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Image Compression by Linear Splines

over Adaptive Triangulations

Laurent Demaret, Nira Dyn, and Armin Iske

Abstract. This paper proposes a new method for image compression.
The method is based on the approximation of an image, regarded as a func-
tion, by a linear spline over an adapted triangulation, D(Y ), which is the
Delaunay triangulation of a small set Y of significant pixels. The linear
spline minimizes the distance to the image, measured by the mean square
error, among all linear splines over D(Y ). The significant pixels in Y are
selected by an adaptive thinning algorithm, which recursively removes less
significant pixels in a greedy way, using a sophisticated criterion for measur-
ing the significance of a pixel. The proposed compression method combines
the approximation scheme with a customized scattered data coding scheme.
We compare our compression method with JPEG2000 on two geometric
images and on three popular test cases of real images.

Zusammenfassung. Dieser Artikel stellt eine neue Methode zur Bild-
kompression vor. Diese Methode beinhaltet die Approximation eines gegebe-
nen Bildes, hier aufgefasst als eine Funktion über den diskreten Bildpunk-
ten, durch eine lineare Splinefunktion über einer adaptiven Triangulierung,
D(Y ), wobei D(Y ) die Delaunay-Triangulierung einer kleinen Teilmenge
Y signifikanter Bildpunkte bezeichnet. Diese lineare Splinefunktion mini-
miert dabei unter allen linearen Splinefunktionen über D(Y ) die Distanz zu
dem vorliegenden Bild, die durch die gemittelte Summe der Fehlerquadrate
gemessen wird. Die signifikanten Bildpunkte werden unter Verwendung eines
adaptiven Thinning-Algorithmus ausgewählt, der weniger signifikante Bild-
punkte aus der gegebenen Menge aller Bildpunkte rekursiv entfernt. Zum
Entfernen der Bildpunkte wird dabei ein geeignetes Bewertungskriterium
verwendet, mit dem Signifikanzen einzelner Bildpunkte gemessen werden
können. Die hier vorgestellte Kompressionsmethode kombiniert das ver-
wendete Approximationsschema mit einer passenden Kodierungsmethode
für unstrukturierte planare Punktmengen. Unsere Kompressionsmethode
wird schliesslich unter Verwendung von zwei geometrischen Testbeispielen
und drei populären realen Testbildern mit JPEG2000 verglichen.
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Résumé. Cet article propose une nouvelle méthode de compression
d’images. Cette méthode est basée sur l’approximation d’une image, vue
comme une fonction, par une fonction spline linéaire sur une triangulation
adaptée, D(Y ), qui est la triangulation de Delaunay d’un ensemble réduit Y
de pixels significatifs. Cette fonction spline linéaire minimise la distance à
l’image originale, mesurée par l’erreur quadratique moyenne, parmi la classe
de toutes les fonctions splines linéaires sur la triangulation D(Y ). Les pixels
significatifs de Y sont sélectionnés par un algorithme d’Adaptive Thinning,
qui élimine récursivement les pixels les moins significatifs. La suppression
de ces pixels est effectuée selon un critère mesurant la significativité rela-
tive de ce pixel. Le schéma de compression proposé combine la méthode
d’approximation précédente avec un codage adapté d’un ensemble de points
du plan non structurés. Finalement, nous comparons notre méthode de
compression avec le standard de compression JPEG2000 sur deux images
géométriques et trois images naturelles classiques.

1 Introduction

Many of the well-established methods for image compression, including
EBCOT [26, 27], are based on wavelets and related techniques [24, 25, 28],
see [6] for a survey on wavelet-based image coding. When working with a
dyadic wavelet decomposition [20], digital images are represented by wavelet
coefficients. This representation is a linear decomposition over a fixed or-
thogonal basis. The non-linearity in the approximation of images by wavelets
is introduced by the thresholding of the wavelet coefficients [4, 12]. This
type of approximation can be viewed as mildly nonlinear. Recently, several
highly nonlinear methods for capturing the geometry of images were devel-
oped, such as bandelets [19], curvelets [2], contourlets [13], wedgelets [14, 23],
surflets [3], as well as edge-adapted nonlinear multiresolution [18, 21] and
geometric spline approximation [7].

