
Reasoning about Program Data

Structure Shape: from the Heap to

Distributed Systems

Mooly Sagiv

Credits

A. Panda

S. Itzhaky

S. Shoham O. Padon

O. Lahav A. Benerjee N. Immerman

A. Nanevski

A. Karbyshev

K. McMillan

Automatic Program Verification

Safety

Property 

Solver
Is there a behavior

of P that violates ?

Counterexample Proof

Program

P

Challenges

1. Specifying safety properties

2. Undecidability of checking interesting properties

1. The halting problem

2. Rice theorem

3. Simple programs can do complicated things

Programs  Infinite Transition Systems

1: x := 1;

2: y := 2;

while * do {

 3: assert x 1;

 4: x= x + y;

 5: y := y + 1

}

6:

1: <0, 0>

x y

2: <1, 0>

3: <1, 2>

4: <1, 2>

5: <3, 2>

3: <3, 3>

4: <3, 3>

5: <6, 3>

…

at(3)  x 1

6: <1, 2> 6: <3, 3> 6: <6, 4>

Floyd’67

A safety property  holds in a transition

system  if and only if there exists an

inductive invariant I such that

 I   (Safety)

 Init  I (Initiation)

 if   I and   ’ then ’  I

(Consecution)

Semi-Automatic Program

Verification

Safety

Property 

Solver
Is there a behavior

of P that violates the inductiveness of I?

Counterexample Proof

Program

P
Candidate Invariant I

Semi-Automatic Program Verification

at(3)  x 1

Solver
Is there a behavior

of P that violates the inductiveness of I?

3: <1, -2>

1: x := 1;

2: y := 2;

while * do {

 3: assert x 1;

 4: x= x + y;

 5: y := y + 1

}

6:

at(3)  x 1

Semi-Automatic Program Verification

at(3)  x 1

Solver
Is there a behavior

of P that violates the inductiveness of I?

Proof

1: x := 1;

2: y := 2;

while * do {

 3: assert x 1;

 4: x= x + y;

 5: y := y + 1

}

6:

at(3)  x 1y 0

Challenges

1. Specifying safety properties

2. Inductive Invariants for Floyd/Hoare style

verification

• Hard to express

• Hard to change

• Hard to infer

3. Deduction

– Reasoning about inductive invariants

• Undecidability of implication checking

Semi-Automatic Program Verification

at(3)  x 1

Solver
Is there a behavior

of P that violates the inductiveness of I?

Proof

1: x := 1;

2: y := 2;

while * do {

 3: assert x 1;

 4: x= x + y;

 5: y := y + 1

}

6:

at(3)  x 1y 0

Hard Semi-Automatic Program Verification

at(3)  x 1

Solver
Is there a behavior

of P that violates the inductiveness of I?

Proof

1: x := 1;

2: y := 2;

while *do {

 3: assert x 1;

 4: x= (x*x-y*y) / (x-y);

 5: y := y + 1

}

6:

at(3)  x 1y 0

Challenge 3: Deductive

Verification about Reachability

[CAV’13] S. Itzhaky, A. Banerjee, N. Immerman, A. Nanevski, M. Sagiv:

Effectively-propositional reasoning about reachability in linked data structures

[POPL’14] S. Itzhaky, A. Banerjee, N. Immerman, O. Lahav, A. Nanevski, M.

Sagiv: Modular reasoning about heap paths via effectively propositional formulas

[IVY’15] O. Padon, K. McMillan, A. Panda, M.Sagiv, S. Shoham: Ivy: Interactive

verification of parameterized systems via effectively propositional logic

Sound and complete Dafny w/o

matching loops

Reasoning about directed reachability in

dynamically evolving graphs(relations)

• No garbage

• Preservation of data structure invariants

• Termination

• Reachability properties in distributed

protocols

• Even sortedness

Program Termination

traverse(Node a, Node b) {

for (t =a; t != b ; t = t->n) {

 …

 }

}

{n*(a, b)}
n
u
ll

n n n n a

b

Directed Reachability
• Directed reachabiliy suffice to describe

many properties of data structures

– Absence of garbage

• x: r*(root, x)

