Data Representation Synthesis
PLDI’20117, ESOP’12, PLDI'12"
CACM’12

Peter Hawkins, Stanford University (google)
Alex Aiken, Stanford University
Kathleen Fisher, Tufts
Martin Rinard, MIT
Mooly Sagiv, TAU

%k
http://theory.stanford.edu/~hawkinsp/ Best Paper Award

Shape Analysis

t—next=x;

thttpd: Web Server

O

A\ L

\ £

2 " next II
index= 2 |

— O next I
index = Ol

OO O Ol

3 next

index = 3

< 1 | next < 1 | next <-Map
index =1 index=5

table

0]

[1]

2]

3]

[4]

null

[5]

Representation Invariants:
1. Vn: Map. Vv: Z.
table[v] =n = n->index=v

2. Vn: Map.
n->rc =|{n' : Conn . n’->file_data = n}|

thttptd:mmc.c

static void add_map(Map *m)

{

int i = hash(m);

table[i] = m y

m->index=i ;

M->rc++;

restored

Representation Invariants:
1. Vn: Map. Vv:Z.
/ table[v] =n = index[n]=v

2.V n:Map.
rc[n] =[{n': Conn . file_data[n’] = n}|

Concurrent Data Structures

* Writing highly concurrent data structures is complicated

 Modern programming languages provide efficient concurrent
collections with atomic operations

TOMCAT Motivating Example

TOMCAT b.*

attr = new BashMep{}HashMap();

Attribute removeAttribute(String name){
Attribute val = null;

gyrghrdniaedfadtal{r) { */
found = attr.containsKey(name) ;
if (found) {
val = attr.get(name);
attr.remove(name);
}
Y*1*/
return val;

}

Invariant: removeAttribute(name) returns the removed value or
null if it does not exist

removeAttribute(“A”) {
Attribute val = null;

o o)

found = attr.containsKey(“A”) ;
if (found) {
val = attr.get(“A”);

_ attr.remove(“A”);

attr.remove(“A”);

}

return val; -

Invariant: removeAttribute(name) returns the removed value
or null if it does not exist

OOPSLA’11 Shacham

Search for all public domain collection operations
methods with at least two operations

Used simple static analysis to extract composed
operations

— 29% needed manual modification

Extracted 112 composed operations from 55
applications

— Apache Tomcat, Cassandra, MyFaces — Trinidad, ...

Check Linearizability of all public domain
composed operations

Results: OOPSLA’11 Shacham

38%
Non
Linearizable

Impact OOPSLA’11 Shacham

 Reported the bugs

— Even bugs in open environment were fixed

* As aresult of the paper the Java library was changed

“A preliminary version is in the pre-java8 "jsr166e" package

as ConcurrentHashMapV8. We can't release the actual version

yet because it relies on Java8 lambda (closure) syntax support.

See links from
http.//qee.cs.osweqo.edu/dl/concurrency-interest/index.html|
including:
http.//qee.cs.osweqo.edu/dl/jsr166/dist/jsr166edocs/jsr166e/Concur
rentHashMapV8.html

Good luck continuing to find errors and misuses that can
help us create better concurrency components!”

http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html

Specifying and Verifying
Data Structure Composition

* Efficient libraries are widely available
* Composing operations in a way which

guarantee correctness:

— Specification

— Verification

— Synthesis

— Performance

— Handle concurency

Research Questions

How to compose several data structures?
— Support shared data structures

Hide the complexity of concurrent
programming

Provably correct code

Simpler program reasoning

Composing Data Structures

filesystem=1 filesystem=2

filesystems
T s _list —> s _list

s_files s_files
file=14
f list f list

f fs_list f fs_list

__ file=6__

f list f list

(f fs_list f fs_list

f Ilst
f fs_list

Problem: Multiple Indexes

+Concurency

filesystem=1 filesystem=2 Access Patterns

filesystems
T s _list —> s _list
s_files s_files

* Find all mounted
flesystems
f list f list * Find cached files on
f fs_list f fs_list each filesystem

* |terate over all used

- file=6 | or unused cached

;/ f list f list files in Least-
f fs_list f fs_list Recently-Used order

flle-
f list
f fs_list

Disadvantages of linked shared data structures

Error prone
Hard to change

Performance may depend on the machine and
workload

Hard to reason about correctness
— Low level representation invariants

Concurrency makes it harder
— Lock granularity
— Aliasing

Our thesis

* Very high level programs
— No pointers and shared data structures
— Easier programming
— Simpler reasoning
— Machine independent

