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We present a novel classification and regression method that com- 
bines exploratory projection pursuit (unsupervised training) with pro- 
jection pursuit regression (supervised training), to yield a new family 
of costlcomplexity penalty terms. Some improved generalization prop- 
erties are demonstrated on real-world problems. 

1 Introduction 

Parameter estimation becomes difficult in high-dimensional spaces due to 
the increasing sparseness of the data. Therefore, when a low-dimensional 
representation is embedded in the data, dimensionality reduction meth- 
ods become useful. One such method-projection pursuit regression 
(Friedman and Stuetzle 1981 (PPR)-is capable of performing dimen- 
sionality reduction by composition, namely, it constructs an approxima- 
tion to the desired response function using a composition of lower dimen- 
sional smooth functions. These functions depend on low-dimensional 
projections through the data. 

When the dimensionality of the problem is in the thousands, even pro- 
jection pursuit methods are almost always overparameterized, therefore, 
additional smoothing is needed for low variance estimation. Exploratory 
projection pursuit (Friedman and Tukey 1974; Friedman 1987) (EPP) may 
be useful in these cases. It searches in a high-dimensional space for struc- 
ture in the form of (semillinear projections with constraints characterized 
by a projection index. The projection index may be considered as a uni- 
versal prior for a large class of problems, or may be tailored to a specific 
problem based on prior knowledge. 

In this paper, the general form of exploratory projection pursuit is 
formulated to be an additional constraint for projection pursuit regres- 
sion. In particular, a hybrid combination of supervised and unsupervised 
artificial neural network (ANN) is described as a special case. In addi- 
tion, a specific projection index that is particularly useful for classification 
(Intrator 1990; Intrator and Cooper 1992) is introduced in this context. 
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There have been many other attempts to combine unsupervised with 
supervised learning (Yamac 1969; Gutfinger and Sklansky 1991; Bridle 
and MacKay 1992). The formulation discussed below is based on projec- 
tion pursuit ideas that generalize many of the classical statistical meth- 
ods, and in our case, suggests a well-defined statistical framework, that 
allows formulation and comparison between these methods. 

2 Brief Description of Projection Pursuit Regression 

Let (X, Y) be a pair of random variables, X E Rd, and Y E R. The problem 
is to approximate the d-dimensional surface 

f(x) = E[Y I X = X ]  

from n observations ( x ~ , y ~ ) ! .  . . , ( x n , y n ) .  

(functions that are constant along lines) 
PPR tries to approximate a function f by a sum of ridge functions 

m 

f(x) N CgjC$x) 
j=1 

The fitting procedure alternates between an estimation of a direction Ci 
and an estimation of a smooth function g, such that at iteration j, the 
square average of the residuals 

-r r - ( x i )  '1 = rij-l - gj (uj  x i )  

is minimized. This process is initialized by setting rio = yi. Usually, the 
initial values of uj are taken to be the first few principal components of 
the data. 

Estimation of the ridge functions can be achieved by various nonpara- 
metric smoothing techniques such as locally linear functions (Friedman 
and Stuetzle 1981), k-nearest neighbors (Hall 1989b), splines, or variable 
degree polynomials. The smoothness constraint imposed on g implies 
that the actual projection pursuit is achieved by minimizing at iteration 
j ,  the sum 

2 $(x i )  + c(gj) 
i=l 

for some smoothness measure C. 
Due to the fact that the estimation of the nonparametric ridge func- 

tions is not decoupled from the estimation of the projections, overfitting 
is very likely to occur in one of the low-order gj, thereby invalidating 
subsequent estimations. Obviously, if g is not well estimated, the search 
€or optimal projection direction will not yield good results. 
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Several alternatives have been considered in addressing this problem: 

0 Choose the ridge functions {gj} from a very small family of func- 
tions, for example, sigmoidals with a variable threshold. This elimi- 
nates the need to estimate the nonparametric ridge function, but in- 
creases the complexity of the architecture. This approach is widely 
used in artificial neural networks, and may partially explain their 
success. 

0 Estimate a fixed number of ridge functions and projections concur- 
rently (as opposed to sequential estimation) provided that the ridge 
functions are taken from a very limited set of functions. Again this 
is used in the context of neural networks, due to the relatively small 
additional computational burden. 