– Acyclicity

• x: r+(x, x)

– Data Structure Invariants

• x: f*(root, x) ⇔ b*(root, x)

x y r*

r*

root

x y r* root

r*(x, y) denotes a finite

directed path of

relation of r from x to y

Reachability in Dynamically Evolving Graphs

rotate(List first, List last) {

assert acyclic first

if (first != NULL) {

 last  next = first;

 first = first  next;

 last = last  next;

 last  next = NULL;

}

 assert acyclic first;

last first n n n

last first n n n

n

last

first
n n n

n

last
first

n n n

n

last
first

n n

n

Reachability in Distributed Protocols

• The topology evolves over time

• Reason about evolving relations

• Prove safety

– Absence of paths

• Isolation

– Absence of cycles

Learning Switch

1

2 3 a

Input Port Packet Output Port Routing Table

Dst Prt

Learning Switch

1

2 3 a

Input Port Packet Output Port

1  2, 3

Routing Table

Dst Prt

 1

Learning Switch

1

2 3 a

Input Port Packet Output Port

1  2, 3

2  1

Routing Table

Dst Prt

 1

Learning Switch Code
event receive =
 <p: packet, m: node>  pending 
 pending.remove <p, m>
 route[p.src] := {p.ingress}; // learn
 exists pr : route[p.dst] = {pr} 
 forward p to pr // adds new tuple to pending
 route[p.dst] = {} 
 flood p // adds new tuples to pending
 assert acyclic forall Dst: route[Dst];

Verification can identify a topology in

which a forwarding loop in the routing

table occur

A Forwarding Loop

1

2
3

a 8

7 c

4

5 b

Routing Table

Dst Port

 1







A Forwarding Loop

1

2
3

a 8

7 c

4

5 b

Routing Table

Dst Port

 1



Routing Table

Dst Port

 4







6



A Forwarding Loop

1

2
3

a 8

7 c

4

5 b

Routing Table

Dst Port

 1

Routing Table

Dst Port

 4

Routing Table

Dst Port

 7









6

A Forwarding Loop

1

2
3

a 8

7 c

4

5 b

Routing Table

Dst Port

 3

Routing Table

Dst Port

 4

Routing Table

Dst Port

 7







6

Loop-Free Learning Switch Code
event receive =
 <p: packet, m: node>  pending 
 pending.remove <p, m>
 route[p.src] = {} 
 route[p.src] := {p.ingress} // learn
 exists pr : route[p.dst] = {pr} 
 forward p to pr // adds new tuple to pending
 route[p.dst] = {}  // flood
 flood p // adds new tuples to pending
 assert acyclic forall Dst: route[Dst];

Verification proves the absence of

forwarding loops for arbitrary topologies

Challenges

• Complexity of reasoning about reachability

assertions

– Not first order expressible

– Undecidability of reachability (not even RE)

• [Inferring reachability properties from the code]

"there is a mismatch between the simple

intuitions about the way pointer operations work

and the complexity of their axiomatic treatments"
O'Hearn, Reynolds, Yang [CSL 2001]

Do I have to Solve Hilbert’s 10th problem?

count {

 List a =NULL, b=NULL, t;

 int c = 0 ; read(c);

 while (c > 0) {

 t = malloc(); tnext = a; a = t ;

 t = malloc(); tnext = b; b = t;

 c--; }

 while (a != null) {

 assert a!=null; print(ad);

 assert b!=null; print(bd); }

}

Jackson’s Thesis

• If a program has a bug  it also occurs on

small input k

– True in many cases

– But

 What if not?