 The compiler generates pointers and multiple
concurrent shared data structures

* Performance comparable to manually written
code

Our Approach

Program with “database”
— States are tables

— Uniform relational operations
* Hide data structures from the program

— Functional dependencies express program invariants

The compiler generates low level shared pointer
data structures with concurrent operations

— Correct by construction
The programmer can tune efficiency
Autotuning for a given workload

Conceptual Programming Model

insert

query
e T query
insert

insert

shared database

remove

_remove

Relational Specification

* Program states as relations

— Columns correspond to properties
— Functional dependencies define global invariants

r=empty r:={}
insertrst if s grthenr=ru {<s.t>}
queryrSC The Cof all the tuplesinr

matching tuple

removers remove from r all the
tuples which match s

The High Level Idea
{fs, file, inuse}

RelScala fs,ﬁle — 1nuse

Decomposition

query <inuse:T> {fs, file}

i __iesysten | u@ Compiler
[filesystems s_list s_list

s_files s_files
&

ile N
 f_fs_list
Ciftize |

f_list

f_fs_list

\ 4

Concurrent Compositions of
Data Structures,
Atomic Transactions

List * query(FS* fs, File* file) {
lock(fs) ; for (q= file_in_use; ...)

Filesystem

* Three columns {fs, file, inuse} IS

14

e fs:int x file:int x inuse:Bool .

* Functional dependencies
— {fs, file} >{ inuse}

R R R NN R

5
6
2
2

- m 4 m 4

Filesystem (operations)

fs | file |inuse
1 14 F

2 7 T

2 5 F

1 6 T

1 2 F

query <inuse:T> {fs, file }=

[<fs:2, file:7>, <fs:1, file:6>]

Filesystem (operations)
s |file

1 14 F
2 7 T
2 5 F
1 6 T
1 2 F

insert <fs:1, file:15> <inuse:T>

fs __file | inuse.
14

1 F
2 7 T
2 5 F
1 6 T
1 2 F
1 15 T

Filesystem (operations)
s |file | inuse.

1 F
2 7 T
2 5 F
1 6 T
1 2 F
1 15 T

remove <fs:1>
fs | file |inuse
2 7 T

2 5 F

Plan

e Compiling into sequential code (PLDI'11)
e Adding Locks concurrency (PLDI'12)

Mapping Relations into
Low Level Data Structures

Many mappings exist

How to combine several existing data
structures

— Support sharing
Maintain the relational abstraction
Reasonable performance

Parametric mappings of relations into shared
combination of data structures

— Guaranteed correctness

The RelC Compiler

Relational Specification

4)

fsx filexinuse
{fs, file} — {inuse}

foreach <fs, file, inuse>e filesystems s.t. fs= 5

_ do ... Y

Graph decomposition

fs, file

N

Decomposing Relations

* Represents subrelations using container data
structures

* Adirected acyclic graph(DAG)
— Each node is a sub-relation
— The root represents the whole relation

— Edges map columns into the remaining sub-
relations

— Shared node=shared representation

Decomposing Relations into Functions
Currying

o fsx filexinuse
fsx filexinuse {fs, file} > {inuse}

group-by {fs}
FS > (FILExINUSE)

group-by {inuse}

se
INUSE = FS x FILE

filexinuse fsx file

group-by {file} fi ile group by {fs, file}

FILE=>INUSE FS x FILE = INUSE

inuse

FS = (FILE=>INUSE) INUSE => (FS x FILE = INUSE)

Filesystem Example

{fs, file, inuse} -mm

J

L P N N B
m 4 M — ™M

file

inuse 6

o p e o

F T

e [inuse. e Jinuse
F
T
F

Memory Decomposition(Left)

inuse

file:14 file:6 file:2 filel7 file:5

inuse:F inuse:T inuse:F Inuse:T Inuse:F

Filesystem Example

inuse

{fs, file} =>{ inuse}

fs:2 fs:1
ile:5 ile:2

Memory Decomposition(Right)

inuse:T inuse:F
inuse
{fs, file} =>{ inuse}
2 1 s:1 f5:2 s:1
file:7 file:6 file:14 file:5 file:2

inuse:T inuse:T inuse:F Inuse:F Inuse:F

Decomposition Instance

fs x file x inuse

{fs, file} >{ inuse} inuse

fs | file | inuse

1 14 F

2 7 T

2 5 F

1 6 T

0 . c inuse:F inuse:T inuse:F Inuse:T Inuse:F

Decomposition Instance

L

2

inuse:F

fs;

fs x file x inuse > el
{fS, flIE} —){ inuse} inuse \ L
1 14 F /
A8

2 7 T) , ']
> s &ﬁ
1 6 T

inuse:F inuse:T : Inuse:T
1 2 F f Tist f list

Decomposing Relations Formally(PLDI'11)