This paper proposes a conceptually new highly nonlinear image compres-
sion method. The image, viewed as a function, is approximated by a linear
spline over the Delaunay triangulation of a small adaptively chosen set of
significant pixels, such that these pixels capture the geometry of the image.
Since in general the significant pixels are scattered in the rectangular image
domain, their Delaunay triangulation is anisotropic. All linear splines over
this adaptive triangulation constitute a suitable approximation space for the
image, from which we take the best approximation to the image, minimizing
the mean square error. This linear spline is a continuous function, which
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can be evaluated at any point in the rectangular image domain, in particular
at the discrete set of pixels. Indeed, the compressed image is reconstructed
from this linear spline. Moreover, our specific representation of the image
(by a continuous function) allows us to display the reconstructed image on
any subset of the (continuous) image domain. This option is especially rel-
evant for applications such as zooming, rescaling and conversion between
different image representations.

The idea to approximate an image by first identifying significant pixels
is not new (see e.g. [16]). In this paper, we go further and obtain a com-
plete compression method. Our compression method combines an efficient
algorithm for the selection of a set of significant pixels, adaptive thinning,
with a customized scattered data coding scheme.

The utilized adaptive thinning algorithm recursively removes least sig-

nificant pixels from the image, one at a time. The selection of a good set of
significant pixels, i.e., whose corresponding linear spline over their Delaunay
triangulation approximates the image well, requires a suitable measure for
the significance of pixels. In our previous survey [10] a first prototype of an
image compression method, here referred to as AT−, was presented, where
some ideas from our earlier papers [8, 9] were included. For the prototype
AT− a suitable measure for a pixel significance, based on the error incurred
by the removal of one pixel, was developed and studied.

In this paper, the compression method AT− of [10] is substantially im-
proved. This is accomplished by a more sophisticated one-pixel removal
strategy and by an improved scattered data coding scheme, yielding a new
compression method, called AT∗, whose performance is considerably better
than that of AT−. More detailed arguments in favour of AT∗, when com-
pared with AT−, are provided later in this paper. Be it sufficient for the
moment to say that the new removal strategy of AT∗ uses, unlike AT−,
a significance measure which considers both significances of pixels and of
pixel pairs. Moreover, due to the improved coding scheme of this paper, the
compression method AT∗ is effective for both low and high bitrates, wheras
AT− is only effective for low bitrates.

The good performance of the compression method AT∗ is further sup-
ported by several comparisons between AT∗ and JPEG2000. The compar-
isons are performed at both low and high compression rates on five test
cases, including two geometric images and three popular real images.

The outline of the paper is as follows. In Section 2, the image approxima-
tion scheme is presented. This includes a discussion of our adaptive thinning
algorithm along with its basic ingredients. Then, in Section 3, we explain
the use of the approximation scheme for image compression, and we present
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the coding and decoding of the compressed image. Finally, in Section 4 we
compare the performance of AT∗ with those of AT− and JPEG2000.

2 Image Approximation

This section provides a detailed description of our image approximation
scheme. We introduce the adaptive thinning algorithm for the selection of
a set of significant pixels Y . This includes a discussion of its significance
measure and of linear splines over Delaunay triangulations. Moreover, we
describe the final step of the image approximation scheme, where we con-
struct the best approximation to the image, minimizing the mean square
error among all linear splines over the Delaunay triangulation of Y . Finally,
we show how to control the mean square error of the image approximation.

