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Automatic Program Verification 

Safety  

Property   

Solver 
Is there a behavior 

of P that violates ?  

Counterexample Proof  

Program 

P 



Challenges 

1. Specifying safety properties 

2. Undecidability of checking interesting properties 

1. The halting problem 

2. Rice theorem 

3. Simple programs can do complicated things 



Programs  Infinite Transition Systems 

1: x := 1; 

2: y := 2; 

while * do { 

   3: assert x 1; 

   4:  x= x + y; 

   5:  y := y + 1 

} 

6:  

1: <0, 0> 

x y 

2: <1, 0> 

3: <1, 2> 

4: <1, 2> 

5: <3, 2> 

3: <3, 3> 

4: <3, 3> 

5: <6, 3> 

… 

at(3)  x 1 

6: <1, 2> 6: <3, 3> 6: <6, 4> 



Floyd’67 

A safety property  holds in a transition 

system  if and only if there exists an 

inductive invariant I such that 

 I   (Safety) 

        Init  I (Initiation) 

        if   I and   ’ then ’  I 

(Consecution) 



Semi-Automatic Program 

Verification 

Safety  

Property   

Solver 
Is there a behavior 

of P that violates the inductiveness of I?  

Counterexample Proof  

Program 

P 
Candidate Invariant I 



Semi-Automatic Program Verification 

at(3)  x 1 

Solver 
Is there a behavior 

of P that violates the inductiveness of I?  

3: <1, -2> 

1: x := 1; 

2: y := 2; 

while * do { 

   3: assert x 1; 

   4:  x= x + y; 

   5:  y := y + 1  

} 

6: 

at(3)  x 1 



Semi-Automatic Program Verification 

at(3)  x 1 

Solver 
Is there a behavior 

of P that violates the inductiveness of I?  

Proof  

1: x := 1; 

2: y := 2; 

while * do { 

   3: assert x 1; 

   4:  x= x + y; 

   5:  y := y + 1 

} 

6:  

at(3)  x 1y 0 



Challenges 

1. Specifying safety properties 

2. Inductive Invariants for Floyd/Hoare style 

verification 

• Hard to express 

• Hard to change 

• Hard to infer 

3. Deduction 

– Reasoning about inductive invariants 

• Undecidability of implication checking 



Semi-Automatic Program Verification 

at(3)  x 1 

Solver 
Is there a behavior 

of P that violates the inductiveness of I?  

Proof  

1: x := 1; 

2: y := 2; 

while * do { 

   3: assert x 1; 

   4:  x= x + y; 

   5:  y := y + 1 

} 

6:  

at(3)  x 1y 0 



Hard Semi-Automatic Program Verification 

at(3)  x 1 

Solver 
Is there a behavior 

of P that violates the inductiveness of I?  

Proof  

1: x := 1; 

2: y := 2; 

while *do { 

   3: assert x 1; 

   4:  x= (x*x-y*y) / (x-y); 

   5:  y := y + 1  

} 

6: 

at(3)  x 1y 0 



Challenge 3: Deductive 

Verification about Reachability 

[CAV’13] S. Itzhaky, A. Banerjee, N. Immerman, A. Nanevski, M. Sagiv: 

Effectively-propositional reasoning about reachability in linked data structures 

[POPL’14] S. Itzhaky, A. Banerjee, N. Immerman, O. Lahav, A. Nanevski, M. 

Sagiv: Modular reasoning about heap paths via effectively propositional formulas 

[IVY’15] O. Padon,  K. McMillan, A. Panda, M.Sagiv, S. Shoham: Ivy: Interactive 

verification of parameterized systems via effectively propositional logic 

Sound and complete Dafny w/o 

matching loops 



Reasoning about directed reachability in 

dynamically evolving graphs(relations) 

• No garbage 

• Preservation of data structure invariants 

• Termination  

• Reachability properties in distributed 

protocols 

• Even sortedness 

 



Program Termination 

traverse(Node a, Node b) { 

for (t =a; t != b ; t = t->n) { 

   … 

 } 

} 

{n*(a, b)} 
n
u
ll 

n n n n a 

b 



Directed Reachability 
• Directed reachabiliy suffice to describe 

many properties of data structures 

– Absence of garbage 

• x: r*(root, x) 

– Acyclicity 

• x:  r+(x, x)  

