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Abstract. Recent analysis of sequential algorithms resulted in their ax-
iomatization and in a representation theorem stating that, for any se-
quential algorithm, there is an abstract state machine (ASM) with the
same states, initial states and state transitions. That analysis, however,
abstracted from details of intra-step computation, and the ASM, pro-
duced in the proof of the representation theorem, may and often does
explore parts of the state unexplored by the algorithm. We refine the
analysis, the axiomatization and the representation theorem. Emulating
a step of the given algorithm, the ASM, produced in the proof of the new
representation theorem, explores exactly the part of the state explored
by the algorithm. That frugality pays off when state exploration is costly.
The algorithm may be a high-level specification, and a simple function
call on the abstraction level of the algorithm may hide expensive interac-
tion with the environment. Furthermore, the original analysis presumed
that state functions are total. Now we allow state functions, including
equality, to be partial so that a function call may cause the algorithm as
well as the ASM to hang. Since the emulating ASM does not make any
superfluous function calls, it hangs only if the algorithm does.

[T]he monotony of equality can only lead us to boredom.

—Francis Picabia

1 Introduction

According to Kolmogorov, “algorithms compute in steps of bounded complex-
ity” [14]. We call such algorithms sequential; in the intervening years the notion
of algorithm was generalized to computations that may be vastly parallel, dis-
tributed, real-time. In the rest of this paper, algorithms are by default sequential
and deterministic. In particular abstract state machines [12] will be by default
sequential and deterministic.

Abstract state machines (ASMs) constitute a most general model of (se-
quential deterministic) computation. They operate on any level of abstraction
of data structures and native operations. By virtue of the ASM Representaion
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Theorem of [13], any algorithm can be step-by-step emulated by an ASM. The
theorem presupposes a precise notion of algorithm, and indeed algorithms are
axiomatized by means of three “sequential postulates” in [13]. These postulates
formalize the following intuitions:

(I) an algorithm is a state-transition system;
(II) state information determines (given the program of the algorithm) future

transitions and may be captured by a logical structure;
(III) state transitions are governed by the values of a finite and input-

independent set of ground terms.

All models of effective, sequential computation satisfy the postulates, as do ideal-
ized algorithms for computing with real numbers, or for geometric constructions
with compass and straightedge. Careful analysis of the notion of algorithm [13]
and an examination of the intent of the founders of the field of computability
[10] have demonstrated that the sequential postulates are true of all sequential,
deterministic algorithms, the only kind envisioned by the pioneers of the field. In
Sects. 3 and 4, we explain the postulates, recall ASMs and formulate the ASM
representation theorem.

The algorithms of the three sequential postulates will be called classical.
The notion of behavioral equivalence for classical algorithms is rather strict:
behaviorally equivalent algorithms have the same states, the same initial states
and the same state transitions. The ASM representation theorem asserts that,
for every classical algorithm, there is a behaviorally equivalent ASM. In various
application domains, weaker notions of equivalence — e.g. bisimulation — may
be useful, but the representation theorem remains valid for any weakening of the
notion of behavioral equivalence.

Yet, from a certain point of view, the notion of behavioral equivalence is not
strict enough. Equivalent algorithms may have different intra-state behavior. In
particular the emulating ASM produced in the proof of the ASM representation
theorem may and usually does explore parts of the state unexplored by the
given algorithm. Superfluous evaluations do not prevent the ASM from arriving
at the same transition as the algorithm it emulates but they waste resources.
For example, an algorithm for removing duplicates from a file system may test
equality of large files, but would first check to see that their recorded sizes are
the same. The ASM produced by the proof of the ASM representation theorem
would, however, always check both size and content, despite the overhead.

The universal construction of the emulating ASM was designed to simplify
the proof of the ASM representation theorem. That construction was not de-
signed to be used in applications. In fact, by the time of the publication of
the ASM representation theorem, the ASM community had developed an art
of efficient — and elegant — ASM emulation and had accumulated substantial
evidence that efficient emulation of intra-step computations was always possible.

In the present paper, we prove that efficient emulation of intra-step com-
putations is indeed always possible. In Sect. 5, we refine the axiomatization of
algorithms. The algorithms of the new postulates are called exacting. And we
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strengthen the notion of behavioral equivalence. Two exacting algorithms are
behaviorally equivalent if

(i) they have the same states, initial states and state transitions and
(ii) at each step they explore the same part of the state.