Additionally, one may attempt to 

0 Partially decouple the estimation of the response function, or the 
estimation of each of the ridge regression functions from the esti- 
mation of the projections. 

Ultimately, it is reasonable to combine all of the above. One such im- 
plementation is presented in the following sections. First, the issue of 
decoupling the estimation of the ridge functions from the estimation of 
the projections is discussed. 

3 Estimating the Projections Using Exploratory Projection Pursuit - 

Exploratory projection pursuit is based on seeking interesting projections 
of high-dimensional data points (Switzer 1970; Kruskall969,1972; Fried- 
man and Tukey 1974; Friedman 1987; Jones and Sibson 1987; Hall 1988; 
Huber 1985, for review). The notion of interesting projections is mo- 
tivated by an observation that for most high-dimensional data clouds, 
most low-dimensional projections are approximately normal (Diaconis 
and Freedman 1984). This finding suggests that the important informa- 
tion in the data is conveyed in those directions whose single dimensional 
projected distribution is far from gaussian. Various projection indices 
(measures for the goodness of a projection) differ on the assumptions 
about the nature of deviation from normality, and in their computational 
efficiency. They can be considered as different priors motivated by spe- 
cific assumptions on the underlying model. 

To partially decouple the search for a projection vector from the search 
for a nonparametric ridge function, we propose to add a penalty term, 
which is based on a projection index, to the energy minimization as- 
sociated with the estimation of the ridge functions and the projections. 
Specifically, let p(a) be a projection index that is minimized for projec- 
tions with a certain deviation from normality. At the jth iteration, we 
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When a concurrent minimization over several projections/ functions is 
practical, we get a penalty term of the form 

I 

Since C and p may not be linear, the more general measure that does not 
assume a stepwise approach, but instead seeks I projections and ridge 
functions concurrently, is given by 

In practice, p depends implicitly on the training data (the empirical den- 
sity) and is therefore replaced by its empirical measure b. 

3.1 Some Possible Measures. Some applicable projection indices 
have been discussed (Huber 1985; Jones and Sibson 1987; Friedman 1987; 
Hall 1989a; Intrator 1990). Probably, all the possible measures should em- 
phasize some form of deviation from normality but the specific type may 
depend on the problem at hand. For example, a measure based on the 
Karhunen Ldve expansion (Mougeot et al. 1991) may be useful for im- 
age compression with autoassociative networks, since in this case one 
is interested in minimizing the L2 norm of the distance between the re- 
constructed image and the original one, and under mild conditions, the 
Karhunen Loeve expansion gives the optimal solution. 

A different type of prior knowledge is required for classification prob- 
lems. The underlying assumption then is that the data are clustered 
(when projecting in the right directions) and that the classification may be 
achieved by some (nonlinear) mapping of these clusters. In such a case, 
the projection index should emphasize multimodality as a specific devia- 
tion from normality. A projection index that emphasizes multimodalities 
in the projected distribution (without relying on the class labels) has re- 
cently been introduced (Intrator 1990) and implemented efficiently using 
a variant of a biologically motivated unsupervised network (Intrator and 
Cooper 1992). Its integration into a backpropagation classifier will be 
discussed below. 

4 A Variant of Projection Pursuit Regression: Backpropagation 
Network 

In this section, we consider a parametric approach-the backpropaga- 
tion network-as a variant of PPR. In this context the addition of an 
exploratory projection index is discussed. 
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Backpropagation (Werbos 1974; Le Cun 1985; Rumelhart et al. 1986) 
has been chosen as a possible representative for the first two alternatives 
presented in Section 2, since it has become a useful tool for solving com- 
plicated pattern recognition tasks such as speech recognition (Lippmann 
1989), and since the class of functions that can be approximated by a 
backpropagation type network is very large. This architecture (with an 
unlimited number of projections) can uniformly approximate arbitrary 
continuous functions on compact sets (Cybenko 1989; Hornik et al. 1989) 
as well as their derivatives (Hornik et al. 19901, and do so efficiently. Re- 
lated results can be found (Carroll and Dickinson 1989; Funahashi 1989; 
Hecht-Nielsen 1989; Hornik 1991; Ito 1991). 