– Data Structure Invariants 

• x: f*(root, x) ⇔ b*(root, x)  

 
x y r* 

r* 

root 

x y r* root 

r*(x, y) denotes a finite 

directed path of 

relation of r from x to y 



Reachability in Dynamically Evolving Graphs 

rotate(List first, List last) { 

assert acyclic first 

if ( first != NULL) { 

 last  next = first; 

 first = first  next; 

 last = last  next; 

 last  next = NULL; 

} 

 assert acyclic first; 

last first n n n 

last first n n n 

n 

last 

first 
n n n 

n 

last 
first 

n n n 

n 

last 
first 

n n 

n 

  



Reachability in Distributed Protocols 

• The topology evolves over time 

• Reason about evolving relations 

• Prove safety 

– Absence of paths  

• Isolation 

– Absence of cycles 

 



Learning Switch 

1 

2 3 a 

Input Port Packet Output Port Routing Table 

Dst Prt 



Learning Switch 

1 

2 3 a 

Input Port Packet Output Port 

1  2, 3 

Routing Table 

Dst Prt 

 1 



Learning Switch 

1 

2 3 a 

Input Port Packet Output Port 

1  2, 3 

2  1 

Routing Table 

Dst Prt 

 1 



Learning Switch Code 
event receive = 
     <p: packet, m: node>  pending  
        pending.remove <p, m>  
        route[p.src] := {p.ingress}; // learn 
        exists pr : route[p.dst] = {pr}   
             forward p to pr // adds new tuple to pending 
        route[p.dst] = {}  
             flood p // adds new tuples to pending 
        assert acyclic forall Dst: route[Dst]; 

         

Verification can identify a topology in 

which a forwarding loop in the routing 

table occur 



A Forwarding Loop 

1 

2 
3 

a 8 

7 c 

4 

5 b 

Routing Table 

Dst Port 

 1 

 

 

 



A Forwarding Loop 

1 

2 
3 

a 8 

7 c 

4 

5 b 

Routing Table 

Dst Port 

 1 

 

Routing Table 

Dst Port 

 4 

 

 

 

6 

 



A Forwarding Loop 

1 

2 
3 

a 8 

7 c 

4 

5 b 

Routing Table 

Dst Port 

 1 

Routing Table 

Dst Port 

 4 

Routing Table 

Dst Port 

 7 

 

 

 

 

6 



A Forwarding Loop 

1 

2 
3 

a 8 

7 c 

4 

5 b 

Routing Table 

Dst Port 

 3 

Routing Table 

Dst Port 

 4 

Routing Table 

Dst Port 

 7 

 

 

 

6 



Loop-Free Learning Switch Code 
event receive = 
     <p: packet, m: node>  pending   
        pending.remove <p, m> 
        route[p.src] = {}   
             route[p.src] := {p.ingress} // learn 
       exists pr : route[p.dst] = {pr}   
             forward p to pr // adds new tuple to pending 
       route[p.dst] = {}  // flood 
             flood p // adds new tuples to pending  
       assert acyclic forall Dst: route[Dst];        
         

Verification proves the absence of 

forwarding loops for arbitrary topologies 



Challenges 

• Complexity of reasoning about reachability 

assertions 

– Not first order expressible  

– Undecidability of reachability (not even RE) 

 

 

 

• [Inferring reachability properties from the code] 

"there is  a mismatch between the simple 

intuitions about the way pointer operations work 

and the complexity of their axiomatic treatments" 
O'Hearn, Reynolds, Yang [CSL 2001] 



Do I have to Solve Hilbert’s 10th problem? 

count { 

   List a =NULL, b=NULL, t;  

   int c = 0 ; read(c); 

   while (c > 0) { 

        t = malloc();  tnext = a;   a = t ; 

        t = malloc();  tnext = b;   b = t; 

        c--; } 

   while (a != null) { 

        assert a!=null; print(ad); 

        assert b!=null; print(bd);  } 

}    



Jackson’s Thesis 

• If a program has a bug  it also occurs on 

small input k 

– True in many cases 

– But 

 What if not? 

