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Abstract� In this paper we approximate large sets of univariate data
by piecewise linear functions which interpolate subsets of the data� using
adaptive thinning strategies� Rather than minimize the global error at
each removal �AT��� we propose a much cheaper thinning strategy �AT��
which only minimizes errors locally� Interestingly� the two strategies are
equivalent in all our numerical tests and we prove this to be true for convex
data� We also compare with non�adaptive thinning strategies�

x�� Introduction
In applications such as visualization� it is often desirable to generate a hierar�
chy of coarser and coarser representations of a given discrete data set� Though
we are primarily interested in hierarchies of scattered data sets� and in par�
ticular piecewise linear approximations over triangulations in the plane ����
we focus in this paper on univariate data sets and propose several adaptive
thinning strategies� Thinning algorithms generate hierarchies of subsets by
removing points from the given data set one by one� in such a way that the
�least� signi�cant point is removed at each step� according to some desirable
criterion� Our criterion here will primarily be the minimization of approxi�
mation error� so our thinning algorithms are adaptive� This is in contrast� for
example� to the thinning strategies of �	�
�� where the criterion was to generate
subsets of well distributed points� independent of the height values�

Thinning algorithms for piecewise linear approximation to univariate data
have appeared before in the literature as decimation algorithms� as in Heckbert
and Garland ���� and as knot removal for linear splines� as in Lyche ����

In this paper� we design� test� and compare four methods for anticipating
the error incurred by the removal of a point from the current subset� Our
algorithms choose the point to be removed as the one of minimal anticipated
error� Our main conclusion is that the algorithm AT�� which is based on
making a local error estimate� but taking account of all previously removed
points� is the best algorithm from the point of view of our numerical results
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and theoretical analysis� In fact our theoretical analysis shows that its com�
putational complexity is ON logN�� with N the number of points in the
data set� provided one uses a heap to store the anticipated errors� Moreover�
we prove that for data sampled from a convex function� AT� minimizes the
global approximation error at every step� These latter two results extend to
piecewise linear functions over triangulations for scattered data in the plane�
see ����

x�� Adaptive Thinning

Suppose �a� b� is a real interval and that X � x�� � � � � xN � is a given sequence
of points in �a� b� such that

a � x� � x� � � � � � xN � b�

Suppose further that some unknown function f � �a� b� � IR is sampled at
these points� giving the values fx��� � � � � fxN ��

For each n� � � n � N � we are interested in �nding a subset Y �
y�� � � � � yn� of X� such that

a � x� � y� � y� � � � � � yn � xN � b� ��

and such that the piecewise linear interpolant Lf� Y � to the data

fy� fy�� � y � Y g

is close to the given data fx� fx�� � x � Xg� in the sense that the error

EY �X� f� � max
x�X

jLf� Y �x� � fx�j 	�

is small relative to the errors corresponding to other subsets ofX of cardinality
n� To guarantee that EY �X� f� is well de�ned� we refrain from removing the
points x�� xN � so that Lf� Y � is de�ned on �a� b��

Ideally� for any given n� � � n � N � we would like to �nd a subset Y
of X of cardinality n for which the error in 	� is minimal� However� it is
clearly impractical to search amongst all possible subsets� and this motivates
the more pragmatic approach of thinning�

The idea of thinning is to remove points from X one by one in order to
reach a subset Y of a certain size� In general we want to remove a point of
�least� signi�cance� Our criterion for removing a point from the current subset
is to minimize its anticipated error� which is an estimate of the error incurred
by the removal of the point with respect to some error measure� Thus the
thinning algorithm is a greedy algorithm� choosing the current step to do the
optimal step in the current situation�

We de�ne our thinning algorithm by saying that a point yi in Y � � � i �
n� is removable if

eyi� � min
j���������n��

eyj �� 
�
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where e�� is our chosen anticipated error�

Thinning Algorithm

�� Set XN � X�

	� For i � N�N � �� � � � � 
�

locate a removable point x in Xi and set Xi�� � Xi n x�
The result of the thinning algorithm is a hierarchical sequence of subsets of
X�

fa� bg � X� � X� � � � � � XN � X�

with jXij � i�

Now we consider various anticipated error measures e��� each of which de�nes
a removable point in 
�� and results in a di�erent algorithm� The algorithm
is termed Adaptive Thinning whenever the anticipated error depends on some
of the function values ffx� � x � Xg�
Algorithm AT�

In this algorithm the anticipated error of a point yi is the maximum of the
errors incurred by the removal of yi at all the points of X�

e�yi�Y � � EY n yi�X� f� � max
x�X

jLf� Y n yi�x� � fx�j� ��

Indeed� e�yi� is the actual error incurred by the removal of yi� measured in
the sup�norm over X�

Algorithm AT�

A less expensive to compute measure of anticipated error is

e�yi�Y � � e�yi���yi���� ��

where for any interval I whose endpoints IB belong to X� eI is de�ned as

eI � max
x�I�X

jLf� IB�x� � fx�j�

Note that here we consider only the error incurred by the removal of a point at
those points of X which belong to the current interval of the removed point�

Algorithm AT�

In this algorithm the anticipated error is similar to the one in AT�� but does
not depend on the points that are already removed� This anticipated error is
simpler to compute than the anticipated error of AT��

e�yi�Y � � jLf� fyi��� yi��g�yi�� fyi�j� ��
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Algorithm NAT

Here the removal of a point depends only on the density of the points Y � and
is independent of f � Thus it is a Non�Adaptive Thinning algorithm� In fact
e�� is such that the removal of points results in approximately equidistributed
sets of points Xi� for intermediate values of i�

e�yi�Y � � yi � yi���yi�� � yi�� ��

When the set Y is �xed we use also the notation ej y� � ejy�Y � for
j � �� �� 	� 
�

x�� Theoretical Aspects
In order to better understand univariate thinning� and in particular why AT�
is almost as good as AT�� we study the antipicated error used in AT��

Notice that for any i � f	� 
� � � � � n � �g� and x � �yi��� yi��� � X� the
error in the linear interpolation at yi��� yi�� is given by

Lf� fyi��� yi��g�x� � fx� � x� yi���yi�� � x�f �yi�� � x� yi����

where f �a� b� c� denotes the usual second order divided di�erence of the func�
tion f at the abscissae a� b� c� It follows that

e�yi� � max
x��yi���yi����X

x � yi���yi�� � x�
��f �yi��� x� yi���

���

For f a quadratic polynomial� this identity leads us to a relationship between
adaptive and non�adaptive thinning�

Proposition ���� If f is a quadratic polynomial� then the adaptive univari�
ate thinning algorithms AT� and AT� are non�adaptive� A point yi in Y is
removable if and only if

max
x��yi���yi����X

x� yi���yi���x� � min
��j�n

max
x��yj���yj����X

x� yj���yj���x�

��
in AT�� and

yi � yi���yi�� � yi� � min
��j�n

yj � yj���yj�� � yj � ��

in AT��

Proof� Since for any a� b� c � IR� the divided di�erence f �a� b� c� is a constant�
the anticipated errors �� and �� reduce� after a scaling� to

max
x��yi���yi����X

x � yi���yi�� � x��

and yi � yi���yi�� � yi� respectively�
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Note that AT	 reduces to NAT� in case f is a quadratic polynomial� The
criteria �� and �� clearly favour well distributed subsets of data� a data point
yi is likely to be removed if it is close to its neighbours� To see this in the
case of ��� we replace the discrete set X by the whole interval �a� b�� and the
dicrete antipicated error e�yi� becomes

eayi� � max
x��yi���yi���

jLf� fyi��� yi��g�x� � fx�j�

Thus� if f is a quadratic polynomial� then

eayi� �
�

�
yi�� � yi���

�jf ��j�

and yi is removable if and only if

yi�� � yi�� � min
��j�n

yj�� � yj����

This is the removal criterion of the non�adaptive Thinning Algorithm 
 of �
��
Next we give an explanation of why minimizing the anticipated error

e��� instead of the actual error e��� in the thinning algorithm AT� results
in a good algorithm� We do it by considering convex functions f � First we
establish a lemma�

Lemma ���� Suppose f is convex� and let Y be any subset of X of the form
���� Then for any i � f	� � � � � n � �g�

e�yi� � maxfe�yi�� EY �X� f�g� ���

Proof� Due to the convexity of f � we have

e�yi� � e�yi���yi��� � maxfe�yi�� �yi�� e�yi �yi���g�
and since

e�yi� � EY n yi�X� f� � maxfe�yi�� max
k�������n��
k ��i���i

e�yk �yk���g� ���

we �nd

e�yi� � maxfe�yi�� max
k�������n��

e�yk �yk���g � maxfe�yi�� EY �X� f�g�

Proposition ���� Suppose f is convex and let Y be any subset of X of the
form ���� Then for any i� j � f	� � � � � n� �g�

e�yi� � e�yj � �� e�yi� � e�yj �� �	�

Proof� From ���� we have

e�yi� � maxfe�yi�� EY �X� f�g � maxfe�yj �� EY �X� f�g � e�yj ��

Thus for convex data� the thinning algorithm AT� performs as AT�� We
show in the next example that there are arbitrary subsets of non�convex data
for which �	� does not hold�
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Example ���� ����� does not hold for non�convex data�� Let