In this method, the error is efficiently propagated backward to the 
previous layer for modification of their synaptic weights (projections). 
The single hidden layer architecture is of the form 

where u is an arbitrary (fixed) bounded monotone function. The form 

is more suitable for classification tasks. 
Since this method can approximate any continuous function, great 

care should be taken so that the variance of the estimator is not large, 
namely, that the model does not "overfit" the training data (Wahba 1990; 
Geman et al. 1992, for discussion). This can be done using some form of 
complexity regularization (Barron and Barron 1988; Barron 1989; White 
1990; 'Moody 1991) or by weight elimination penalties that aim to reduce 
the effective number of parameters in the model (Plaut et al. 1986; Mozer 
and Smolensky 1989; Le Cun et al. 1990; Weigend et al. 1991). 

The performance of the network is measured using a loss criterion, 
for example, mean squared error between the output and the target of 
the network (the class label). The estimation of the weights is done 
by minimizing the empirical average of the error via gradient descent 
of the form: h i j / a t  = - d & / h , ,  where & = E,[&(x,w)] ,  is the average 
contribution to the loss criterion of each of the random inputs x .  

4.1 Adding EPP Constraints to Backpropagation Network. One way 
of adding some prior knowledge into the architecture is by minimizing 
the effective number of parameters using weight sharing, in which a 
single weight is shared among many connections in the network (Waibel 
et al. 1989; Le Cun et al. 1989). An extension of this idea is the "soft 
weight sharing," which favors irregularities in the weight distribution 
in the form of multimodality (Nowlan and Hinton 1992). This penalty 
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Figure 1: A hybrid EPP/PPR neural network (EPPNN). 

improved generalization results obtained by weight elimination penalty. 
Both these methods make an explicit assumption about the structure of 
the weight space, but with no regard to the structure of the input space. 

As described in the context of projection pursuit regression, a penalty 
term may be added to the energy functional minimized by error back- 
propagation, for the purpose of measuring directly the goodness of the 
projections sought by the network. Since our main interest is in reducing 
overfitting for high-dimensional problems, our underlying assumption is 
that the surface function to be estimated can be faithfully represented us- 
ing a low-dimensional composition of sigmoidal functions, namely, using 
a backpropagation network in which the number of hidden units is much 
smaller than the number of input units. Therefore, the penalty term may 
be added only to the hidden layer (see Fig. 1). The synaptic modification 
equations of the hidden units' weights become 

a q w ,  x> + aP(Wl7 ' * * 7 WrI) 
-€ - b i j  

at b i j  dWij 
- =  [ 

1 +(contribution of cost/complexity terms) 

An approach of this type has been used in image compression, with a 
penalty aimed at minimizhg the entropy of the projected distribution 
(Bichsel and Seitz 1989). This penalty certainly measures deviation from 
normality, since entropy is maximized for a gaussian distribution. 
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5 Projection Index for Classification: The Unsupervised BCM 
Neuron 

Intrator (1990) has recently shown that a variant of the Bienenstock, 
Cooper, and Munro neuron (BCM) (Bienenstock et al. 1982) performs ex- 
ploratory projection pursuit using a projection index that measures mul- 
timodality. This neuron version allows theoretical analysis of some visual 
deprivation experiments (Intrator and Cooper 1992), and is in agreement 
with the vast experimental results on visual cortical plasticity (Clothiaux 
et al. 1991). A network implementation that can find several projections in 
parallel while retaining its computational efficiency, was found to be ap- 
plicable for extracting features from very high-dimensional vector spaces 
(Intrator and Gold 1992; Intrator et al. 1991; Intrator 1992). 

The activity of neuron k in the network is Ck = Cixiwik + wok. The 
inhibited activity and threshold of the kth neuron is given by 

The threshold 6; is the point at which the modification function 4 
changes sign (see Intrator and Cooper 1992 for further details). The 
function 4 is given by 

f#J(c, 0,) = c(c - 0,) 

The risk (projection index) for a single neuron is given by 

The total risk is the sum of each local risk. The negative gradient of the 
risk that leads to the synaptic modification equations is given by 

This last equation is an additional penalty to the energy minimization 
of the supervised network. Note that there is an interaction between 
adjacent neurons in the hidden layer. In practice, the stochastic version 
of the differential equation can be used as the learning rule. 

5.1 Some Related Statistical and Computational Issues of This Pro- 
jection Index. This section discusses some commonly asked questions 
regarding the connection of the above projection index to previous work 
in pattern recognition and statistics. 