 Hard to find k 

 Hard to scale checking to k 



Itzhaky’s thesis: Linked list 

manipulations are simple 

• Simple to reason about correctness 

– Small counterexamples 

• Deterministic paths 

• Even for doubly/circular/nested lists/distributed 

protocols 

– Sortedness 

– Size 

• “Simple” inductive invariants suffice to show 

safety 

– Alternation Free + Reachability  “” ** 



Do I have to Solve Hilbert’s 10th problem? 

count { 

   List a =NULL, b=NULL, t;  

   int c = 0 ; read(c); 

   while (c > 0) { 

        t = malloc();  tnext = a;   a = t ; 

        t = malloc();  tnext = b;   b = t; 

        c--; } 

   while (a != null) { 

        assert a!=null; print(ad); 

        assert b!=null; print(bd);  } 

}    



The SAT Problem 
• Given a propositional formula (Boolean function)  

–  = (a  b) ( a b  c) 

• Determine if  is valid 

• Determine if   is satisfiable 

– Find a satisfying assignment or report that such does 

not exit 

• For n variables, there are 2n possible truth assignments to 

be checked 

• But many  practical tools exist 

 

a 

b b 

c c c c 

0 

0 
0 

0 0 0 0 1 

1 1 

1 1 1 

1 



SAT made some progress… 
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Semi-Automatic 

Verification Process 

Program  Candidate Inductive Invariant I 

VC gen 

Verification Conditions: 

1) Init   I 

2) P(V, V’)  I(V)  I(V’) 

3) I(V)   (V) 

SAT Solver 

Counterexample Proof 

Property  

Unbounded 

systems 



(Uninterpreted Relational) 

First Order Logic w/o functions 
t ::= c                                  Constant symbol 

     |   x                                 Logical variable  

      

 ::=  r(t1, t2, …, tn)                        Relation 

    |   t1 = t2                                       Equality 

    |    x.            Existential Quantification 

    |    x.             Universal Quantification 

    |     1  2                    Disjunction 

    |     1  2                         Conjunction 

    |                                     Negation 



SAT becomes undecidable 

• x. le(x, x)                                     Reflexive 

• x, y, z. le(x, y)le(y, z)  le(x, z) Transitive 

• x, y. le(x, y)le(y,x)  x=y Antisymmetric 

• x, y. le(x,y)le(y, x)             Total 

• zero. x. le(zero, x)               Non-empty 

• x. y. le(x, y)  x y               



SAT becomes undecidable 

• x. le(x, x)                                     Reflexive 

• x, y, z. le(x, y)le(y, z)  le(x, z) Transitive 

• x, y. le(x, y)le(y,x)  x=y Antisymmetric 

• x, y. le(x,y)le(y, x)             Total 

• zero. x. le(zero, x)               Non-empty 

• x. y. le(x, y)  x y               



Effectively Propositional Logic – EPR 
a.k.a. Bernays-Schönfinkel-Ramsey class 

• Fragment of first-order logic 

– Restricted quantifier prefix: ** φQ.F. 

– No function symbols 

• Small model property 

– x1,…, xn. y1,…,ym.φQ.F. has a model iff 

it has a model of at most n+k elements (k 

- number of constant symbols) 

• Satisfiability is decidable 

– NEXPTIME 

• Support from Z3 

F. Ramsey. On a problem in formal logic. Proc. London Math. Soc. 1930 

 



Can we reason about interesting 

properties with EPR? 

Some parts have to be provided by 

domain experts for a class of 

programs 

Axioms provided by 

domain experts 



Semi-Automatic Program Verification 

c != e 

Is there a behavior of P in which c=e?  

assume x.  ( n*(a,x)  n*(b,x) ) 

c := a->n; 

d := b->n; 

e := d->n; 

assert c != e; 

x.  ( n*(a,x)  n*(b,x) )   

n(a, c)  n(b, d)  n(d, e)  c=e 

SAT Solver (Z3) 

Counterexample 

a 

b 

c=e 

d 

n = {(a,c), (b,d), (d,c)} 

n* = {} 



Complete Reasoning about Deterministic Paths 

• n*(x, x)                                                            Reflexivity 

• n*(x, y)  n*(y, z)  n*(x, z)                         Transitivity 

• n*(x, y) n*(y, x)  x = y                              Acyclicity 

• n*(x, y) n*(x, z)  n*(y, z) n*(z, y)          Linearity 

• n+(x, y)  n*(x, y) x  y 

• n(a, b)   n+(a,  b) x: n+(a, x)  n*(b, x) 

[CAV’13] S. Itzhaky, A. Banerjee, N. Immerman, A. Nanevski, M. Sagiv: 

Effectively-Propositional Reasoning about Reachability in Linked Data Structures 

[POPL’14] S. Itzhaky, A. Banerjee, N. Immerman, O. Lahav, A. Nanevski, M. 