X � x�� � � � � x�� � �� 	� 
� �� �� �� ���

and let the non�convex function f be the piecewise linear interpolant over X
satisfying fxi� � fi� where

f�� � � � � f�� � �� ����� �� �� �� ���

Consider the subset Y � X n x	� Then e�x
� � � and e�x�� � �� while
e�x
� � 
�	 and e�x�� � ��

Note however� that if the thinning algorithm AT� were applied to this
example� Y would not be the subset generated by the �rst removal as the
�rst point to be removed would be x
� We have not been able to construct
an example of a data set X and a non�convex function f where AT� acts
di�erently from AT� at any stage of the thinning algorithm� In the absence
of such an example� and since typical data sets are locally convex or concave
in large regions� i�e� there are relatively few in�ection points� we arrive at
the conclusion� supported by our numerical experiments� that AT� is a good�
computationally inexpensive thinning algorithm�

x�� Algorithmic Aspects

In this section� we discuss details concerning our implementation of the four
thinning algorithms AT�� AT�� AT	� and NAT� Moreover� we shall compute
their asymptotic complexity�

We �rst discuss AT	 and NAT� The interior points of the current set
Y are stored in a heap� according to the sizes of their anticipated errors�
e��� for AT	 and e��� for NAT� A heap is a binary tree which can be used
for the implementation of a priority queue� Each point y in the heap bears
its anticipated error as its signi�cance value� Due to the heap condition�
the signi�cance of a node is smaller than the signi�cances of its two children�
Therefore� the root of the heap contains a removable point� It is well�known ���
that each insertion� removal� or update of one node in the heap costs Ologn�
operations� where n is the number of nodes in the heap� In consequence�
building the initial heap costs ON logN� operations�

Now suppose Y is of the form ��� of size n� The number of points already
removed is N �n� We perform Step 	� of the thinning algorithm of Section 	
as follows�

�� Pop the root yi from the heap�

	� Compute eyi���Y n yi� and eyi���Y n yi� and update the heap�


� Let Y � Y n yi�
As regards the number of operations� Steps �� and 	� both require Ologn�
operations� while Step 
� requires O�� operations� Therefore� summing the
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costs of Steps �� to 
� for all n� we �nd that the total cost of the thinning
algorithms AT	 and NAT is ON logN��

Next we describe Step 	� of the thinning algorithm in Section 	 for AT��
which is somewhat more complicated than the previous ones� For this al�
gorithm� we store fe�y� � y � Y g in a heap where the root contains the
removable point for AT��

�� Pop the root yi from the heap�

	� Attach yi and the previously removed points attached to the intervals
�yi��� yi� and �yi� yi��� to the new interval �yi��� yi��� generated after
the removal of yi��


� Compute e�yi���Y n yi� and e�yi���Y n yi� and update the e��heap�

�� Let Y � Y n yi�
Thus� during the adaptive thinning algorithm AT�� each of the points already
removed is attached to an interval corresponding to the current subset� These
attachments facilitate the computation of the anticipated error of the neigh�
bouring points of yi in Y � whose anticipated errors in Y n yi di�er from their
anticipated errors in Y �

As regards the number of operations� Steps �� and �� are as in the previous
algorithm� Step 	� requires ON � n��n� operations under the additional
assumption that the number of points attached to an interval is of the order
of N � n��n� The computation of the anticipated error in step 
� is also
ON �n��n�� So altogether the total cost is ON logN�� just as for AT	 and
NAT� though with a higher constant�

The algorithm for AT� is a variant of the algorithm for AT�� but is
more complicated� Yet it can be organized so that the total cost remains
ON logN�� We now employ two heaps� the �rst of which is the e��heap we
used for AT�� The second heap� which we call the I�heap� consists of the
values fe�yi�yi���� i � �� 	� � � � � n� �g so that the root of the heap points to the
maximal element� Using the identity ���� it can easily be shown that there is
always a removable point amongst the three points yi� the root of the e��heap�
and yj and yj��� where �yj � yj��� is the root of the I�heap� Thus� it is only
necessary to compute e��� at these three points and take the minimum� and
using the two heaps� this can be achieved in just Ologn� operations� The
update of the e��heap after the removal requires Olog n� operations as in the
algorithm for AT�� and the update of the I�heap also requires just Ologn�
operations� Thus the thinning algorithm AT� requires ON logN� operations�
but with a larger constant than for AT��

x�� Numerical Examples

We have implemented the four thinning algorithms AT�� AT�� AT	� and NAT
corresponding to the error measures ��� ��� ��� �� in Section 	� In this
section we compare the performance of these algorithms in terms of their
approximation error and computational costs� For the purpose of illustration�
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Fig� �� Data sets sampled from f� �left� and f� �right��

we use the two test functions f�x� � x� and f�x� � x� sin	�x��� which we
sampled at a set X of ���� randomly chosen points in the unit interval �� ���
together with the two boundary points �� �� cf� Figure ��

We have computed all subsets Xn � X for n � N�N � �� � � � � 	� where
N � ���	� output by the four thinning algorithms� For each test case� we
have recorded both the resulting max error E�Xn� 	 EXn�X� f� and ��
error

E�
�Xn� 	 E�

�Xn�X� f� �
X

x�X

jLf�Xn�x� � fx�j��

For the test cases involving the quadratic function f�� we observe that the
four subsets Xn obtained by the four thinning algorithms have nearly equal
approximation errors� E�Xn� and E�Xn�� For n � 		� the resulting values
are displayed in Table � which also shows the required computational costs in
CPU time� Not surprisingly� the thinning method NAT is the fastest� followed
by AT	 and AT�� whereas AT� is the slowest� Table � also shows the mesh

ratio�

�fy�� � � �� yng� � min
��j�n

jyj�� � yj j� max
��j�n

jyj�� � yj j�

for each subset� From the values �X��� for the four subsets� we conclude
that these subsets are well distributed in ��� ��� Figure 	 shows the subset X��

selected by the methods AT�� AT� left� and AT	� NAT right��

Method E�X��� E�X��� �X��� CPU
AT� �����
��� ��������	 ����	� ����
AT� �����
��� ��������	 ����	� ����
AT	 �������
� ��������	 ������ ��	�
NAT �������
� ��������	 ������ ��	�

Tab� �� Thinning to �� points with f��
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Fig� �� The subsets X�� output by AT�� AT� �left� and AT�� NAT �right��
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As expected from the theoretical results of Section 
� we see in Table �
that AT� is identical with AT� since f� is convex� Also� AT	 and NAT are
identical since f� is a quadratic polynomial� Thus all four algorithms are
non�adaptive� and generate well distributed subsets�

Now let us turn to the test case involving the oscillating function f��
In contrast to the results for f�� we �nd that the three adaptive thinning
methods AT�� AT�� and AT	 are� especially for the selection of small subsets�
clearly superior to NAT in terms of approximation error� This is con�rmed
by Figure 
 showing the four graphs of E�Xn�X� f�� and E�Xn�X� f��� for
n � ���� ���� � � � � 		�

Observe from Figure 
 that the approximation behaviour of the three
methods AT�� AT�� and AT	 is quite similar� In fact� we found that for any
n the two subsets Xn output by AT� and AT� coincide� Taking a closer look
at the approximation errors of AT� and AT	� we see from Figure � that for
very large numbers of removed points� AT� is superior to AT	� in terms of
the error E�Xn�X� f��� The trade�o� is that AT� typically required about
��� more CPU time than AT	�
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Finally� we wish to demonstrate the utility of adaptive thinning for a
class of approximation methods other than piecewise linear interpolation� For
subsets Y generated by the thinning algorithms� we computed the least squares
approximation s���Y � S��Y satisfying

�����Y � �
X

x�X

js���Y x� � fx�j� � min
s�S��Y

X

x�X

jsx� � fx�j��

where S��Y � span f�j � �yj� � y � Y g denotes the linear space of all linear
combinations of Y �translates of the multiquadrics �r� �

p
c� � r�� c � � see

��� for more details�� This gives two additional criteria ����Y � and

����Y � � max
x�X

js���Y x� � fx�j�

for judging the quality of a subset Y of X� In order to show one concrete
example� we let c � ��	� n � 		� Table 	 re�ects the numerical results� and
Figure � show the two subsets Y � X�� selected by the method AT� left�
and NAT right� along with the graphs of their corresponding least squares
approximations s���Y �

Method E�X��� E�X��� ����X��� ����X���
AT� ������� ������	 ��������� ��������
NAT ������
 ������
 �������
� �����
�


Tab� �� Thinning to �� points with f��

Table 	 indicates that small subsets of X output by an adaptive thin�
ning algorithm can serve as good sets of centres for approximating the data
x� fx�� � x � X� by a sum of translates of � to the chosen centres� and that
these approximations are superior to the piecewise linear interpolants on these
subsets�
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Fig� �� Least squares approximation� AT� �left�� NAT �right��
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