 Hard to find k

 Hard to scale checking to k

Itzhaky’s thesis: Linked list

manipulations are simple

• Simple to reason about correctness

– Small counterexamples

• Deterministic paths

• Even for doubly/circular/nested lists/distributed

protocols

– Sortedness

– Size

• “Simple” inductive invariants suffice to show

safety

– Alternation Free + Reachability “” **

Do I have to Solve Hilbert’s 10th problem?

count {

 List a =NULL, b=NULL, t;

 int c = 0 ; read(c);

 while (c > 0) {

 t = malloc(); tnext = a; a = t ;

 t = malloc(); tnext = b; b = t;

 c--; }

 while (a != null) {

 assert a!=null; print(ad);

 assert b!=null; print(bd); }

}

The SAT Problem
• Given a propositional formula (Boolean function)

–  = (a  b) ( a b  c)

• Determine if  is valid

• Determine if  is satisfiable

– Find a satisfying assignment or report that such does

not exit

• For n variables, there are 2n possible truth assignments to

be checked

• But many practical tools exist

a

b b

c c c c

0

0
0

0 0 0 0 1

1 1

1 1 1

1

SAT made some progress…

1

10

100

1000

10000

100000

1960 1970 1980 1990 2000 2010

Year

V
a
rs

Semi-Automatic

Verification Process

Program Candidate Inductive Invariant I

VC gen

Verification Conditions:

1) Init   I

2) P(V, V’)  I(V)  I(V’)

3) I(V)   (V)

SAT Solver

Counterexample Proof

Property 

Unbounded

systems

(Uninterpreted Relational)

First Order Logic w/o functions
t ::= c Constant symbol

 | x Logical variable

 ::= r(t1, t2, …, tn) Relation

 | t1 = t2 Equality

 | x.  Existential Quantification

 | x.  Universal Quantification

 | 1  2 Disjunction

 | 1  2 Conjunction

 |  Negation

SAT becomes undecidable

• x. le(x, x) Reflexive

• x, y, z. le(x, y)le(y, z)  le(x, z) Transitive

• x, y. le(x, y)le(y,x)  x=y Antisymmetric

• x, y. le(x,y)le(y, x) Total

• zero. x. le(zero, x) Non-empty

• x. y. le(x, y)  x y

SAT becomes undecidable

• x. le(x, x) Reflexive

• x, y, z. le(x, y)le(y, z)  le(x, z) Transitive

• x, y. le(x, y)le(y,x)  x=y Antisymmetric

• x, y. le(x,y)le(y, x) Total

• zero. x. le(zero, x) Non-empty

• x. y. le(x, y)  x y

Effectively Propositional Logic – EPR
a.k.a. Bernays-Schönfinkel-Ramsey class

• Fragment of first-order logic

– Restricted quantifier prefix: ** φQ.F.

– No function symbols

• Small model property

– x1,…, xn. y1,…,ym.φQ.F. has a model iff

it has a model of at most n+k elements (k

- number of constant symbols)

• Satisfiability is decidable

– NEXPTIME

• Support from Z3

F. Ramsey. On a problem in formal logic. Proc. London Math. Soc. 1930

Can we reason about interesting

properties with EPR?

Some parts have to be provided by

domain experts for a class of

programs

Axioms provided by

domain experts

Semi-Automatic Program Verification

c != e

Is there a behavior of P in which c=e?

assume x.  (n*(a,x)  n*(b,x))

c := a->n;

d := b->n;

e := d->n;

assert c != e;

x.  (n*(a,x)  n*(b,x)) 

n(a, c)  n(b, d)  n(d, e)  c=e

SAT Solver (Z3)

Counterexample

a

b

c=e

d

n = {(a,c), (b,d), (d,c)}

n* = {}

Complete Reasoning about Deterministic Paths

• n*(x, x) Reflexivity

• n*(x, y)  n*(y, z)  n*(x, z) Transitivity

• n*(x, y) n*(y, x)  x = y Acyclicity

• n*(x, y) n*(x, z)  n*(y, z) n*(z, y) Linearity

• n+(x, y)  n*(x, y) x  y

• n(a, b)  n+(a, b) x: n+(a, x)  n*(b, x)

[CAV’13] S. Itzhaky, A. Banerjee, N. Immerman, A. Nanevski, M. Sagiv:

Effectively-Propositional Reasoning about Reachability in Linked Data Structures

[POPL’14] S. Itzhaky, A. Banerjee, N. Immerman, O. Lahav, A. Nanevski, M.