The new ASM representation theorem, in Sect. 7, asserts that, for every exacting
algorithm, there is a behaviorally equivalent ASM. By eliminating unnecessary
exploration, the emulating ASM, produced by the proof of the new representa-
tion theorem, is often simpler and shorter — with no need for human ingenuity
to improve it.

Exact exploration allows us to handle faithfully algorithms that may hang.
To this end, we liberalize the notion of algorithm’s state. States of classical algo-
rithms are (first-order) structures except that relations are viewed as Boolean-
valued functions. Basic functions of the state (i.e. the interpretations of the
function names in the vocabulary) are total. In the case of exacting algorithms,
basic functions may be partial. That may sound like old news to ASM experts.
Even though basic functions of classical ASMs are supposed to be total, partial
functions are easily handled by means of various “error values”, the most popular
of which has been undef. The error values are elements of the state. For exam-
ple, in a state with integer arithmetic, you may have that term 1/0 evaluates to
undef, equality term 1/0 = 7 evaluates to false, and equality term 1/0 = undef
evaluates to true. Here we are talking about a very different situation. A basic
function f may have no value whatsoever at some tuple ā of arguments. When
f(ā) is called, the algorithm hangs (or stalls). This is very different from re-
turning an error value. Hanging is more insidious – the computation gets stuck
in a catatonic limbo, while an error value allows the algorithm to handle the
situation as it sees fit.

Even equality can be partial in the states of an exacting algorithm. Why
that? Consider the following scenario. An algorithm works with genuine (infinite
precision) real numbers. Internally, real numbers have finite representations, e.g.
definite integrals. The problem when two such expressions represent the same
real number is undecidable of course. Accordingly, in algorithm’s states, equality
is partial. It need not be even transitive. It could be that a test s = t yields false,
whereas t = u yields true, yet when the state asked about s = u, no answer is
forthcoming, though the truth of the matter must be that s 6= u.

The possibility of hanging makes exact exploration crucial. Consider for ex-
ample the Gaussian elimination procedure. It tests that a pivot element p is
non-zero before evaluating expressions a[i, j]/p. In the case p = 0, it does not
evaluate expressions a[i, j]/p but the ASM, produced by the proof of the classi-
cal ASM representation theorem, does. In contrast, the ASM, produced by the
proof of the new ASM representation theorem in Sect. 7, does not conduct such
superfluous evaluations.

Acknowledgment. We thank Olivier Bournez for his comments on an early
draft and Ulrich Kohlenbach for information on computable reals.
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2 Related Work

Exact exploration that we preach here has been practiced by ASM experts for
a long time, in various applications in academia and industry [1,7,25]. ASMs,
sequential and otherwise, have been used to give high-level operational semantics
to programming languages, protocol specifications, etc. In Microsoft, the ASM
approach was used to develop Spec Explorer, a top tool for model-based testing.

The axiomatization of algorithms in [13], which is extended here to account
for exact exploration, was extended to parallel algorithms and to interactive
algorithms [6].

We are aiming for a model of computation that can faithfully support algo-
rithms for which basic operations may have varying costs involved, and/or for
which their domains of applicability may be unknown or uncomputable. The
latter produces an ocean of related work.

First, constructive mathematics comes to mind [3,16]. Classical mathemat-
ics has no philosophical objections to working with various ideal elements that
do not have finite representations. The BSS model of computation with real
numbers reflects that attitude [4], and ASMs have been used in to emulate the
BSS model [24]. On the other hand, constructive mathematics works only with
objects that have finite representations. In their world, only computable reals
exist, only computable reals-to-reals functions exist, etc. The question when two
computable reals are equal is of course undecidable. Would ASMs be of any
use to constructivists? We think so. Russian constructivists often used Markov’s
normal algorithms computation model [18] for programming. As a result some of
their works are unnecessarily detailed and hard to read. Exacting ASMs would
fit their purposes better.

You don’t have to be a constructivist to be interested in computable math-
ematical analysis; you may be a recursion theorist [28]. One way to deal with
partial-equality troubles is to avoid equality altogether [15,23]. Algebraic seman-
tics has been used to tackle partial-functions difficulties in abstract data types
and programming semantics; see [2,19] for interesting examples of that approach.

