alternative implementations in s′, one containing Credit1
and the other containing Credit2, but this would allow for
additional EX-traces in which all other 3 combinations of
implementations of the two Hotel occurrences, including
Credit1 and Credit2.

Last, we note that unless P=NP no algorithm can be poly-
nomial in the size of the given query. We define a decision
problem, M AT C H?(p, s), as the problem of deciding, given
a pattern p, a BP s, whether some embedding of p in a naive
trace of s exists, i.e., whether p(Naive(s)) = ∅.
Theorem 6 Given an EX-pattern p and a BP s,
M AT C H?(p, s) is NP-hard in the size of p even if the fol-
lowing condition holds.

– In the implementations of all activities in p, and in all
the act-comp DAGs of s, all nodes besides the end node
have a single parent.

The problem is NP-hard (in the size of p) even if only naive
trace types are considered (i.e., A is empty and π is the iden-
tity function).

Proof We construct the following reduction from 3-SAT
[15]. Given a Conjunctive Normal Form formula F, with vari-
ables {X1, . . . , Xn}, we generate an instance of a BP speci-
fication s and an EX-pattern p as shown in Fig. 7. The idea
is to create a compound activity node associated with each
variable of the formula. Each such node has two possible
implementations, i.e., for all i , the implementations of Xi

are FiT rue and Fi False. The former contains a node for each
clause that Xi satisfies, and the latter contains a node for each
clause that ¬Xi satisfies. The query requires all clauses of
the formula F to appear (in an indirect implementation of
the root, preceded / followed) by any sequence of activities,
hence the use of the transitive node and edges). �	
Lemma 1 There exists an embedding of the query within a
naive EX-trace of the constructed BP specification if and only
if the formula F is satisfiable.

Proof Let e be a naive EX-trace of s in which the query is
embedded. e was obtained by choosing for some composite
nodes their ’true’ implementations, and ’false’ implemen-
tation for the rest. These choices correspond exactly to a
satisfying assignment: for every variable whose correspond-
ing compound activity node was implemented by a ’false’
(’true’) graph, assign ’false’ (’true’). Conversely, let A be
a satisfying assignment, and let e be the naive EX-trace

obtained by choosing, for each composite node, its ’true’
(’false) implementation if A assigns ’true’ (’false) to the cor-
responding variable. As A is a satisfying assignment, it holds
that for every clause of the formula there exists a correspond-
ing node in one of the chosen implementations in e. Conse-
quently, there exists an embedding of the pattern p in e.

To complete the picture, we show that the M AT C H? deci-
sion problem is in NP. In fact, we show that an NP algo-
rithm exists even for an extended version of the M AT C H?
problem, where the tracing system used is selective. We use
M AT C H?(p, s, A, π) to denote the problem of deciding
whether p(selective(s, A, π)) = φ (the existence of NP
algorithm for the cases of masked and naive tracing follows
immediately). �	
Theorem 7 Given an EX-pattern p, a BP s, a set of activi-
ties A and a renaming function π , M AT C H?(p, s, A, π) is
in NP (combined complexity).

Proof The NP algorithm is based on the following Lemma.
�	

Lemma 2 If p(Selective(s, A, π)) �= φ, then there exists
at least one EX-trace e of s, s.t. the size (i.e., number of nodes
and edges) in e is polynomial in s and p and e′ satisfies p,
where e′ is the selective EX-trace obtained from e by remov-
ing the activities in A and applying the renaming function
π .

Proof Let e ∈ selective(s, A, π) be a trace in which p may
be embedded. The number of nodes and edges of e to which
nodes and non-transitive edges of p are mapped is clearly
bounded by the size of p. However, the length of paths to
which transitive edges are mapped may be arbitrarily long.
Still, we may construct a “smaller” trace e′ in which p is
embedded, by “cutting” the length of such paths as follows.
First, if no recursive invocation of activities occurs along
the path then its length is linear in |s|. Otherwise, if there
exists such recursive invocation rooted at an activity pair n
and in which the invoked activity pair is n′, we create a new
EX-trace e′ by eliminating from e the entire sub-flow rooted
at n and replace it by the sub-flow rooted at n′. Observe that
as n and n′ share the same activity name, it holds that also
e′ ∈ selective(s, A, π). Also, there exists an embedding of
p in e′, mapping the transitive edge to the new path. We repeat
for each recursive implementation along the path until obtain-
ing a flow in which no such implementation exists. We further
repeat this process for additional transitive edges. Eventually,
we get a trace where the length of each path to which a tran-
sitive edge of p is mapped is bounded by |s|∗|p|; the number
of such paths is bounded by |p|, yielding an overall bound
of O(|s| ∗ |p|2) on the trace size.