2.1 Image Representation

A digital image is a rectangular grid of pixels, where each pixel bears a
color value or a greyscale luminance. We restrict the following discussion
to greyscale images. The digital image can be viewed as an element I ∈
{0, 1, . . . , 2r − 1}X , where X is the set of pixels, and r is the number of
bits in the representation of the luminance values. In this paper, we regard
images as functions over the convex hull [X] of the set of pixels X, so that [X]
constitutes the rectangular image domain. Each pixel in X is corresponding
to a planar grid point, with integer coordinates, lying in [X].

2.2 Adaptive Thinning Algorithm

To obtain a set Xn of n significant pixels, our adaptive thinning algorithm
constructs a sequence of nested subsets of pixels

Xn ⊂ Xn+1 ⊂ · · · ⊂ XN−1 ⊂ XN = X, (1)

where the size |Xp| of any subset Xp in (1) is p, and so N = |X| is the
number of pixels in X.

The algorithm recursively removes one pixel from the current set of pixels
in a greedy way, which depends on the luminance values attached to the
pixels of the image. In each step, the removed pixel is a least significant

pixel in a sense to be discussed later in this section. Let us first formulate
our adaptive thinning algorithm.
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Algorithm 1 (Adaptive Thinning).

(1) Let XN = X;

(2) For k = 1, . . . , N − n

(2a) Find a least significant pixel x ∈ XN−k+1;

(2b) Let XN−k = XN−k+1 \ x.

In order to describe our specific thinning strategy, it remains to give a
definition for a least significant pixel in step (2a) above, or more generally,
what is called in the language of thinning algorithms to determine a removal

criterion [10]. This requires a further discussion of the image approximation
scheme used during the performance of Algorithm 1. For a subset Y = Xp

in (1), the approximation of the image is the linear spline over the Delaunay
triangulation D(Y ) of Y , which takes the value I(y) at y, for all y ∈ Y .

2.3 Delaunay Triangulations

In order to explain some relevant properties of Delaunay triangulations, let
Y denote a finite planar point set. First recall that a triangulation T (Y ) of
Y is a collection of triangles, whose vertex set is Y , whose union is [Y ], and
for which any pair of two distinct triangles in T (Y ) intersect at most at one
common vertex or along one common edge.

• A Delaunay triangulation D(Y ) of Y is a triangulation of Y , such
that for any triangle in D(Y ), the interior of its circumcircle does
not contain any point from Y . This property is termed the Delaunay

property.

• The Delaunay triangulation D(Y ) of Y is unique, provided that no
four points in Y are co-circular.

Since neither the set X of pixels nor its subsets satisfy this condition,
we initially perturb the pixel positions in order to guarantee unicity of
the Delaunay triangulations of X and of its subsets. Each perturbed
pixel corresponds to one unique unperturbed pixel. From now on, we
denote the set of perturbed pixels by X, and the set of unperturbed
pixels by X̃.

• For any y ∈ Y , D(Y \y) can be computed from D(Y ) by a local update.
This follows from the Delaunay property, which implies that only the
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cell C(y) of y in D(Y ) needs to be retriangulated. Recall that the
cell C(y) of y is the domain consisting of all triangles in D(Y ) which
contain y as a vertex. Figure 1 shows a vertex y ∈ D(Y ) and the
Delaunay triangulation of its cell C(y).

• D(Y ) provides a partitioning of the convex hull [Y ] of Y .

For further details on Delaunay triangulations, see the textbook [22].

y

(a) (b)

Figure 1: Removal of the vertex y ∈ D(Y ), and the Delaunay triangulation
of its cell C(y). The five triangles of the cell C(y) in (a) are replaced by the
three triangles in (b).

2.4 Linear Splines over Delaunay Triangulations

Let Π1 denote the space of linear bivariate polynomials. For any Y ⊂ X, we
define the linear spline space SY , containing all continuous functions over
[Y ], whose restriction to any triangle T ∈ D(Y ) is in Π1, namely

SY =
{

s : s ∈ C([Y ]), s
∣

∣

T
∈ Π1 for all T ∈ D(Y )

}

.