Although the projection index is motivated by the desire to search 
for clusters in the high-dimensional data, the resulting feature extraction 
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method is quite different from other pattern recognition methods that 
search for clusters. Since the class labels are not used in the search, the 
projection pursuit is not biased to the class labels. This is in contrast with 
classical methods such as discriminant analysis (Fisher 1936; Sebestyen 
1962, and numerous recent publications). 

The projection index concentrates on projections that allow discrimi- 
nation between clusters and not faithful representation of the data. This 
is in contrast to principal components analysis, or factor analysis, which 
tend to combine features that have high correlation (see review in Har- 
man 1967). The method differs from cluster analysis by the fact that it 
searches for clusters in the low-dimensional projection space, thus avoid- 
ing the inherent sparsity of the high-dimensional space. 

The projection index uses low-order polynomial moments, which are 
computationally efficient, yet it does not suffer from the main drawback 
of polynomial moments-sensitivity to outliers. It naturally extends to 
multidimensional projection pursuit using the feedforward inhibition net- 
work. The number of calculations of the gradient grows linearly with the 
dimensionality and linearly with the number of projections sought. 

6 Applications 

We have applied this hybrid classification method to various speech and 
image recognition problems in high-dimensional space. In one speech 
application we used voiceless stop consonants extracted from the TIMIT 
database as training tokens (Intrator and Tajchman 1991). A detailed 
biologically motivated speech representation was produced by Lyon’s 
cochlear model (Lyon 1982; Slaney 1988). This representation produced 
5040 dimensions (84 channels x 60 time slices). In addition to an initial 
voiceless stop, each token contained a final vowel from the set [aa, ao, 
er, iyl. Classification of the voiceless stop consonants using a test set that 
included 7 vowels [uh, ih, eh, ae, ah, uw, owl produced an average error 
of 18.8% while on the same task classification using backpropagation 
network produced an average error of 20.9% (a significant difference, 
p < 0.0013). Additional experiments on vowel tokens appear in Tajchman 
and Intrator (1992). 

Another application is in the area of face recognition from gray level 
pixels (Intrator et al. 1992). After aligning and normalizing the images, 
the input was set to 37 x 62 pixels (total of 2294 dimensions). The recogni- 
tion performance was tested on a subset of the MIT Media Lab database 
of face images made available by Turk and Pentland (1991) which con- 
tained 27 face images of each of 16 different persons. The images were 
taken under varying illumination and camera location. Of the 27 images 
available, 17 randomly chosen ones served for training and the remaining 
10 were used for testing. Using an ensemble average of hybrid networks 
(Lincoln and Skrzypek 1990; Pearlmutter and Rosenfeld 1991; Perrone 
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and Cooper 1992) we obtained an error rate of 0.62% as opposed to 1.2% 
using a similar ensemble of backpropagation networks. A single back- 
propagation network achieves an error between 2.5 and 6% on these data. 
The experiments were done using 8 hidden units. 

7 Summary 

A penalty that allows the incorporation of additional prior information 
on the underlying model was presented. This prior was introduced in the 
context of projection pursuit regression, classification, and in the context 
of backpropagation network. It achieves partial decoupling of estimation 
of the ridge functions (in PPR) or the regression function in backpropa- 
gation net from the estimation of the projections. Thus it is potentially 
useful in reducing problems associated with overfitting, which are more 
pronounced in high-dimensional data. 

Some possible projection indices were discussed and a specific pro- 
jection index that is particularly useful for classification was presented 
in this context. This measure that emphasizes multimodality in the pro- 
jected distribution was found useful in several very high-dimensional 
problems. 

Acknowledgments 

I wish to thank Leon Cooper, Stu Geman, and Michael Perrone for many 
fruitful conversations and the referee for helpful comments. The speech 
experiments were performed using the computational facilities of the 
Cognitive Science Department at Brown University. Research was sup 
ported by the National Science Foundation, the Army Research Office, 
and the Office of Naval Research. 

References 

Barron, A. R. 1989. Statistical properties of artificial neural networks. In Proc. 
IEEE Conf. on Decision and Control, pp. 280-285. IEEE Press, New York. 

Barron, A. R., and Barron, R. L. 1988. Statistical learning networks: A unifying 
view. In Computing Science and Statistics: Proc. 20th Symp. Interface, E. Weg- 
man, ed., pp. 192-203. American Statistical Association, Washington, DC. 

