#Specifying and testing Software components using ADL 

(Assertion Definition Language)

Sriram Sankar

Roger Hayes 

1994

-- Introduction --

#The first step of a new programming task is to look at the specification.

A specification can be very formal and detailed or informal and partial.

The programmer can complete the missing information based on:

working prototype

instances of program behavior 

a priori knowledge about similar programs

#The validation of the program is comparing the program to the specification.

If the specification language is formalized, this validation can be automated.

#Software testing

Test data selection (TDD)

Running the program on the test data and determining the results

In previous years this work was left to an ‘oracle’.

It is easy to do so with ADL

#The write bug was detected by ADL

#ADL

ADL is a language designed for formal specification of software components.

A language framework that provides a set of high level specification concepts (can be suited)

ADL specifications are post conditions on operations.

Written in separate units then the program itself

May be partial – augmented with informal descriptions

Special constructs for specification of errors

Allow translation to natural language

Well suited for the purpose of SW testing

Hard to evaluate constructs such as quantifiers have been omitted

#TDD

Data is characterized in an abstract and systematic way

A focus on the designer insight rather then on the details of how to generate a specific instance.

#Background on test data generation

-- The ADL language --

#Post conditions specifications

A constraint on the program state at the time of termination.


May relay on pre operation state of the program


Doesn’t give condition as to when the function is called

Tells what happens if it is called

#Non intrusive 

ADL specs are written in separate units

The writer define a binding between the specs and the program

Allows automated construction of a framework for tests

No need to have the source code of the tested functions

#Possible outcomes

normal/exception/unexpected

#Error specifications