Any element in SY is referred to as a linear spline over D(Y ). For given
luminance values at the pixels of Y , {I(y) : y ∈ Y }, there is a unique linear
spline interpolant L(Y, I) ∈ SY satisfying

L(Y, I)(y) = I(y), for all y ∈ Y.

For a fixed subset Y ⊂ X, we can take SY as an approximation space
for the image I, defined over the domain [X], provided that the convex hull
[Y ] of Y coincides with [X]. Therefore, the initial perturbation of the pixels
is such that the four corners of X̃ are unperturbed, and the other boundary
pixels in X̃ are perturbed along the boundaries. Moreover, Y is required to
contain the four corner pixels of X̃.
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2.5 Significance Measures

The quality of image compression schemes is usually measured in dB (deci-
bels) by the Peak Signal to Noise Ratio,

PSNR = 10 ∗ log10

(

2r × 2r

η̄2(Y, X)

)

.

The PSNR is equivalent to the reciprocal of the mean square error (MSE),

η̄2(Y, X) = η2(Y, X)/|X|, (2)

where

η(Y, X) =

√

∑

x∈X

|L(Y, I)(x) − I(x)|2.

Therefore, to approximate the image, we wish to construct a subset Y ⊂ X,
such that the approximation error η(Y, X) is small.

The construction of a suitable such subset Y ⊂ X is accomplished by
Algorithm 1, with an appropriate definition for a least significant pixel. The
most natural notion of a least significant pixel is given by the following
definition.

Definition 1 For Y ⊂ X, a pixel y∗ ∈ Y is said to be least significant in

Y , iff

η(y∗) = min
y∈Y

η(y),

where for any y ∈ Y ,

η(y) = η(Y \ y, X)

is the significance of the pixel y in Y .

In a previous paper [10], we have already used the above definition for
pixel removal. In this paper, we also consider least significant pixel pairs.

Definition 2 For Y ⊂ X, a pair {y∗1, y
∗
2} ⊂ Y of two pixels in Y is said to

be least significant in Y , iff

η(y∗1, y
∗
2) = min

{y1,y2}⊂Y
η(y1, y2),

where for any pixel pair {y1, y2} ⊂ Y , we denote by

η(y1, y2) = η(Y \ {y1, y2}, X),

its significance in Y .
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As supported by our comparisons in Section 4, the following significance
measure improves the pixel removal criterion of [10] considerably.

Definition 3 For Y ⊂ X, a pixel y∗ ∈ Y is said to be least significant in Y ,

iff it belongs to a least significant pixel pair in Y , {y∗, y} ⊂ Y , and satisfies

η(y∗) ≤ η(y).

2.6 Equivalent Significance Measures

We introduce significance measures eδ, equivalent to the significance mea-
sures η, in order to reduce the computational costs of Algorithm 1. To this
end, we establish a useful relation between the significance measure for a
pixel y ∈ Y ,

eδ(y) = η2(y) − η2(Y, X),

and the significance measure for a pixel pair {y1, y2} ⊂ Y ,

eδ(y1, y2) = η2(y1, y2) − η2(Y, X).

Any pixel pair {y1, y2} ⊂ Y is either an edge of D(Y ), [y1, y2] ∈ D(Y ),
or the two pixels y1, y2 are not connected in D(Y ). In the latter case, the
two cells C(y1) and C(y2) have no common triangle. Therefore, we have

η2(y2) − η2(Y, X) = η2(y1, y2) − η2(y1),

which implies

eδ(y1, y2) = η2(y1, y2) − η2(Y, X)

= η2(y1, y2) − η2(y1) + η2(y1) − η2(Y, X)

= η2(y2) − η2(Y, X) + η2(y1) − η2(Y, X).