The NP algorithm is then simple: guess an expansion
sequence of polynomial size starting at the specification root,

123

64 D. Deutch, T. Milo

Fig. 7 NP-hardness proof

to obtain a flow e; remove from e all activities in A and
apply the renaming function π over the remaining activities,
to obtain a trace e′. Finally, guess a mapping of the pattern
p to e′.

3.4 Using types for queries optimization

To conclude this section, we illustrate (in a simplified setting)
how types, and our results on type inference, allow for query
optimization and error detection.

First, we illustrate why types are useful for query optimi-
zation in this settings. Consider a simple query that searches
for EX-traces containing two activities, A and B, and assume
that this query needs to be evaluated on a large repository
of execution traces, obtained by logging multiple execution
of some process. Type information is very useful in query
optimization in this context: for instance, if the traces type
(represented by a specification of the Business Process and
the tracing system that was used) tells us that all traces con-
tain an A, then we can employ an optimized query evalua-
tion, checking only for the existence of B. Similarly, if the
type tells us that no trace contains an A, we can immedi-
ately infer inconsistency of the query (in the sense that its
output is surely empty) and halt. Indeed, we presented in
[4] a type-based optimization technique which eliminates
redundant computation, yielding 50% improvement in per-
formance. Note that the optimization algorithm, illustrated in
[4] on naive types, works uniformly for naive/masked/selec-
tive types, as it builds on general results of [11] that apply to
all trace classes.

Now, assume we are given a large database containing
EX-traces of a given BP. Consider a scenario where some
subset of the traces is selected by a (coarse-grained) query Q1

whose goal is to identify the EX-traces that may be relevant

to the analysis task. The EX-traces selected by Q1 are then
fed as input to another query Q2 for further analysis. Such
two-step processing is typical in EX-traces analysis [29], due
to the extensive size of the repositories and the irrelevance of
large parts of them to analysis tasks. As seen above, know-
ing the shape of Q2 input, or, in other words, inferring the
type of Q1 output allows to optimize Q2. Note that the use
of masked, or the more powerful selective, types to capture
the output of Q1 is crucial here; we have shown that infer-
ring a naive type may simply not be possible. In contrast,
we also showed that type inference that uses an output type
with masked / selective is possible (and can be used regard-
less of whether the input type was naive / masked / selective)
and may thus be used for the optimization of Q2. In partic-
ular, if we use an output type with selective tracing, then we
have shown that such a type can be computed in polynomial
time with respect to the original type (for any input type and
query), rendering it very useful for query evaluation.

4 Type Checking

The problem of Type Checking is to verify that the query
result conforms to a given type. Formally, given a target
BP specification s′, we want to check if p(Naive(s)) ⊆
Naive(s′). Similarly, for masked tracing, given also a renam-
ing function π ′, we wish to check p(Masked(s, π)) ⊆
Masked(s′, π ′), and similarly for selective tracing, we wish
to verify p(Selective(s, A, π)) ⊆ Selective(s′, A, π ′).

We next suggest a Type Checking algorithm for naive and
masked tracing. We present it in two steps: we start with a
restricted case of deterministic trace types, and then explain
the general case.

123

Type inference and type checking for queries over execution traces 65

4.1 Deterministic trace types

Let s be some BP specification andπ a renaming function for
the activities in s. Consider an EX-trace e ∈ Naive(s) and
its image, after activities renaming, denoted by �(e) (note
that �(e) ∈ Masked(s, π)). Clearly, there is at least one
isomorphism from e to �(e) mapping activity pairs labeled
a to activity pairs labeled π(a). A node no in e that is mapped
through such isomorphism to a node n in �(e) is called the
origin of n. Note that in general, a node may have more than
one possible origin, as (a) � is not one-to-one and (b) even
for a specific pair of traces e and�(e), there may be several
different isomorphisms between them.