fsx filexinuse
{fs, file} — {inuse}

let w: {fs, file,inuse}> {inuse} = {inuse} in
let v : {fs} > {file, inuse} = {file} 2'st{w} in
let z : {inuse } > {fs, file, inuse} = {fs,file} 2list{w}in
let x: {} > {fs, file, inuse} = {fs} =>¢list{y} x
{inuse} 2>2mav{z}

inuse

Memory State
filesystems

\ filesystem=1 filesystem=2

s_list —> s_list
s_files s _files

file=14

f list f list
f fs_list f fs_list
fs x file x inuse
(s fle} >linusel —inuse
i [file |inuse f_lis f_lst
1 14 F f fs_list f fs_list
2 7 T
) s F
f list
1 6 T f fs_list
1 2 F

fs x file x inuse Memory State(2)

{fs, file} —>{ inuse}

* filesystems
\ filesystem=1 filesystem=2

| fs=1,file=6 | s_list s_list
f_list s_files s_files
fs=2 file=7
f list file=14
f fs_list f fs_list
fs=2 file=5
f list
fs=1 file=14 f_fs_list f_fs_list
f list
fs=1, file=2
f_list

i f fs_list

Adequacy

Not every decomposition is a good representation of a
relation

A decomposition is adequate if it can represent every possible relation
matching a relational specification

enforces sufficient conditions for adequacy

{fS, ﬁleﬂ E.:'.'I'T"\LSB} Adequacy

fs, file — tnuse © —

inuse

Adequacy of Decompositions

* All columns are represented
* Nodes are consistent with functional
dependencies

— Columns bound to paths leading to a common
node must functionally determine each other

Respect Functional Dependencies

file,fs
e v {file, fs} = {inuse}

inuse

Adequacy and Sharing

fs, file

inuse

Columns bound on a path to an object x must functionally
determine columns bound on any other path to x

v {fs, file}<>{inuse, fs, file}

Adequacy and Sharing

inuse

Columns bound on a path to an object x must functionally
determine columns bound on any other path to x

{fs, file} «<» {inuse, fs}

The RelC Compiler PLDI'11
{fs, file, inuse}

fs, file — inuse

fs, file

Compiler

s_files

Sequential Compositions of
Data Structures

Query Plans

foreach <fs, file, inuse>e filesystems
if inuse=T do ...

fs, file

inuse

Cost proportional to the number of files

Query Plans

foreach <fs, file, inuse>e filesystems
if inuse=T do ...

inuse

Cost proportional to the number of files in use

Completeness

- The representation is adequate —> the compiler can
always generate correct code
* But the code may be slow

foreach <fs, file, inuse>e filesystems s.t. fs=1 do

inuse

Removal and graph cuts

remove <fs:1>

fileystems

s_list
s_files

—
f list
f fs_list

f list

f fs_list

Abstraction Theorem

* If the programmer obeys the relational
specification and the decomposition is adequate
and if the individual containers are correct

 Then the generated low-level code maintains the
relational abstraction

remove <fs:1>
relation relation

%

[l [1

low level code
low-level | remove <fs:1> | low-level

state state

Simplified Compilation Strategy

e Specify provably correct program
transformations

e Select the best compiled code using a
workload

Autotuner

Given a fixed set of primitive types
— list, circular list, doubly-linked list, array, map, ...

A workload

Exhaustively enumerate all the adequate
decompositions up to certain size

The compiler can automatically pick the best
performing representation for the workload

Directed Graph Example (DFS)

e Columns
src x dst x weight

* Functional Dependencies
— {src, dst} —> {weight}
* Primitive data types

— map, list
Src g dst g

O O
dst| & src| @

weight weight weight weight

Synthesizing Concurrent
Programs

The High Level Idea

Concurrent Decomposition
{fs, file, inuse}

RelScala fs,ﬁle — 1nuse

query <inuse:T> {fs, file}

inuse

=== ConcurrentHashMap
== =» HashMap

U uasyst UIBsystam)
[filesystemﬂ s_list s_list
s

s_files

Compiler

\ 4

Concurrent Compositions of
Data Structures,
Atomic Transactions

List * query(FS* fs, File* file) {
lock(...) for (g= file_in_use; ...)

 f_fs_list

Two-Phase Locking

Attach a lock to each piece of data

Two phase locking protocol:

* Well-locked: To perform a read or write, a
thread must hold the corresponding lock

 Two-phase: All lock acquisitions must precede
all lock releases

Theorem [Eswaran et al., 1976]: Well-locked, two-phase transactions are
serializable

Two Phase Locking

Decomposition Decomposition Instance

iy L, o
Y |
@ Ii wy | | 'w2) Ii 'w3) | Wy
Attach a lock to every edge
Two Phase Locking = Serialiazability We're done!