There exist a number of implementations of arithmetic with infinite-precision
reals; see [11] for a survey. As far as we can determine, the most advanced and
rapid implementations of exact real number arithmetic today are the iRRAM
system of Norbert Müller [22] and the RealLib system by Branimir Lambov
[17]. Let us mention also the xrc system (alluding to Exact Reals in C) of Keith
Briggs [9] and a Common Lisp package Computable Real Numbers by Michael
Stoll [26]. But there are other systems of interest.

One of our reviewers suggested that we “ought to engage with” Winskel’s
event structures [29] and noted a similarity between our Discrimination require-
ment in Sect. 5 and Winskel’s coincidence-freeness of configurations. Well, the
particular structure of exact exploration can be made to concur with a number
of general frameworks including that of event structures. One may think of the
exploration ordering as a partial ordering of term-evaluation events connected
to an event structure associated to a given algorithm at a given state. And in-
deed there is some resemblance between Discrimination and coincidence-freeness.
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Discrimination asserts the existence of a partial order reflecting an intuition of
causality, and coincidence-freeness can be cast in similar terms. But the resem-
blance is rather superficial; in most cases, the actual partial orderings differ.

The same reviewer also asked how our framework is related to Moschovakis’s
“abstract computation theories”. Moschovakis has defined an abstract notion of
recursor and has proposed that algorithms be identified with recursors; see for
example [20,21]. For a discussion of this proposal in the light of ASMs, see [5].
We concentrate here on the aspect of Moschovakis’s proposal connected with
the main issue of the present paper, namely “What does an algorithm actually
look at?” This issue arises implicitly in [20], but in a quite different context.
Instead of being defined directly from explicit instructions in the algorithm, a
set, which intuitively contains what the algorithm looks at, is obtained as the
conclusion of a theorem for a specific example (see [20, Theorem 5.2]. The context
there is estimating an algorithm’s usage of a certain resource by checking how
much of that resource it looks at. An important difference from our discussion
is that in [20] the “looking” refers to an entire run of the algorithm, whereas our
Γ(X) refers to a single step. The latter can often be read off from a program
(for example if the program is an ASM); the former, on the other hand, can
generally be found only by running the program. Although the cited theorem
in [20] provides an appropriate notion of “looking at” for the specific algorithm
(mergesort) considered there, algorithms in general will not admit such explicit
bounds on what they look at.

3 Axiomatization of Algorithms

Algorithms were axiomatized in [13]. Here we describe a slightly refined axiom-
atization that allows for a partial transition function.

3.1 Sequential Time

To begin with, algorithms are deterministic state-transition systems.

Postulate I (Sequential Time). An algorithm determines the following:

1. A nonempty set4 S of states and a nonempty subset I ⊆ S of initial states.
2. A partial next state transition function τ from S to S.

Having τ depend only on the state means that states must store all the informa-
tion needed to determine subsequent behavior. Prior history is unavailable unless
stored in the current state. If τ(X) is undefined, we say that X is terminal and
write τ(X) = ⊥.

4 Or class; the distinction is irrelevant for our purposes and we shall ignore it.
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3.2 Abstract State

Our notion of structure is that of first-order logic with equality except for the
following modifications that are inessential but convenient for our purposes (and
standard in the ASM literature).

– Propositional constants true and false are viewed as elements of the structure
(and thus “live” inside the structure rather than outside).

– Relations are viewed as Boolean-valued functions.
– Standard Boolean connectives ¬, ∧, ∨ are viewed as structures’s basic func-

tions. (The basic functions of a structure are the interpretations of the vo-
cabulary’s function names.)

The Boolean values, equality and the Boolean connectives are the logic basic
functions of any structure; their names form the logic part of the structure’s
vocabulary, and they are interpreted as expected. As usual, constants are nullary
functions.

All basic functions are total. A basic function may return an “error value”,
e.g. the value undef mentioned earlier, but error values denote elements of the
structure. We write DomX for the base set of a structure X.

Postulate II (Abstract State).
The states of an algorithm are structures over a finite vocabulary F such

that the following conditions are satisfied.

1. If X is a state of the algorithm, then any structure Y isomorphic to X is also
a state, and Y is initial or terminal if X is initial or terminal, respectively.

2. Transition τ preserves the base set; i.e. Dom τ(X) = DomX for every non-
terminal state X.

3. Transition τ respects isomorphisms, so, if ζ : X ∼= Y is an isomorphism of
non-terminal states X,Y , then ζ : τ(X) ∼= τ(Y ).