Definition 9 Let s be a BP specification andπ be a renaming
function over its activities. Masked(s, π) is called deter-
ministic (w.r.t. s, π) if for every node n in every trace in
Masked(s, π), all possible origins of n in Naive(s) have
the same activity name.

We next provide an algorithm for Type Checking for deter-
ministic sets of traces, in presence of masked Tracing (in both
the input and the output types). Note that this means that the
algorithm works also for the particular case of naive tracing.

The basic framework of Algorithm DETERMINISTIC-
TYPE-CHECKING is depicted in Algorithm 3. The
Algorithm first applies Algorithm MASKED-TYPEINFER-
ENCE depicted in the previous section, to infer the type
s′′, π ′′ of those traces of s, π that also conform to p. It then
computes a type capturing a specific kind of complement of
the traces in Masked(s′, π ′), denoted Masked(s′, π ′) (the
exact notion of this complement is given below); the algo-
rithm intersects Masked(s′′, π ′′) with Masked(s′, π ′) (the
complement of the required type), and checks if the inter-
section result is empty. The intersection result is empty if
and only if none of the traces in the obtained type are in the
complement of the required type.

To define the exact notion of complement used here, also
note that, in fact, it suffices to consider a restricted portion of
Masked(s′, π ′) that includes only the traces of the comple-
ment in which the size of each direct internal trace is bounded
by the size of the largest direct possible internal trace in
EX-traces of s′′. In other words, we can bound their size by
some number k—the size of the largest act-comp graph in
s′′. This holds because other traces of the complement can-
not be isomorphic to some EX-trace of s′′; in traces of s′′,
each activity has a direct implementation chosen out of the
act-comp graphs of s, thus its size is bounded by k.

We next explain INTERSECT, COMPLEMENT, and
TEST-EMPTINESS algorithms.
Intersection. For ease of presentation, let us first consider
naive traces and then extend the discussion to masked traces.
Given two BP specifications s = (S, s0, τ), s′ = (S′, s′0, τ ′),
we find a BP specification s′′ = (S′′, s′′0 , τ ′′) whose naive

Algorithm 3: DETERMINISTIC-TYPE-CHECKING
Input: Input type s, π ; EX-pattern p; Required type s′, π ′
Output: True if and only if p(Masked(s, π))⊆ Masked(s′, π ′)
(s′′, π ′′)← M ASK E D − T Y P E − I N F E RE NC E(s, π, p) ;1
(s′′′, π ′′′) =2
I N T E RSECT (C O M P L E M E N T (s′, π ′), (s′′, π ′′)) ;
T E ST − E M PT I N E SS(s′′′, π ′′′) ;3

traces are exactly those in the intersection of the naive traces
of s and s′.

The set of its activity names is the intersection of the
activity names sets of s′, s′′. If the activity names r , r ′ label-
ing the root activities of s and s′ are different, then clearly
Naive(s) ∩ Naive(s′) = ∅ and s′′ is the empty BP. Other-
wise, the root of s′′ is labeled by r = r ′. The construction of
s′′ proceeds as follows. For every compound activity name a
in S′′ that was not treated yet, we set τ ′′(a) = τ(a) ∩ τ ′(a).
This intersection is a regular intersection between sets of
graphs, where a graph g ∈ τ(a) appears in the intersection if
it is isomorphic (up to node identifiers) to some g′ ∈ τ ′(a).

All the act-comp graphs appearing in τ ′′(a), for some
activity name a, are added to S′′. Finally, we perform
“cleanup”: repeatedly, all the graphs in S′′ are checked
and the graphs g having compound activities a for which
τ ′′(a) = ∅ are removed from S′′. τ ′′ is being adjusted accord-
ingly, removing g from the implementation sets of all activ-
ities. Note that this may now make τ ′′(b) = ∅ for some
additional activities b and recursively trigger the removal of
more graphs from S′′, etc.

The algorithm for masked traces is the same up to the
following two changes: (1) the graphs of the two BPs are
now tested for isomorphism modulo the activity renaming
functions π and π ′, and (2) the nodes in s′′ represent pairs of
nodes in s and s′ and are labeled by pairs of their origin activ-
ity names. The implementation of (a, a′) is the intersection
of the implementation of a in s with the implementation of a′
in s, with isomorphisms computed up to π , π ′. The result of
each such isomorphism is an act-comp graph whose nodes
are labeled by pairs of the original activity names from s,
s′, labeling nodes matched by the isomorphism. The cleanup
step remains as above.