Sagiv: Modular reasoning about heap paths via effectively propositional formulas

Semi-Automatic Program Verification

c != e

Is there a behavior of P in which c=e?

assume x.  (n*(a,x)  n*(b,x))

c := a->n;

d := b->n;

e := d->n;

assert c != e;

axioms 

x.  (n*(a,x)  n*(b,x)) 

“n(a, c)”  “n(b, d)”  “n(d, e)”  c=e

SAT Solver (Z3)

Proof

But how can we model the

program in EPR?

• The program updates edge relations

• The compiler generates EPR formulas to

update paths

• This can always be done

Incremental

Simple updates

n n’
xn :=NULL

EPR

n’* n*

FOTC FOTC

Benchmark

Formula Size Solving
time P,Q I VC

 #  #  (Z3)

 SLL: reverse 2 2 11 2 133 3 57ms

 SLL: filter 5 1 14 1 280 4 39ms

 SLL: create 1 0 1 0 36 3 13ms

 SLL: delete 5 0 12 1 152 3 23ms

 SLL: deleteAll 3 2 7 2 106 3 32ms

 SLL: insert 8 1 6 1 178 3 17ms

 SLL: find 7 1 7 1 64 3 15ms

 SLL: last 3 0 5 0 74 3 15ms

 SLL: merge 14 2 31 2 2255 3 226ms

 SLL: rotate 6 1 - - 73 3 22ms

 SLL: swap 14 2 - - 965 5 26ms

 DLL: fix 5 2 11 2 121 3 32ms

 DLL: splice 10 2 - - 167 4 27ms

Disproving with SAT

Benchmark Nature of defect

Formula Size Solving
time

C.e. Size
P,Q I VC

 #  #  (Z3) (vertices)

 SLL: find null pointer
dereference

7 1 7 1 64 3 18ms 2

 SLL: deleteAll Loop invariant in
annotation is too weak
to prove the desired
property

3 2 5 2 68 3 58ms 5

 SLL: rotate Transient cycle
introduced during
execution

6 1 - - 109 3 25ms 3

 SLL: insert Unhandled corner case
when an element with
the same value already
exists in the list ---
ordering violated

8 1 6 1 178 3 33ms 4

Summary thus far

• Reduced the undecidable problem of

checking inductiveness to the NEXPTIME

problem of checking EPR satisfibility

– Efficient in practice

– Useful for bounded model checking

– Useful for synthesis

• But what about inferring EPR invariants?

Automatically Inferring EPR Invariants

• PDR/IC3 procedure for inferring

universal invariants [CAV’15]

• Inferring universal invariants for

linked-lists is decidable [POPL’16]

• Systematic extensions for

decidability of some distributed

protocols [POPL’16]

• Inferring general universal invariants

is undecidable [POPL’16]

• Inferring alternation-free invariants

for linked-lists is undecidable

[POPL’16]

[CAV’15] A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, S. Shoham:

Property-directed inference of universal invariants or proving their absence

[POPL’16] O. Padon, N. Immerman, A. Karbyshev, S. Shoham, M. Sagiv

Decidability of inferring inductive invariants

Goal: Engage the user in automated verification

– Use powerful invariant generation heuristics interactively

– Bidirectional feedback between user and heuristics

• Questions:

– What decidable problem should we let the machine solve?

– What is a useful interaction mode between the user and the

machine heuristics?

Ivy: Interactive Verification via EPR

CTI Mode

M Inv

Ind?

“minimal” CTI

Modify Inv

Diagnose CTI

User Heuristics



BMC

M Spec

BMC

Fix model / spec



Abstract Reachability
& Concept Graphs

User Heuristics



???