Bichsel, M., and Seitz, P. 1989. Minimum class entropy: A maximum informa- 
tion approach to layered networks. Neural Networks 2,133-141. 

Bienenstock, E. L., Cooper, L. N., and Munro, P. W. 1982. Theory for the devel- 
opment of neuron selectivity: Orientation specificity and binocular interac- 
tion in visual cortex. 1. Neurosci. 2, 32-48. 

Bridle, J. S., and MacKay, D. J. C. 1992. Unsupervised classifiers, mutual infor- 
mation and ‘Phantom Targets’. In Advances in Neural Information Processing 



452 Nathan Intrator 

Systems, Vol. 4, J. Moody, S. Hanson, and R. Lippmann, eds., pp. 1096-1101. 
Morgan Kaufmann, San Mateo, CA. 

Carroll, S. M., and Dickinson, 8. W. 1989. Construction of neural net using the 
radon transform. In International Joint Conference on Neural Networks, Vol. 1, 
pp. 607-611. IEEE Press, New York. 

Clothiaux, E. E., Cooper, L. N., and Bear, M. E 1991. Synaptic plasticity in visual 
cortex: Comparison of theory with experiment. Journal of Neurophysiology 66, 
1785-1 804. 

Cybenko, G. 1989. Approximations by superpositions of a sigmoidal function. 
Mathematics of Control, Signals and Systems 2, 303-314. 

Diaconis, I?, and Freedman, D. 1984. Asymptotics of graphical projection pur- 
suit. Ann. Statist. 12, 793-815. 

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. 
Ann. Eugen. 7,179-188. 

Friedman, J. H. 1987. Exploratory projection pursuit. I. Am. Statist. Assoc. 82, 

Friedman, J. H., and Stuetzle, W. 1981. Projection pursuit regression. J .  Am. 
Statist. Assoc. 76, 817-823. 

Friedman, J. H., and Tukey, J. W. 1974. A projection pursuit algorithm for 
exploratory data analysis. I E E E  Transact. Computers C(23), 881-889. 

Funahashi, K. 1989. On the approximate realization of continuous mappings 
by neural networks. Neural Networks 2, 183-192. 

Geman, S., Bienenstock, E., and Doursat, R. 1992. Neural networks and the 
bias-variance dilemma. Neural Comp. 4, 1-58. 

Gutfinger, D. and Sklansky, J. 1991. Robust classifiers by mixed adaptation. 
I E E E  Transact. Pattern Anal. Machine Intelligence 13, 552-567. 

Hall, P. 1988. Estimating the direction in which data set is most interesting. 
Probab. Theory Rel. Fields 80, 51-78. 

Hall, P. 1989a. On polynomial-based projection indices for exploratory projec- 
tion pursuit. Ann. Statist. 17, 589-605. 

Hall, P. 1989b. On projection pursuit regression. Ann. Statist. 17, 573-588. 
Harman, H. H. 1967. Modern Factor Analysis, 2nd ed. University of Chicago 

Press, Chicago. 
Hecht-Nielsen, R. 1989. Theory of the backpropagation neural network. In 

International Joint Conference on Neural Networks, Vol. 1, pp. 593-606. IEEE 
Press, New York. 

Hornik, K. 1991. Approximation capabilities of multilayer feedforward net- 
works. Neural Networks 4,251-257. 

Hornik, K., Stinchombe, M., and White, H. 1989. Multilayer feedforward net- 
works are universal approximators. Neural Networks 2,359-366. 

Hornik, K., Stinchombe, M., and White, H. 1990. Universal approximation 
of an unknown mapping and its derivatives using multilayer feedforward 
networks. Neural Networks 3,551-560. 

Huber, P. J. 1985. Projection pursuit. (with discussion). Ann. Statist. 13,435-475. 
Intrator, N. 1990. Feature extraction using an unsupervised neural network. In 

Proceedings of the 1990 Connectionist Models Summer School, D. S.  Touretzky, 

249-266. 



Combining EPP and PPR 453 

J. L. Ellman, T. J. Sejnowski, and G. E. Hinton, eds., pp. 310-318. Morgan 
Kaufmann, San Mateo, CA. 

Intrator, N. 1992. Feature extraction using an unsupervised neural network. 
Neural Comp. 4, 98-107. 