Computing the complement. We now consider (restricted)
complement. For a natural number k, we say that an EX-trace
is k-bounded if the size of any of its direct internal traces is
bounded by k. Let k be the size of the largest act-comp graph
in s′′. Given a BP specification s with activities renaming
function π , we use Maskedk(s, π) to denote the set of all
k-bounded EX-traces that do not belong to Masked(s, π).
We shall construct a BP s = (S, s0, τ) with renaming func-
tion π s.t. Masked(s, π) = Maskedk(s, π).

For each (compound) activity a in s , let a be a new (com-
pound) activity name not in s that will be used to represent the

123

66 D. Deutch, T. Milo

“complement” of a. Let Act be the set of activity names con-
sisting of the activity names in s and their “complements”.
S is the set of all possible act-comp DAGs with activity names
in Act and size bounded by k. s0 is obtained from the root
of s by replacing the root activity name a by a. The imple-
mentation function τ is defined as follows. For compound
activities a from s, τ(a) = τ(a). For the “complement”
activities, τ(a) is a subset of S consisting of (1) all graphs
g ∈ S where π(g) �∈ π(τ(a)), (2) the graphs in τ(a) with
one or more or their compound activities a replaced by the
corresponding “complement” a. Last, the renaming function
π maps a and a to π(a), i.e., π(a) = π(a) = π(a).
Testing for Emptiness. Testing that the set of traces defined
by a given BP specification s is the empty set, is done in a
very similar way to the algorithm for testing emptiness of a
Context-Free String Grammar, as follows. The algorithm will
gradually “mark” all activities that can be the root of some
(part of) EX-trace, i.e., that there exists an implementation
sequence that starts in them and eventually terminates. This is
done iteratively: the algorithm first traverses all non-terminal
activities, and “marks” them. The algorithm then repeatedly
traverses all compound activity names (in some order), and
for each such activity, it looks for a possible implementa-
tion in which all activities names were already marked (such
implementation would lead to the generation of an EX-trace).
We terminate when there are no new activities to be marked;
the traces set is not empty if and only if the root activity was
marked.

Complexity. The algorithm complexity is dictated by the
complexity of its three subroutines. While the complexity
of INTERSECT is quadratic in the size of its input specifi-
cation, that of COMPLEMENT is exponential in the input
sizes, and finally the complexity of TEST-EMPTINESS is
obviously PTIME. This leads to an overall EXPTIME com-
plexity.

4.2 The general case

Now that we showed decidability of type checking for deter-
ministic semi-naive target types, we next show that we can
translate every BP s and renaming function π to equivalent
s′ and π ′ w.r.t. which the set of masked EX-traces is deter-
ministic.

Activities of the new BP First, we group all activities of s
that are mapped by π to the same activity, obtaining a set γ
of subsets. We say that each such subset is represented by the
(single) activity to which its members are mapped. As each
activity of s is mapped by π to a unique activity (π is a func-
tion), we can guarantee that no activity will appear in two
different subsets. Furthermore, each subset is represented by
a single activity. The set of activities of s is exactly the set
of all subsets obtained in the above manner. We overload the
notation and use the name of the representing activity to also

stand for the subset of activity names that it represents. The
root of s′ is the activity representing the subset in which the
root of s appears.

Implementation function of the new BP In the sequel, we
denote �(g) as the graph obtained from g by applying π
over all of its activity names. Similarly, �(G) where G is a
set of graphs denotes the set obtained by applying� on each
g ∈ G.

We say that a set A′ is an equivalence class with respect to
a graph g′, if for all a ∈ A′, there exists a graph ga , obtained
from g′ by replacing each activity name B with some b ∈ B,
such that �(ga) ∈ �(τ(a)). The new implementation func-
tion τ ′ is defined as follows. For an act-comp graph g′ labeled
by activities of s′, and for an activity A′ of s′, g′ ∈ τ ′(A′) if
and only if (1) A′ is the maximal set out of the sets in γ , that
is an equivalence class with respect to g′ and (2) with respect
to each specific A′ and keeping fixed all other activities in
g′, each atomic activity B in g′ represents the maximal set
of atomic activities out of these in γ .