This shows that for any pixel pair {y1, y2} ⊂ Y , with [y1, y2] /∈ D(Y ),

eδ(y1, y2) = eδ(y1) + eδ(y2). (3)

Due to the simple representation (3), the maintenance of the signifi-
cances {eδ(y1, y2) : {y1, y2} ⊂ Y } can be reduced to the maintenance of
{eδ(y1, y2) : [y1, y2] ∈ D(Y )} and {eδ(y) : y ∈ Y }.

Indeed, for the efficient implementation of Algorithm 1, we use two dif-
ferent priority queues, one for the significances eδ of pixels, and one for the
significances eδ of edges in D(Y ). Each priority queue has a least significant
element (pixel or pixel pair) at its head, and is updated after each pixel re-
moval. The resulting algorithm has complexity O(N log N) [15]. For more
details concerning the efficient maintenance of such priority queues, we refer
to our paper [15].
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2.7 Minimization of the Mean Square Error in SY

In a post-processing to adaptive thinning, we further reduce the mean square
error (2) by least squares approximation [1]. More precisely, we compute
from the set Y ⊂ X of significant pixels, output by Algorithm 1, and
from the luminance values at the pixels in X the unique best approxima-

tion L∗(Y, I) ∈ SY satisfying

∑

x∈X

|L∗(Y, I)(x) − I(x)|2 = min
s∈SY

∑

x∈X

|s(x) − I(x)|2.

Such a best approximation exists and is unique, since SY is a finite dimen-
sional linear space and since Y ⊂ X.

The final approximation to the image I is the linear spline L∗(Y, I) ∈ SY ,
determined by the set Y and the corresponding optimal luminances I∗(y) =
L∗(Y, I)(y), y ∈ Y .

We remark that the computational costs required for computing L∗(Y, I)
by least squares approximation is, in relation to the total complexity of our
compression method AT∗, negligible, especially since |Y | is assumed to be
small. For numerical methods for least squares approximation and their
computational complexity, we refer to the textbook [1].

2.8 Controlling the Mean Square Error

The image approximation scheme allows us to control the MSE (2) corre-
sponding to the image approximation. This can be done during the perfor-
mance of Algorithm 1 as follows.

For a given MSE value, η̄∗, Algorithm 1 can be changed in order to ter-
minate when for the first time, the MSE value corresponding to the current
linear spline L(Xp, I) is above η̄∗, for some Xp in (1) (in this version of
Algorithm 1, n = p a posteriori). We take as the final approximation to the
image the linear spline L∗(Xp+1, I). Observe that L∗(Xp+1, I) satisfies

∑

x∈X

|L∗(Xp+1, I)(x) − I(x)|2
/

|Xp+1| ≤ η̄∗,

as desired.

3 Image Compression

Our compression method replaces an image by its linear spline approxima-
tion L∗(Y, I), corresponding to a set of significant pixels Y . The number of
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parameters, which determine the linear spline approximation, depends on
the number |Y | of significant pixels.

To code the approximated image, given by L∗(Y, I), we code the infor-
mation {(ỹ, I∗(y)) : y ∈ Y }, where ỹ denotes the unperturbed integer pixel
corresponding to y. For this purpose, we have developed a customized scat-
tered data coding scheme, which improves the one in our papers [8, 9]. We
remark that the coding scheme of this paper is similar to the one in [11],
but there are some subtle differences concerning effective coding of uncon-

nected scattered data. Indeed, the coding scheme in [11] is primarily aiming
at mesh compression, whereas the coding scheme of this paper is concerned
with the compression of a Delaunay triangulation of scattered planar points,
the latter being a task which requires coding the points only, but not their
connectivities. This important detail, as well as other main ingredients of
our coding scheme and further differences to the coding scheme in [11], is
explained in the remainder of this section.