Closure under isomorphism ensures that the algorithm operates on the chosen
level of abstraction; the states’ internal representation of the data is invisible and
immaterial to the program. Since a state X is a structure, it interprets function
symbols in F , assigning a value b from DomX to the “location” f(a1, . . . , ak)
in X for every k-ary symbol f ∈ F and for every tuple a1, . . . , ak in DomX. In
this way, X assigns a value JtKX in DomX to terms t over F .

It is convenient to view each state as the union of the graphs of its operations,
given in the form of a set of location-value pairs, each written conventionally as
f(ā) 7→ b. Define the update set ∆(X) of state X as the set τ(X)\X of changed
pairs where ∆(X) = ⊥ if τ(X) = ⊥. ∆ encapsulates the state-transition function
τ by providing all the information necessary to update the current state. But to
produce ∆(X), the algorithm needs to evaluate, with the help of the information
stored in X, the values of some terms. Later, we will use Γ(X) to refer to the
set of these “exploration” terms.
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3.3 Bounded Exploration

The third postulate simply states that there is a fixed, finite set of ground
(variable-free) terms that determines the behavior of the algorithm. We say that
states X and Y agree on a set T of terms, and we write X =T Y , if JtKX = JtKY

for all t ∈ T .

Postulate III (Bounded Exploration). For every algorithm, there is a finite
set T of ground critical terms over the state vocabulary such that, for all states
X and Y , if X =T Y then ∆(X) = ∆(Y ).

In what follows, we will presume that the set T of critical terms contains true,
false and is closed under subterms. Algorithms satisfying Postulates I, II, and III
will be called classical. It is argued in [13] that every (sequential deterministic)
algorithm is classical in that sense.

If ∆(X) = ∆(Y ) and one of the two states is terminal then so is the other. It
follows that states X and Y of a classical algorithm have the following property:
if they agree on all critical terms then either both of them are terminal or else
neither is terminal and the update sets ∆(X) and ∆(Y ) coincide.

4 Abstract State Machines

4.1 ASM Programs

An ASM program P over a vocabulary F takes one of the following forms:

– an assignment statement f(s1, . . . , sn) := t, where f ∈ F is a function
symbol of arity n, n ≥ 0, and si and t are ground terms over F ;

– a parallel statement P1 ‖ · · · ‖ Pn (n ≥ 0), where each Pi is an ASM
program over F (if n = 0, this is “do nothing” or “skip”);

– a conditional statement if C then P , where C is a Boolean condition over
F , and P is an ASM program over F .

Example 1. Here is a sorting program:

if j 6= n then
if F (i) > F (j) then F (i) := F (j) ‖F (j) := F (i)
j := j + 1

if j = n ∧ i+ 1 6= n then i := i+ 1 ‖ j := i+ 2

where, as the indentation hints, the two statements given by lines 2 and 3 re-
spectively are two components of a parallel combination, and similarly the two
statements given by lines 1–3 and by line 4 respectively form a parallel com-
bination. And j 6= n is short for ¬(j = n). The extra-logic part of program’s
vocabulary is {1, 2,+, >, F, n, i, j, undef}.

Every state of the sorting program interprets the symbols 1, 2,+, > as usual.
These are static; their interpretation will never be changed by the program. The
semantics of statements is as expected. The program, as such, defines a single
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step, which is repeated forever or until it arrives to a terminal state. Fixed
nullary functions 0 and n (programming “constants”) serve as bounds of an
array F , where F is a unary function. In addition, varying nullary functions i
and j (programming “variables”) are used as array indices. Initial states have
n ≥ 0, i = 0, j = 1, integer values for F (0), . . . , F (n − 1), and undef for all
other points of F . The algorithm proceeds by modifying the values of i and j
as well as of locations F (0), . . . , F (n− 1). It always terminates successfully with
j = n = i+ 1 and with the first n elements of F sorted.

All terms in the sorting program are critical, and no other critical terms are
needed. In general, the left-hand sides of assignments contribute only proper
subterms to the set of critical terms but in this example the left sides are critical
since they occur also elsewhere in the program.

4.2 ASM Updates

An ASM might “update” a location in a trivial way, giving it the value it already
has. Also, an ASM might designate two conflicting updates for the same location,
what is called a clash, in which case the ASM fails. To take these additional
possibilities into account, a proposed update set ∆+

P (X) for an ASM P at state
X is defined as follows:

– ∆+
f(...,si,...):=t(X) = {f(. . . , JsiKX , . . .) 7→ JtKX};

– ∆+
[P1 ‖ ··· ‖ Pn](X) =

{
∆+

P1
(X) ∪ · · · ∪∆+

Pn
(X) if there is no clash

⊥ otherwise;
– ∆+

if C thenP
(X) = ∆+

P (X) if X |= C, and ∅ otherwise.