Intrator, N., and Cooper, L. N. 1992. Objective function formulation of the 
BCM theory of visual cortical plasticity: Statistical connections, stability 
conditions. Neural Networks 5,3-17. 

Intrator, N., and Gold, J. I. 1992. Three-dimensional object recognition of gray 
level images: The usefulness of distinguishing features. Neural Comp. 5, 

Intrator, N., and Tajchman, G. 1991. Supervised and unsupervised feature ex- 
traction from a cochlear model for speech recognition. In Neural Networks 
for Signal Processing - Proceedings of the 2992 IEEE Workshop, B. H. Juang, 
S. Y. Kung, and C. A. Kamm, eds., pp. 460-469. IEEE Press, New York. 

Intrator, N., Gold, J. I., Biilthoff, H. H., and Edelman, S. 1991. Three-dimensional 
object recognition using an unsupervised neural network: Understanding 
the distinguishing features. In Proceedings of the 8th Israeli Conference on AICV, 
Y. Feldman and A. Bruckstein, eds., pp. 113-123. Elsevier, Amsterdam. 

Intrator, N., Reisfeld, D., and Yeshurun, Y. 1992. Face recognition using a hybrid 
supervised/unsupervised neural network. Preprint. 

Ito, Y. 1991. Representation of functions by superpositions of a step or sigmoid 
function and their applications to neural network theory. Neural Networks 4, 
385-394. 

Jones, M. C. and Sibson, R. 1987. What is projection pursuit? (with discussion). 
J. R. Statist. SOC. Set. A(150), 1-36. 

Kruskal, J. B. 1969. Toward a practical method which helps uncover the struc- 
ture of the set of multivariate observations by finding the linear transforma- 
tion which optimizes a new ‘index of condensation’. In Statistical Computa- 
tion, R. C. Milton and J. A. Nelder, eds. Academic Press, New York. 

Kruskal, J. 8. 1972. Linear transformation of multivariate data to reveal clus- 
tering. In Multidimensional Scaling: Theory and Application in the Behavioral 
Sciences, I ,  Theory, R. N. Shepard, A. K. Romney, and S. B. Nerlove, eds., 
pp. 179-191. Seminar Press, New York. 

Le Cun, Y. 1985. Une procedure d’apprentissage pour reseau B seuil assymet- 
rique. In Cognitiva 85: A la Frontiere de I’lntelligence Artificielle des Sciences de 
la Connaissance des Neurosciences, pp. 599-604, Paris. (Paris 19851, CESTA. 

Le Cun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., and 
Jackel, L. 1989. Backpropagation applied to handwritten zip code recogni- 
tion. Neural Comp. 1, 541-551. 

Le Cun, Y., Denker, J., and Solla, S. 1990. Optimal brain damage. In Advances in 
Neural Information Processing Systems, Vol. 2, D. Touretzky, ed., pp. 598-605. 
Morgan Kaufmann, San Mateo, CA. 

Lincoln, W. P., and Skrzypek, J. 1990. Synergy of clustering multiple back- 
propagation networks. In Advances in Neural Information Processing Systems, 
Vol. 2, D. S. Touretzky and R. P. Lippmann, eds., pp. 650-657. Morgan 
Kaufmann, San Mateo, CA. 

61-74. 



454 Nathan Intrator 

Lippmann, R. P. 1989. Review of neural networks for speech recognition. Neural 
Comp. 1(1), 1-38. 

Lyon, R. E 1982. A computational model of filtering, detection, and compression 
in the cochlea. In Proceedings l E E E  International Conference on Acoustics, Speech, 
and Signal Processing, Paris, France. 

Moody, J. E. 1991. Note on generalization, regularization and architecture selec- 
tion in nonlinear learning systems. In Neural Networks for Signal Processing- 
Proceedings of the 1991 IEEE Workshop, B. H. Juang, S. Y. Kung, and C. A. 
Kamm, eds., pp. 1-10. 

Mougeot, M., Azencott, R., and Angeniol, 8. 1991. Image compression with 
back propagation: Improvement of the visual restoration using different 
cost functions. Neural Networks 4, 467-476. 

Mozer, M. C., and Smolensky, P. 1989. Using relevance to reduce network size 
automatically. Connection Sci. Ul), 3-16. 

Nowlan, S. J. and Hinton, G. E. 1992. Simplifying neural networks by soft 
weight-sharing. Neural Comp. 4,473493. 