3.1 Theoretical Coding Costs

To code the information {(ỹ, I∗(y)) : y ∈ Y }, we first apply a uniform quan-
tization to the optimal luminances {I∗(y) : y ∈ Y }. This yields quantized
symbols {Q(I∗(y)) : y ∈ Y }, corresponding to quantized luminance values
{Ĩ(y) : y ∈ Y }, where, for some s < r, we use {0, 1, . . . , 2s − 1} for the
range of the quantized symbols.

Note that due to the uniqueness of the Delaunay triangulation D(Y ), we
do not need to code any connectivity information. We are only concerned
with the coding of the elements of the set {(ỹ, Q(I∗(y))) : y ∈ Y } ∈ Is

n,
where

Is
n =

{

{0, 1, . . . , 2s − 1}Z̃ : Z̃ ⊂ X̃ and |Z̃| = n
}

,

with n = |Y |.
The number of elements in Is

n is
(

|X|
n

)

× 2s×n. If we assume that every
element of Is

n has the same probability of occurrence, then the theoretical
coding cost is

log2

((

|X|

n

))

+ s × n. (4)

This cost can be reduced by taking advantage of the geometric structure of
the image. Indeed, the coding scheme of our compression method leads to
lower costs for real images, as is observed in Table 1.
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3.2 Scattered Data Coding Scheme

Our coding scheme comprises two consecutive steps: the coding of the scat-
tered integer pixels in Ỹ = {ỹ : y ∈ Y }, followed by the coding of the
quantized symbols QY = {Q(I∗(y)) : y ∈ Y }.

Let us first explain the coding of the pixels in Ỹ . This relies on a recursive
splitting of the pixel domain Ω = [X̃]. For the sake of simplicity, let us
assume that Ω is a square domain of the form Ω = [0, 2q − 1] × [0, 2q − 1].

A square subdomain ω ⊂ Ω (initially ω = Ω) is split horizontally into
two rectangular subdomains of equal size. A rectangular subdomain is split
vertically into two square subdomains of equal size. The splitting terminates
at subdomains which are either empty, i.e., not containing any pixel from
Ỹ , or atomic, i.e., of size 1 × 1.

This splitting process can be represented by a binary tree, whose nodes
correspond to the subdomains. The root of the tree corresponds to Ω, and
its leaves correspond to empty or atomic subdomains.

In each node of the tree, with a corresponding subdomain ω, we store the
number |ω| of pixels from Ỹ contained in ω, i.e., |ω| = |Ỹ ∩ω|. Note that for
a parent node ω, and its two children nodes, ω1 and ω2, we have the relation
|ω| = |ω1|+ |ω2|. This relation allows a non-redundant representation of the
binary tree. To be more precise, the bitstream representing the binary tree
contains for each split the size of only one child, say ω1. The size of the
other child, ω2, is given by |ω2| = |ω| − |ω1|.

At each split, |ω1| is coded by using a Huffmann code, which takes non-

uniform probability distributions of |ω1| conditionally to |ω| into account.
This is in contrast to [11], where a uniform conditional probability distribu-
tion is assumed. The latter often tends to overestimate correlations between
neighbouring points. Loosely speaking, our coding scheme is in this sense
closer to an optimal probability distribution.

Now let us turn to the coding of the quantized symbols in QY . We
first split the image domain Ω into a small number of square subdomains
of equal size. For each subdomain, the pixels from Ỹ contained in it are
ordered linearly, such that close pixels in the image domain are close in this
ordering.

The quantized symbol of any pixel in this ordering is coded relative to
the quantized symbol of its predecessor, except for that of the first pixel.
The coding is done by a Huffman code.

In Table 1, the observed coding costs obtained by using our method are
compared with the theoretical coding costs in (4). Observe that the ratio
between the cost of our coding scheme and the theoretical cost in (4) is
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Case Coding costs (in bits)

(see Figure 4) n = 7, 200 n = 15, 000 n = 30, 000

Theoretical (4) 83,576 157,911 284,515
Fruits 77,280 139,864 241,584
Peppers 78,168 141,800 243,576
Lena 77,136 139,136 237,880

Table 1: Coding costs for s = 5.

decreasing with increasing n. This is due to a higher correlation between
luminance values at significant pixels for larger sets Y .