Here X |= C means of course that C evaluates to true in X, and we stipulate
that the union of ⊥ with any set is ⊥. If ∆+

P (X) = ⊥ or ∆+
P (X) = ∅, X is a

terminal state of P . Otherwise, the updates are applied to X to yield the next
state, by replacing the values of all locations in X that are referred to in ∆+

P (X).
So, if the latter contains only trivial updates, P will loop forever. (As long as no
confusion will arise, we are dropping the subscript P .)

ASMs clearly satisfy Postulates I–III, and thus the notion of update set
∆(X), defined after Postulate II, applies to any ASM P . Let ∆0(X) denote
the set {f(ā) 7→ Jf(ā)KX | ā ∈ DomX} of all possible trivial updates for state
X. Thus X is terminal if ∆+

P (X) is ∅ or ⊥, and ∆P (X) = ∆+
P (X) \ ∆0(X)

otherwise. The update set for the sorting program, when in a state X such that
JjKX 6= JnKX and JF (i)KX > JF (j)KX , contains F (JiKX) 7→ JF (j)KX , F (JjKX) 7→
JF (i)KX , j 7→ JjKX + 1.

4.3 Classical ASM Representation Theorem

Two classical algorithms are behaviorally equivalent if they have the same states,
the same initial states and the same state transitions.

Theorem 1. Every classical algorithm has a behaviorally equivalent ASM.
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The proof constructs an ASM that contains conditions involving equalities
and disequalities between all critical terms. These conditions can be large. Given
the critical terms for our sort algorithm, the ASM constructed by the proof in
[13] would include statements like

if (F (i) > F (j)) = true ∧ j = n ∧ i+ 1 6= n then j := i+ 2.

This, despite the fact that the first conjunct of the conditional is irrelevant when
the others hold.

5 Refined Axiomatization of Algorithms

The sequential-time Postulate I remains unchanged. We liberalize the abstract-
state Postulate II to a new abstract-state Postulate II-lib, and replace the
bounded-exploration Postulate III with an exact-exploration Postulate III-exact.

5.1 Liberalization of Abstract State Postulate

It is not uncommon in the logic literature to generalize the notion of structure
so that basic non-logic functions may be partial. We do that. But we also do
something that is not common: we allow equality to be partial. The reason for
that was mentioned in the Introduction. Recall that scenario where an algorithm
works with real numbers represented internally by expressions like definite inte-
grals. In that scenario, the state may not know whether two reals are equal, i.e.
whether their representations denote the same real number; the state may not
know whether a real number equals zero. We insist, however, that true and false
are defined (and thus total), and that the Boolean connectives are total; there is
no reason to make these logic functions partial. And yes, equality remains true
equality whenever it is defined. Thus equality is semi-logical: partial but correct
when defined.

Postulate II-lib (Abstract State). The states of an algorithm are structures
over a finite vocabulary F , where equality and non-logic basic functions may be
partial, such that the following conditions are satisfied.

1. If X is a state of the algorithm, then any structure Y isomorphic to X is also
a state, and Y is initial or terminal if X is initial or terminal, respectively.

2. Transition τ preserves the base set; i.e. Dom τ(X) = DomX for every non-
terminal state X. And τ cannot change a value at any location f(ā) to no
value.

3. Transition τ respects isomorphisms, so, if ζ : X ∼= Y is an isomorphism of
non-terminal states X,Y , then ζ : τ(X) ∼= τ(Y ).

Conditions 1 and 3 are exactly as in Postulate II. Only condition 2 is amended
with a restriction on τ .

Thus some locations f(ā) may have no value whatsoever, not even an error
value like undef; in such cases we write f(ā) = ⊥. If an algorithm attempts, in
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some state X, to access a non-existent value, then it must hang. There will be
no next state, yet the algorithm will get no indication of this failure. (Any such
indication would be just an error value; as we said, error values can treated as
state elements.) If this situation occurs at any point during the evaluation of a
term t, then t has no value in state X, symbolically JtKX = ⊥. Thus JtKX = ⊥
if Jt′KX = ⊥ for any subterm t′ of t.