Renaming function Recall that each activity A′ of s′ stands
for a subset of activities that are mapped byπ to a single activ-
ity a. The renaming function π ′ maps A′ to its representing
activity.

Masked(s′, π ′) is deterministic w.r.t. s′, π as each activ-
ity name is composed as a maximal equivalence class of activ-
ities, thus for each activity name a appearing in a masked
trace there exists a unique activity name A of s′ such that
a ∈ A, i.e., a unique A such that π ′(A) = a. To conclude,
we show that Masked(s′, π ′) = Masked(s, π).

Lemma 3 Masked(s′, π ′) = Masked(s, π).

Proof Let e ∈ Masked(s′, π ′) and let e′ be a naive EX-trace
of s′ whose masked trace is e. Consider a compound activity
name A′ appearing in e′ with an implementation g′ attached
to it. Then A′ is an equivalence class w.r.t. g′, i.e., We may
replace A′ with some a ∈ A′ and replace each activity name
B in g′ by some b ∈ B to obtain g ∈ τ(a). We then assign
for all compound activity names appearing in g the imple-
mentation appearing in g′ for their origin activity and repeat
the process for each such activity. The result of this repeated
replacements is an EX-trace e′′ of s; it holds that�(e′′) = e
as we only replaced any activity name B by some activity
name b ∈ B; for all b ∈ B, π(b) = π ′(B) (by definition).
Thus e ∈ Masked(s, π).

Conversely, let e ∈ Masked(s, π). Consider a compound
activity name a appearing in e′ with implementation g′. Then
there exists an equivalence class A such that a ∈ A and there
exists a g′ ∈ τ ′(a) such that g is obtained from g′ by replacing
each activity B in g′ by some b ∈ B. By subsequently making
such replacements, we obtain a flow e′′ ∈ Masked(s′, π ′)
such that �′(e′′) = e, thus e ∈ Masked(s′, π ′). �	
Corollary 1 Given an EX-pattern p, a BP specification s
(with renaming function π), and a target BP specification

123

Type inference and type checking for queries over execution traces 67

s′ (with renaming function π ′), testing if p(Naive(s)) ⊆
Naive(s′) (respectively, p(Masked(s,π))⊆Masked(s′,π ′))
is in EXPTIME (data complexity).

4.3 Lower bound

Our Type checking algorithm accounted only for masked
tracing. To complete the picture, we show undecidability of
type checking for selective trace types.

Theorem 8 Given an EX-pattern p and two BP speci-
fications, renaming functions and deletion sets (s, π, A)
and (s′, π ′, A′), testing whether p(Selective(s, π, A)) ⊆
Selective(s′,π ′,A′) is undecidable.

Proof By reduction from the problem of testing contain-
ment of context-free (string) languages. Given two con-
text-free languages L , L ′, we construct, as in the proof
of theorem 1, s, A, π and s′, A′, π ′ such that the graphs
in Selective(s, π, A) and Selective(s′, π ′, A′) correspond,
respectively, to the strings in L and L ′ (in the same sense
defined in the proof of theorem 1). The EX-pattern p consists
of a root activity whose implementation contains two activ-
ity pairs connected by a transitive edge. When applied to the
EX-traces in Selective(s, A, π), it retrieves all paths from
start to end node of the root internal flow, (hence all the words
in L). Hence p(Selective(s, A, π)) = Selective(s, A, π)
and p(Selective(s, A, π)) ⊆ Selective(s′, π ′, A′) iff
L⊆L ′. �	

5 Related work

The model used here is based on an abstraction of the BPEL
(Business Process Execution Language) standard [6]. Com-
mercial vendors offer systems that allow to design BPEL
specification via a visual interface, using a conceptual, intui-
tive view of the process, as a nested graph. Such designs can
be automatically compiled into executable code that imple-
ments the process described in BPEL [27].