Sagiv: Modular reasoning about heap paths via effectively propositional formulas  



Semi-Automatic Program Verification 

c != e 

Is there a behavior of P in which c=e?  

assume x.  ( n*(a,x)  n*(b,x) ) 

c := a->n; 

d := b->n; 

e := d->n; 

assert c != e; 

axioms  

x.  ( n*(a,x)  n*(b,x) )   

“n(a, c)”  “n(b, d)”  “n(d, e)”  c=e 

SAT Solver (Z3) 

Proof 



But how can we model the 

program in EPR? 

• The program updates edge relations 

• The compiler generates EPR formulas to 

update paths 

• This can always be done 



Incremental 

Simple updates 

n n’ 
xn :=NULL 

EPR 

n’* n* 

FOTC FOTC 



Benchmark 

Formula Size Solving 
time P,Q I VC 

#  #  #  (Z3) 

   SLL: reverse      2 2 11 2 133 3    57ms 

   SLL: filter       5 1 14 1 280 4    39ms  

   SLL: create       1 0 1 0 36 3    13ms  

   SLL: delete       5 0 12 1 152 3    23ms  

   SLL: deleteAll    3 2 7 2 106 3    32ms  

   SLL: insert       8 1 6 1 178 3    17ms  

   SLL: find         7 1 7 1 64 3    15ms  

   SLL: last         3 0 5 0 74 3    15ms  

   SLL: merge        14 2 31 2 2255 3 226ms  

   SLL: rotate       6 1   -    -  73 3    22ms  

   SLL: swap         14 2   -    -  965 5    26ms  

   DLL: fix          5 2 11 2 121 3    32ms  

   DLL: splice       10 2   -    -  167 4    27ms     



Disproving with SAT 

Benchmark Nature of defect 

Formula Size Solving 
time 

C.e. Size 
P,Q I VC 

#  #  #  (Z3) (vertices) 

  SLL: find         null pointer 
dereference  

7 1 7 1 64 3    18ms  2 

  SLL: deleteAll    Loop invariant in 
annotation is too weak 
to  prove the desired 
property  

3 2 5 2 68 3    58ms  5 

  SLL: rotate       Transient cycle 
introduced during 
execution 

6 1   -    -  109 3    25ms  3 

  SLL: insert       Unhandled corner case 
when an element with 
the same value already 
exists in the list --- 
ordering violated 

8 1 6 1 178 3    33ms  4 



Summary thus far 

• Reduced the undecidable problem of 

checking inductiveness to the NEXPTIME 

problem of checking EPR satisfibility 

– Efficient in practice 

– Useful for bounded model checking 

– Useful for synthesis 

• But what about inferring EPR invariants? 



Automatically Inferring EPR Invariants 

• PDR/IC3 procedure for inferring 

universal invariants [CAV’15] 

• Inferring universal invariants for 

linked-lists is decidable [POPL’16] 

• Systematic extensions for 

decidability of some distributed 

protocols [POPL’16] 

• Inferring general universal invariants 

is undecidable [POPL’16] 

• Inferring alternation-free invariants 

for linked-lists is undecidable 

[POPL’16] 

[CAV’15] A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, S. Shoham: 

Property-directed inference of universal invariants or proving their absence  

[POPL’16] O. Padon, N. Immerman, A. Karbyshev, S. Shoham, M. Sagiv 

Decidability of inferring inductive invariants 



Goal: Engage the user in automated verification 

– Use powerful invariant generation heuristics interactively 

– Bidirectional feedback between user and heuristics 

• Questions: 

– What decidable problem should we let the machine solve? 

– What is a useful interaction mode between the user and the 

machine heuristics? 

Ivy: Interactive Verification via EPR 

 

CTI Mode 

M Inv 

Ind? 

“minimal” CTI 

Modify Inv 

Diagnose CTI 

User Heuristics 

 

BMC 

M Spec 

BMC 

Fix model / spec 

 

Abstract Reachability 
& Concept Graphs 

 

User Heuristics 

 

??? 