User Heuristics

https://www.quora.com/Human-Computer-Interaction

Heuristics for User Interaction

• Carefully select CTI

– Minimize certain “metrics”

• Interactive Generalization

– Select visible relations

– Gather facts from user selection

– BMC

• Check conjecture

• Minimize conjecture

– Sufficiency for current failure

– Relative inductiveness

Program Invariant

Inductive?
Yes

No

Display “minimal” CTI

Modify Invariant

Diagnose CTI

User Heuristics



E
x
p
lo

it E
P

R

Summary

• EPR is useful to reason about infinite state

systems

– BMC

– Inductive invariants

– Effective reasoning about TC

• Exploit simplicity of quantifier free updates

in distributed systems

• The next challenge is invariant inference

BACKUP SLIDES

Some Related Work

• Monadic second order logic [CIAA’00]

[SAS’11]

• Decidable separation logic

• Sound first order axioms

[CIAA’00] N. Klarlund, A. Møller, M. I. Schwartzbach:

MONA implementation secrets. CIAA 2000

[SAS’11] P. Madhusudan, X. Qiu:

Efficient decision procedures for heaps using STRAND. SAS 2011

Updating Reachability

Adding an edge

cn= d

assert n*(, )

n'*(,)  n*(,)  (n*(, c) n*(d,)

  c d

Updating Directed Reachabilty in

General Graph is Hard

c d

 

 

Removing an edge

(destructive update)

cn = NULL   c d

  c d

 c d 

 

c d

n’*(,)  n*(,)  (n*(,c)  n+(c,))

Traversing an edge

c = dn (c is fresh)

n+(d,c) 

 x: n+(d,x)  n*(c,x)

d

e f

Reasoning about Distributed Protocols

• The correctness of very simple distributed

protocol can be tricky

– Safety, Consensus, Serializability, Liveness

– Widely used

• Examples: Raft, Paxos, Chord

• Unlimited resources

• Counterintuitive reasoning

• Topology affects correctness

Beyond EPR

• EPR cannot force the existence of

unbounded sets

• Non-emptyness of the routing relations

• Hole-punching firewall

The Instrumentation Principle
• Users define extra derived relations

• Expressible outside EPR

• The system generates update formulas

• Guaranteed soundness

• Completeness no longer guaranteed

– But concrete states are precise

 [TOPLAS’10] T.W. Reps, M. Sagiv, A. Loginov:

Finite differencing of logical formulas for static analysis

The Static Analysis Tradeoff

Precision:

Rich Properties

Few False Alarms

Scalability

Applications

 Bug finding

 Memory Safety

 Education

 Program Synthesis

 Comparing Programs

 Security

 Networks

 Distributed Protocols

 Cloud

Quantitative

Probabilistic

Efficient Algorithms

 SAT solving

 Consequence Finding

 Constraint Solving

 Context Free Reachability

 Property Directed Reachabilty

 Decision Procedures

 Theory Solvers

 Linear Programming

Domain

Specialization
User

Interaction

Summary

• Domain specific verification/static analysis

• Symbolic reasoning on directed reachability

can be useful for verification and bug

finding in

– Linked data structures

– Distributed systems

• Much more need to be done

– Invariant Inference

– Efficient decision procedures

Dong & Su [SIGMOD’00] DAG

 

c d

 

: <n*>  <n*>c 

 n()=  <n*>  <n*>c

Loop-Free Learning Switch Code

event receive =
 <p: packet, m: node>  pending 
 pending.remove <p, m>
 route[p.src] = {} 
 route[p.src] := {p.ingress} // learn
 exists pr : route[p.dst] = {pr} 
 forward p to pr // adds new tuple to pending
 route[p.dst] = {}  // flood
 flood p // adds new tuples to pending
 assert acyclic forall Dst: route[Dst];

dst, node1, node2:

route[node2, dst]  {}  path[dst](node1, node2)

Expressible in a weak decidable logic **