Many works study variations of Finite State Machines
(FSM) [30]. FSMs can describe “flat” processes, but not
nested or recursive processes. StateCharts [18] allow hier-
archy of states, but not recursion. A recursive state machine
(RSM) [2,5] is a further extension of FSM, introducing the
definition of a node implementation, which may possibly be
recursive. A restriction of the model is called single entry
single exit RSM (SRSM), and we have shown in [11] a syn-
tactic equivalence between SRSMs and BPs. The common
approach there is to use a query language based on tempo-
ral logic [22], e.g., LTL, CT L∗ or μ-calculus (these differ
from each other, and from our query language, in terms of
expressive power, see e.g., [22]).

A database approach for modeling and analysis of pro-
cesses was also studied in various contexts, as follows. Active
XML (AXML) extends XML with embedded invocations of
Web Services [1], that may be recursive. The main distinc-
tion, from a theoretical point of view, between AXML and the
BP model is that the first assumes that each individual process
graph is a tree, rather than a DAG as assumed here. The
analysis of interactive data-driven Web applications [7,13]
focuses on combination of flow with the data; similarly, the
analysis of Business Process artifacts [19] focuses on the data
manipulated by the process. Another branch in which pro-
cesses have been extensively studied is that of scientific work-
flows (see [10] for an overview); these processes represent
activities and computations that arise in scientific problem-
solving. Our query language is weaker in terms of expressive
power than those studied in these works but allows for bet-
ter (worst case) performance guarantees. We believe that the
model and query language studied here constitute a reason-
able tradeoff between expressibility and complexity of query
evaluation. We also briefly mention a complementary line of
tools that infer process specifications out of a set of run-time
generated traces (logs). The business process intelligence
(BPI) [17] project infers causality relationships between
execution attributes using data mining techniques such as
classification and association rule mining. Such retrieved
relationships may be processed to infer a BP structure along
with the tracing system that was used. Such mining tech-
niques were also extensively studied in the context of work-
flows (see e.g., [32]) and are complementary to our work,
in the sense that their output can be used as our input
type.

There is a tight connection between the classes of
EX-trace types studied here and corresponding classical clas-
ses of string and graph languages. There is an analogy
between naive, masked and selective trace types and brack-
eted [16], parenthesis [23] and context-free string [30] or
graph [9,20] languages. Most of the works in this context con-
sider MSO queries that are expressible but incurs very high
evaluation time (non-elementary in the size of the query).

Type checking and type inference are well-studied prob-
lems in the context of functional programming languages
[25]. The complexity there is derived from the interaction of
function types, polymorphism, andlet-bindings; as pointed
out in [31], this analysis is valuable for database queries as
well. Type inference and type checking were also consid-
ered extensively in the context of XML. The XML analogs
of the queries studied here are XML selection queries [24]
that use tree patterns to select subtrees of interest. For such
XML queries, Milo and Suciu [24] showed that type checking
can be performed in time complexity equal to or lower than
type inference (depending on the XML types/queries being
considered). Compare to our setting where type checking is
harder than type inference, in some cases.

123

68 D. Deutch, T. Milo

6 Conclusion and future work

We studied in this paper type inference and type checking for
queries over BP execution traces. We formally defined and
characterized three common classes of EX-trace types. We
considered their respective notions of type inference and type
checking and studied the complexity of the two problems for
query languages of varying expressive power.

Our results for type inference signal the class of selective
trace types as an “ideal” type system for BP traces, allowing
both flexible description of the BP traces as well as effi-
cient type inference. On the other hand for type checking, we
showed that it may not be done in PTIME, even for limited
trace types. Consequently, we believe that run-time checks
of the query result are likely to be a more useful in practice.

The present paper has focused on exact inference of types.
For practical cases computing an approximated type (e.g.,
capturing a large fraction of the traces of the “correct” type),
may be practically useful when exact inference is impossi-
ble or costly. Studying such approximations is an intriguing
future research. Last, we have mentioned the study of type
information for XML. In this context, transformation queries
were extensively studied [14,21]. An interesting future work
is to examine the adaptation of corresponding transformation
queries to our settings.