Problem 1: Can’t attach locks to container entries
Problem 2: Too many locks

Butler Lampson/David J. Wheeler: “Any problem in computer science can
be solved with another level of indirection.”

Lock Placements

Decomposition Decomposition Instance

'

®

Liﬂw - :

© 5

r
4 LY # .Y 4 # L
@ | wp | - Wwe | [W3 | [W4
. A L% A L% A N S

1. Attach locks to nodes
2. Use a lock placement 1) to map data (on edges)

to locks (on nodes)

Coarse-Grained Locking

Decomposition Decomposition Instance

|
@O
J‘

v
A) TR A)
@ W | Wwge | | W3z | [W4 |
L A \ A A A A A

Y = {uv — u, vw — u}

Finer-Grained Locking

Decomposition Decomposition Instance

|
@O
)

Y

O Cil ™

5 g

A) TR A)
@ - W | | W2 | | W3 | | W4 |
L% A . A L% A L% A

Y = {uv — u, vw — v}

Lock Striping

Decomposition Decomposition Instance

! U“L"‘L"‘Lj
k

O maOr'a
SN
Lf

] | Wa
., vy b A

b "y b

Y = {Uvy — Uz mod ky VW > V}

61

| W3 | W4

Lock Placements: Domination

Locks must dominate the edges they protect

Decomposition Decomposition Instance

Lock Placements: Path-Closure

All edges on a path between an edge and its
lock must share the same lock

J

If 1)(vw) = u, then 1 (uv) = wu also.

Lock Ordering

Prevent deadlock via a topological order on locks

Queries and Deadlock

Query plans must acquire the correct locks in the correct order

t<u<v<w
1. acquire(t)

- 2. lookup(tv)

4 3.acquire(v)

fs, file file

4. scan(vw)

Tnuse

Example: find files on a particular filesystem

Deadlock and Aliasing

{ {

lock(al) lock(a2)
lock(b1) lock(b2)

// do something // do something
unlock(b1) unlock(b2)
unlock(al) unlock(a2)

} }

Decompositions and Aliasing

A decomposition is an
abstraction of the set of
potential aliases

 Example: there are exactly
two paths to any instance
of node w

Concurrent Synthesis (Autotuner)

Find optimal combination of

dst src

O

weight

O :
weight weight
sre dst

dst

O

weight

Decomposition

Array TreeMap

HashMap
LinkedList

ConcurrentHashMap
ConcurrentSkipListMap

CopyOnWriteArrayList

Container
Data Structures

ReentrantLock

ReentrantReadWriteLock

Lock Placement

Lock Implementations

rﬂ 74 74 r
- W W

74 14 '4 r
(IS S W

[|

[|

Lock Striping Factors

Based on Herlihy’s benchmark of concurrent maps

Concurrent Graph Benchmark
{src, dst, weight }

src, dst — weight

e Start with an empty graph

* Each thread performs 5 x 10° random
operations

* Distribution of operations a-b-c-d (a%
find successors, b% find predecessors, c%
insert edge, d% remove edge)

* Plot throughput with varying number of
threads

Results: 35-35-20-10

35% find successor, 35% find predecessor,
‘ 20% insert edge, 10% remove edge

6,000

v
('8
o
]
2
£ 4,000
s
2
<=
-

— = ConcurrentHashMap 2,000
.......... » = HashMap

@] ‘ 0

weight

Number of Threads

==—=3 ConcurrentHashMap
== =» HashMap

(Some) Related Projects

In-memory databases [DB-toaster, Kemper, ...]
SETL [Paige, Schwartz, Schonberg]

Relational synthesis: [Cohen & Campbell 1993],
[Batory & Thomas 1996], [Smaragdakis & Batory
1997], [Batory et al. 2000] [Manevich, 2012] ...

Two-phase locking and Predicate Locking
[Eswaran et al., 1976], Tree and DAG locking
protocols [Attiya et al., 2010], Domination
Locking [Golan-Gueta et al., 2011]

Lock Inference for Atomic Sections: [McCloskey et
al.,2006], [Hicks, 2006], [Emmi, 2007]

Further Work

* Synchronization with Foresight
[G. Gueta, OOPSLA’11, PLDI'13, PPOPP’13’15]
 Combining Optimistic and Pessimistic
Synchronization [PLDI’15]

Summary

Programming with uniform relational
abstraction

— Increase the gap between data abstraction and
low level implementation

Comparable performance to manual code
Easier to evolve
Automatic data structure selection

Easier for program reasoning