Define the domain Dom f of a function f in state X to be the set of all tuples
ā such that the location f(ā) has a value in X, possibly an error value like undef.
The restriction that we impose on the transition function τ says that Dom f can
only grow.

5.2 Exact Exploration Postulate

Deciding which locations to explore is now part of the behavior we are interested
in. If an algorithm acts differently on different states, either in the sense of
exploring different terms or in the sense of performing different updates, then it
must first find some term that distinguishes them. Furthermore, if the behaviors
of the algorithm in two states differ, then that must be made evident from that
part of the two states that is explored in both. Accordingly, what we should have
is

X =Γ(X)∩Γ(Y ) Y −→ Γ(X) = Γ(Y ) (1)

X =Γ(X)∩Γ(Y ) Y −→ ∆(X) = ∆(Y ) (2)

In order to compute over a state X, the program evaluates – in some order –
finitely many Boolean terms over X and learns their values. In order to produce
updates, additional terms may be evaluated but the program does not need to
know their values. The state may not determine the precise order of exploration,
but some partial order is dictated by the possible behaviors. In general, if a
conditional statement if C then P is executed and the test C is true, then the
terms in C are explored before, or together with, those in P . One cannot, how-
ever, simply derive the exploration order from the conditionals in the program,
making conditions in C precede any new terms in P . We might have an assign-
ment if d then if b then x := d, in which case d needs to be explored before b,
but when this assignment is placed in parallel with if b then if d then x := c,
b and d can be explored at the same time. So, instead, we put all terms of the
top-level conditions and assignments of components of a parallel statement at
the bottom of the ordering, followed by contributions from the relevant cases of
the conditionals. This order of exploration will be captured in what follows by a
“causality” order ≺X on the explore terms Γ(X) of states X. For example, the
order for the sorting program, when JjKX 6= JnKX and JF (i)KX > JF (j)KX has
the two conditions j 6= n and j = n ∧ i + 1 6= n incomparable, with the first of
these conditions being below both F (i) > F (j) and j + 1.

Example 2. Consider this parallel combination of three ASM statements:
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if d then if c then if b then s := x
if d then if ¬c then t := x
if d then if ¬b then s := y.

Clearly, d must be explored first off, since nothing more transpires when ¬d,
while further tests are necessary when d holds, in which case, b and c must both
be explored, though the order in which that occurs does not matter. Of course,
x and/or y are only explored after it becomes clear that the relevant case holds.

Postulate III-exact (Exact Exploration). For every algorithm, there is a
finite set T of ground critical terms over the state vocabulary such the following
holds. For every state X, there is a finite explore set Γ(X) ⊆ T satisfying the
following two properties.

1. Determination. For every state Y =Γ(X) X, ∆(Y ) = ∆(X).
2. Discrimination. There is a partial order ≺X of Γ(X) such that, for every

state Y and every t ∈ Γ(X) \ Γ(Y ), there is a Boolean term s ≺X t that
takes on opposite truth values in X and Y .

The intention is that the explore set Γ(X) consists of the terms that are
actually explored by the algorithm at state X. We will assume that Γ contains
true, false and all subterms of its members; the subterms of a term f(t1, . . . , tj)
need to be evaluated before location f(t1, . . . , tj) can be accessed. An algorithm
satisfying Postulates I, II-lib and III-exact will be called exacting.

5.3 Explore Terms of ASMs

The explore sets of ASMs are defined in the most natural way. If U is a set of
terms, let Ū be the closure of U ∪ {true, false} under subterms. We have:

– Γf(s1,...,sn):=t(X) = {s1, . . . , sn, t};
– Γ[P1 ‖ ··· ‖ Pn](X) = ΓP1(X) ∪ · · · ∪ ΓPn(X); and
– Γif C thenP (X) = {C} ∪ ΓP (X) if X |= C and just {C}, otherwise.

Thus ΓP (X) contains all conditions that ASM P tests at state X, and all terms
that occur in proposed updates.

Theorem 2. Every ASM with explore sets as indicated is an exacting algorithm.

Proof. Induction on ASM programs. ut

6 Exacting Algorithms

Theorem 3.

1. Every exacting algorithm with no partial basic functions in its states is also
classical.

2. Every classical algorithm can be equipped with explore sets so as to be exact-
ing.
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Proof.
1. The claim is obvious.
2. Given a classical algorithm, define Γ(X) to be the set of all critical terms
(regardless of the state X). ut

A classical algorithm can often be equipped with explore sets in more than
one way so as to be exacting. There is always a trivial way used in the proof
above. But usually the algorithm will explore fewer terms than that in some (or
even all) states, so a smaller Γ(X) can be used.