References

1. Active XML. http://activexml.net/
2. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T.,

Yannakakis, M.: Analysis of recursive state machines. ACM Trans.
Program. Lang. Syst 27(4) (2005)

3. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business
processes. In: Proceedings of VLDB (2006)

4. Beeri, C., Eyal, A., Milo, T., Pilberg, A.: Monitoring business pro-
cesses with queries. In: Proceedings of VLDB (2007)

5. Benedikt, M., Godefroid, P., Reps, T.: Model checking of unre-
stricted hierarchical state machines. In: Proceedings of ICALP
(2001)

6. Business Process Execution Language for Web Services. http://
www.ibm.com/developerworks/library/ws-bpel/

7. Bultan, T., Su, J., Fu, X.: Analyzing conversations of web services.
IEEE Internet Comput. 10(1) (2006)

8. Chamberlin, D.: XQuery: a query language for XML. In: Proceed-
ings of SIGMOD (2003)

9. Courcelle, B.: The monadic second-order logic of graphs. Inf.
Comput. 85(1) (1990)

10. Davidson, S. B., Freire, J.: Provenance and scientific workflows:
challenges and opportunities. In: Proceedings of SIGMOD (2008)

11. Deutch, D., Milo, T.: Querying structural and behavioral properties
of business processes. In: Proceedings of DBPL (2007)

12. Deutch, D., Milo, T.: Type inference and type checking for queries
on execution traces. In: Proceedings of VLDB (2008)

13. Deutsch, A., Sui, L., Vianu, V., Zhou, D.: Verification of communi-
cating data-driven web services. In: Proceedings of PODS (2006)

14. Engelfriet, J., Hoogeboom, H. J., Samwel, B.: XML transformation
by tree-walking transducers with invisible pebbles. In: Proceedings
of PODS (2007)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, San
Francisco (1979)

16. Ginsburg, S., Harrison, M.: Bracketed context-free languages.
J. Comput. Syst. Sci. 1 (1967)

17. Grigori, D., Casati, F., Castellanos, M., Sayal, M., Dayal, U., Shan,
M.: Business process intelligence. Comput. Ind. 53 (2004)

18. Harel, D.: Statecharts: A visual formalism for complex systems.
Sci. Comput. Program 8(3) (1987)

19. Hull, R., Su, J.: Tools for composite web services: a short overview.
SIGMOD Rec 34(2) (2005)

20. Janssens, D., Rozenberg, G.: Graph grammars with node-label
controlled rewriting and embedding. In: Proceedings of COMPU-
GRAPH (1983)

21. Maneth, S., Perst, T., Seidl, H.: Exact XML type checking in poly-
nomial time. In: Proceedings of ICDT (2007)

22. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Con-
current Systems. Springer, Berlin (1992)

23. McNaughton, R.: Parenthesis grammars. J. ACM 14(3) (1967)
24. Milo, T., Suciu, D.: Type inference for queries on semistructured

data. In: Proceedings of PODS (1999)
25. Mitchell, J.C.: Foundations for Programming Languages. MIT

Press, Cambridge (1996)
26. Nevsetvril, J., de Mendez, P.O.: Tree-depth, subgraph coloring and

homomorphism. Eur. J. Comb. 27(6) (2006)
27. Oracle BPEL Process Manager 2.0 Quick Start Tutorial. http://

www.oracle.com/technology/products/ias/bpel/index.html
28. Papakonstantinou, Y., Vianu, V.: DTD inference for views of XML

data. In: Proceedings of PODS (2000)
29. Sayal, D. M., Casati, F., Dayal, U., Shan, M.: Business process

Cockpit. In: Proceedings of VLDB (2002)
30. Sipser, M.: Introduction to the Theory of Computation. PWS

Publishing Company, Boston (1997)
31. van den Bussche, J., van Gucht, D., Vansummeren, S.: A crash

course on database queries. In: Proceedings of PODS (2007)
32. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining:

discovering process models from event logs. IEEE Trans. Knowl.
Data Eng. 16(9), 1128–1142 (2004)

33. XML Path Language (XPath) Version 1.0. http://www.w3.org/TR/
xpath

123

http://activexml.net/
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

	Type inference and type checking for queries over execution traces
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Execution traces
	2.2 Types
	2.3 Queries

	3 Type inference
	3.1 Basic (EXPTIME) algorithm
	3.2 Improved (PTIME) algorithm using selective tracing
	3.3 Lower bounds
	3.4 Using types for queries optimization

	4 Type Checking
	4.1 Deterministic trace types
	4.2 The general case
	4.3 Lower bound

	5 Related work
	6 Conclusion and future work
	References