Pearlmutter, B. A., and Rosenfeld, R. 1991. Chaitin-Kolmogorov complexity 
and generalization in neural networks. In Advances in Neural lnfortnation 
Processing Systems, Vol. 3, R. P. Lippmann, J. E. Moody, and D. S. Touretzky, 
eds., pp. 925-931. Morgan Kaufmann, San Mateo, CA. 

Perrone, M. P., and Cooper, L. N. 1992. Improving network performance: Using 
averaging to construct hybrid networks. Proceedings of the CAlP Conference, 
Rutgers University, October. 

Plaut, D. C., Nowlan, S. J., and Hinton, G. E. 1986. Experiments on learning by 
back-propagation. Tech. Rep. CMU-CS-86-126, Carnegie-Mellon University. 

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 1986. Learning internal rep- 
resentations by error propagation. In Parallel Distributed Processing, Vol. 1, 
D. E. Rumelhart and J. L. McClelland, eds., pp. 318-362. MIT Press, Cam- 
bridge, MA. 

Sebestyen, G. 1962. Decision Making Processes in Pattern Recognition. Macmillan, 
New York. 

Slaney, M. 1988. Lyon’s cochlear model. Tech. Rep., Apple Corporate Library, 
Cupertino, CA 95014. 

Switzer, P. 1970. Numerical classification. In Geostatistics, V. Bamett, ed. Plenum 
Press, New York. 

Tajchman, G. N., and Intrator, N. 1992. Phonetic classification of TIMIT seg- 
ments preprocessed with Lyon’s cochlear model using a supervised/un- 
supervised hybrid neural network. In Proceedings International Conference on 
Spoken Language Processing, Banff, Alberta, Canada. 

Turk, M., and Pentland, A. 1991. Eigenfaces for recognition. J. Cog. Neurosc. 3, 
71-86. 

Wahba, G.  1990. Splines Models for Obsmational Data. Series in Applied Mathe- 
matics, Vol. 59. SIAM, Philadelphia. 

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. 1989. Phoneme 
recognition using time-delay neural networks. l E E E  Transact. ASSP 37,328- 
339. 

Weigend, A. S., Rumelhart, D. E., and Huberman, 8. A. 1991. Generalization 



Combining EPP and PPR 455 

by weight-elimination with application to forecasting. In Advances in Neu- 
ral lnforrnation Processing Systems, Vol. 3, R. I? Lippmann, J. E. Moody, and 
D. S. Touretzky, eds., pp. 875-882. Morgan Kaufmann, San Mateo, CA. 

Werbos, P. 1974. Beyond regression: New tools for prediction and analysis in 
the behavioral sciences. Ph.D. dissertation, Harvard University. 

White, H. 1990. Connectionists nonparametric regression: Multilayer feedfor- 
ward networks can learn arbitrary mappings. Neural Networks 3, 535-549. 

Yamac, M. 1969. Can we do better by combining 'supervised' and 'nonsuper- 
vised' machine learning for pattern analysis. Ph.D. dissertation, Brown Uni- 
versity. 

Received 26 June 1992; accepted 26 October 1992. 



This article has been cited by:

1. Shimon Edelman, Sharon Duvdevani-Bar. 1997. Similarity, Connectionism,
and the Problem of Representation in VisionSimilarity, Connectionism, and
the Problem of Representation in Vision. Neural Computation 9:4, 701-720.
[Abstract] [PDF] [PDF Plus]

2. Tin-Yau Kwok, Dit-Yan Yeung. 1997. Constructive algorithms for structure
learning in feedforward neural networks for regression problems. IEEE
Transactions on Neural Networks 8:3, 630-645. [CrossRef]

3. David J. Field . 1994. What Is the Goal of Sensory Coding?What Is the Goal
of Sensory Coding?. Neural Computation 6:4, 559-601. [Abstract] [PDF] [PDF
Plus]

http://dx.doi.org/10.1162/neco.1997.9.4.701
http://www.mitpressjournals.org/doi/pdf/10.1162/neco.1997.9.4.701
http://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1997.9.4.701
http://dx.doi.org/10.1109/72.572102
http://dx.doi.org/10.1162/neco.1994.6.4.559
http://www.mitpressjournals.org/doi/pdf/10.1162/neco.1994.6.4.559
http://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1994.6.4.559
http://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1994.6.4.559