A set V of states is uniform if all states in V have the same explore set, that
is, if Γ(X) = Γ(Y ) for all X,Y ∈ V . For any set V of states, let Γ(V ) denote the
shared explore terms

⋂
X∈V Γ(X). We say that V is agreeable if all states in V

agree on the values of all their shared explore terms, that is, if X =Γ(V ) Y for all
X,Y ∈ V . It stands to reason that agreeable states engender uniform behavior,
because the algorithm has no way of distinguishing between them.

Theorem 4. For any exacting algorithm, agreeability of a set of states implies
its uniformity.

Proof. By contradiction, suppose that, despite V ’s agreeability, not all states
in V have the same explore set. Without loss of generality, let t ∈ Γ(X) be a
minimal explore term for some X ∈ V that is not also an explore term for all
other states in V (minimal with respect to ≺X), and let Y ∈ V be a state such
that t /∈ Γ(Y ). By Discrimination, there is an s ∈ Γ(X) such that s ≺X t and
with different truth values in X and Y . By agreeability, s /∈ Γ(V ). But then
s must be a smaller choice of an explore term for X than is t, since perforce
s /∈ Γ(Z) for some Z ∈ V .

By Determination, we also have the following:

Corollary 1. For any exacting algorithm, agreeability of a set V of states im-
plies that ∆(X) = ∆(Y ) for all X,Y ∈ V .

In a sense, the Discrimination requirement is equivalent to the requirement
that “agreeability implies uniformity”. The latter requirement does not involve
any ordering of explore terms.

Theorem 5. Consider an alternative definition of exacting algorithms where the
Discrimination requirement is replaced with the requirement that every agreeable
set of states is uniform. The alternative definition is equivalent to the original
definition.

Proof. One direction is proved in the previous theorem. It remains to prove that
an arbitrary alternative exacting algorithm satisfies Discrimination. Let S be
the set of states of the algorithm.

For each X ∈ S, we define a partial order ≺X on Γ(X). Explore terms that
are shared by all states are smallest, because they are always needed. Next come
those terms that are shared by all states that agree with X on the values of
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the lowest tier, Γ(S), of terms. And so on. Thus, the ordering ≺X , as a set of
ordered pairs, is LX(S), where LX(V ) is an ordering that discriminates X from
other states in V . When V is uniform, LX(V ) := ∅; otherwise,

LX(V ) := (Γ(V )× (Γ(X) \ Γ(V ))) ∪ LX({Y ∈ V |Y =Γ(V ) X}).

This recursion is bound to terminate, because Γ(X) \ Γ(V ) gets continually
smaller. To see why, note that X ∈ V always, so Γ(V ) ⊆ Γ(X). When V is not
uniform, it cannot be agreeable, so there is an s ∈ Γ(V ) over which states in V
disagree. But, by construction, all of V agrees on all terms in the previous Γ(V ).

Now consider any t ∈ Γ(X) \ Γ(Y ) for a Y ∈ S. Initially, t /∈ Γ(V ) = Γ(S),
whereas t ∈ Γ(V ) = Γ(X) at the end of the recursion, so Y is not in the final
argument V . At the point when Y is removed from V , there must be an s ∈ Γ(V )
that discriminates between X and Y . By construction, s ≺X t. ut

Equation 1 gives an apparently weaker form of “agreeability implies unifor-
mity”. It turns out that it is strictly weaker and insufficient to replace Discrim-
ination.

7 Exacting ASM Representation Theorem

Two exacting algorithms P and Q are behaviorally equivalent if they operate
over the same states, have the same initial states, the same state transitions,
and explore the same terms at every state. By Corollary 1, for all states X, we
have also ∆P (X) = ∆Q(X). Unless the order in which locations are explored
affects what is actually explored in a given state, we do not care about the precise
order of exploration, nor about the number of times a location is accessed.

Note that, if exacting algorithms P and Q are behaviorally equivalent and
P hangs during the exploration of a state X then so does Q, for the simple
reason that they evaluate exactly the same terms. In the real world, a program
may hang for various reasons, e.g. because the internet connection is poor. We
abstract from such details in this theoretical study. An exacting algorithm hangs
only because it attempts to evaluate an undefined term. Call a terminal state X
of an exacting algorithm P hanging if P hangs at X. It follows that behaviorally
equivalent exacting algorithms have exactly the same hanging states.