 

User Heuristics 

https://www.quora.com/Human-Computer-Interaction


Heuristics for User Interaction 

• Carefully select CTI 

– Minimize certain “metrics” 

• Interactive Generalization 

– Select visible relations 

– Gather facts from user selection 

– BMC 

• Check conjecture 

• Minimize conjecture 

– Sufficiency for current failure 

– Relative inductiveness 

Program Invariant 

Inductive? 
Yes 

No 

Display “minimal” CTI 

Modify Invariant 

Diagnose CTI 

User Heuristics 

 

E
x
p
lo

it E
P

R
 



Summary 

• EPR is useful to reason about infinite state 

systems 

– BMC 

– Inductive invariants 

– Effective reasoning about TC 

• Exploit simplicity of quantifier free updates 

in distributed systems 

• The next challenge is invariant inference 

 



BACKUP SLIDES 



Some Related Work 

• Monadic second order logic [CIAA’00] 

[SAS’11]  

• Decidable separation logic 

• Sound first order axioms 

[CIAA’00]  N. Klarlund, A. Møller, M. I. Schwartzbach: 

MONA implementation secrets. CIAA 2000 

[SAS’11] P. Madhusudan, X. Qiu: 

Efficient decision procedures for heaps using STRAND. SAS 2011 

 



Updating Reachability 



Adding an edge 

cn= d 

assert n*(, )  

n'*(,)  n*(,)  (n*(, c) n*(d,)  

  c d 



Updating Directed Reachabilty in 

General Graph is Hard 

c d 

  

  



Removing an edge  

(destructive update) 

cn = NULL   c d 

  c d 

 c d  

  

c d 

n’*(,)  n*(,)  (n*(,c)  n+(c,))  



Traversing an edge 

c = dn (c is fresh) 

n+(d,c)   

  x:  n+(d,x)  n*(c,x)  

d 

e f 



Reasoning about Distributed Protocols 

• The correctness of very simple distributed 

protocol can be tricky 

– Safety, Consensus, Serializability, Liveness 

– Widely used 

• Examples: Raft, Paxos, Chord 

• Unlimited resources 

• Counterintuitive reasoning 

• Topology affects correctness 



Beyond EPR 

• EPR cannot force the existence of 

unbounded sets 

• Non-emptyness of the routing relations 

• Hole-punching firewall 



The Instrumentation Principle 
• Users define extra derived relations 

• Expressible outside EPR 

• The system generates update formulas 

• Guaranteed soundness 

• Completeness no longer guaranteed 

– But concrete states are precise 

 [TOPLAS’10]  T.W. Reps, M. Sagiv, A. Loginov: 

Finite differencing of logical formulas for static analysis 



The Static Analysis Tradeoff 

Precision: 

Rich Properties 

Few False Alarms 

Scalability 

Applications 

   Bug finding 

   Memory Safety 

   Education 

   Program Synthesis 

   Comparing Programs 

   Security 

   Networks 

   Distributed Protocols  

   Cloud        

Quantitative 

Probabilistic  

Efficient Algorithms 

  SAT solving 

  Consequence Finding 

  Constraint Solving 

  Context Free Reachability 

  Property Directed Reachabilty 

  Decision Procedures 

  Theory Solvers 

     Linear Programming   

Domain 

Specialization 
User 

Interaction 



Summary 

• Domain specific verification/static analysis 

• Symbolic reasoning on directed reachability 

can be useful for verification and bug 

finding in 

– Linked data structures 

– Distributed systems 

• Much more need to be done 

– Invariant Inference 

– Efficient decision procedures 



Dong & Su [SIGMOD’00] DAG 

  

c d 

  

: <n*>  <n*>c   

       n()=  <n*>  <n*>c 



Loop-Free Learning Switch Code 

event receive = 
     <p: packet, m: node>  pending   
        pending.remove <p, m> 
        route[p.src] = {}   
             route[p.src] := {p.ingress} // learn 
       exists pr : route[p.dst] = {pr}   
             forward p to pr // adds new tuple to pending 
       route[p.dst] = {}  // flood 
             flood p // adds new tuples to pending   
      assert acyclic forall Dst: route[Dst];       
         

dst, node1, node2: 

route[node2, dst]  {}   path[dst](node1, node2)  

Expressible in a weak decidable logic ** 