Theorem 6. Every exacting algorithm has a behaviorally equivalent clash-free
ASM.

In the beginning, we mentioned Kolmogorov’s posit: “Algorithms compute in
steps of bounded complexity”. How do you measure the complexity of a step? A
most natural non-numerical measure is the set of terms actually explored during
the step. Combined with the cost of function calls, it leads to a natural numerical
measure. In both cases, ASMs preserve the step complexity.

And the theorem shows that abstract state machines are adequate to emulate
algorithms that may hang.
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8 Discussion

We have shown that every exacting algorithm can be step-by-step emulated
by an abstract state machine that at no state attempts to apply equality or
another functions to more values than does the algorithm. This strengthens the
thesis, propounded in [12], that abstract state machines faithfully model any and
all sequential algorithms and bolsters the belief that the sequential postulates
capture all sequential algorithms regardless of which model of computation they
may be expressed in, including “continuous-space” algorithms.

“Continuous time” processes await further research. The easing of the re-
quirements on fully-defined equality and other functions also lends strong sup-
port to the contention – put forth in [8,10] – that the Church-Turing Thesis is
provably true from first principles. In addition to the sequential postulates, the
arguments require that initial states contain only free constructors and functions
that can be programmed from them (plus input). Our refinement of the ASM
Representation Theorem strengthens those results by showing that the simula-
tion of an algorithm, having no (unprogrammable) oracles, by an effective ab-
stract state machine need not involve any operations not available to the original
algorithm. It also follows from this work that there is no harm in incorporating
partial operations in the initial states of effective algorithms, as long as they too
can be computed effectively (whenever defined). Even with this relaxation of the
limitations on initial states, it remains provable that no super-recursive function
can be computed algorithmically.
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19. Meseguer J., Roşu G.: A total approach to partial algebraic specification. In:
ICALP 2002, LNCS 2380, 572–584, Springer (2002).

20. Moschovakis Y.: On founding the theory of algorithms. In: Dales H.G., Olivieri
G. (eds.) Truth in Mathematics, 71–104, Clarendon Press, Oxford (1998).

21. Moschovakis Y.: What is an algorithm? In: Engquist B., Schmid W. (eds.) Math-
ematics Unlimited — 2001 and Beyond, 919–936, Springer (2001).

22. Müller N.: iRRAM - Exact Arithmetic in C++. http://www.informatik.

uni-trier.de/iRRAM/, viewed on June 4, 2010.
23. Naughton T.J.: Continuous-space model of computation is Turing universal. Soci-

ety of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Volume
4109, 121–128 (2000).

24. Nowack A.: Complexity theory via abstract state machines. Master’s thesis,
RWTH-Aachen (2000).

25. Spec Explorer. http://msdn.microsoft.com/en-us/devlabs/ee692301.aspx,
viewed on June 04, 2010.

26. Computable Real Numbers, http://www.haible.de/bruno/MichaelStoll/reals.
html, viewed on June 4, 2010.

27. Uspensky V.A., Semenov A.L.: Algorithms: Main Ideas and Applications. Kluwer
(1993).

28. Weihrauch K.: Computable Analysis — An introduction. Springer (2000).
29. Winskel G.: Event Structures — Lecture Notes for the Advanced Course on Petri

Nets. Univ. of Cambridge Computer Lab Tech. Report 95, UCAM-CL-TR-95
(1986).

15

http://www.brics.dk/~barnie/RealLib/
http://www.informatik.uni-trier.de/iRRAM/
http://www.informatik.uni-trier.de/iRRAM/
http://msdn.microsoft.com/en-us/devlabs/ee692301.aspx
http://www.haible.de/bruno/MichaelStoll/reals.html
http://www.haible.de/bruno/MichaelStoll/reals.html

	Exact Exploration and Hanging Algorithms 
	Introduction
	Related Work
	Axiomatization of Algorithms
	Sequential Time
	Abstract State
	Bounded Exploration

	Abstract State Machines
	ASM Programs
	ASM Updates
	Classical ASM Representation Theorem

	Refined Axiomatization of Algorithms
	Liberalization of Abstract State Postulate
	Exact Exploration Postulate
	Explore Terms of ASMs

	Exacting Algorithms
	Exacting ASM Representation Theorem
	Discussion
	References