3.3 Reconstruction at the Decoder

At the decoder, the reconstruction of the compressed image from the infor-
mation {(ỹ, Q(I∗(y))) : y ∈ Y } is accomplished by four steps.

• The set {ỹ : y ∈ Y } is perturbed by the same perturbation rules used
at the encoder to yield the set of perturbed pixels Y .

• The unique Delaunay triangulation D(Y ) of Y is computed.

• The unique linear spline L(Y, Ĩ) ∈ SY satisfying

L(Y, Ĩ)(y) = Ĩ(y), for all y ∈ Y,

is constructed from the quantized luminance values {Ĩ(y) : y ∈ Y }.

• The reconstructed image is given by

Ĩ = {(x̃, L(Y, Ĩ)(x̃)) : x̃ ∈ X̃}.

4 Comparison with JPEG2000

We compare the performance of our compression method AT∗ with that
of the powerful method EBCOT [26], which is the basic algorithm in the
standard JPEG2000 [27], using the Kakadu implementation.

In the test examples below, we let s = 5, and so the range for the
quantized symbols is {0, 1, . . . , 31}. In each comparison, the compression
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rate, measured in bits per pixel (bpp), is fixed. The quality of the resulting
reconstructions is measured by their PSNR values, and for a small set of
comparisons it is further evaluated by their visual quality. We provide rate-
distortion curves for comparing the performance of the two methods on three
real images.

4.1 Geometric Images

We first consider two artificial test images, Chessboard and Reflex, each of
small size 128 × 128. These test images are displayed in Figures 2 and 3.

The purpose of the comparisons with these two test images is two-fold.
Firstly, we indicate why the compression method of this paper, AT∗, is
superior to that of [10], here referred to as AT−. Secondly, we show the
good performance of AT∗ on texture-free images with sharp edges.

A comparison between JPEG2000, AT∗ and AT− is done on the test
image Chessboard. In this example, 299 significant pixels were selected by
AT∗ and AT−. The compression method AT∗ selects an optimal subset Y
of 299 most significant pixels, so that L(Y, I)(x) = I(x) for all x ∈ X. In
consequence, the corresponding mean square error (2) is zero, but due to
the quantization of the luminance values, the mean square error of the com-
pressed image Ĩ is slightly increased, yielding a PSNR of 45.15 dB. The al-
most exact reconstruction provided by AT∗ is shown in Figure 2. JPEG2000
leads to an inferior PSNR of only 18.68 dB, and our previous method AT−

leads to a PSNR of 15.24 dB. Moreover, the visual quality of the result-
ing reconstructions by JPEG2000 and AT− is rather poor, as depicted in
Figure 2.

We can explain the superiority of AT∗ over AT− in this case by com-
paring their removal strategies. AT∗ allows the removal of a pixel from an
edge [y1, y2] ∈ D(Y ), whose corresponding significance eδ(y1, y2) is small,
even if the significances eδ(y1) and eδ(y2) are large. This is typically the
case for pixel pairs {y1, y2} whose corresponding edge [y1, y2] crosses the
boundary between two squares of the chessboard in nearly perpendicular
direction, away from the corners. In this case, AT∗ removes a pixel, either
y1 or y2, from the edge [y1, y2] ∈ D(Y ), whereas AT− is too short-sighted to
make such removals, and keeps both y1 and y2, but removes pixels near the
corners of the chessboard squares. In contrast, AT∗ keeps the pixels near
such corners.
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Chessboard: 128 × 128 JPEG2000: 0.23 bpp, 18.68 dB

AT
−: 0.23 bpp, 15.24 dB AT

∗: 0.23 bpp, 45.15 dB

AT
−: Adaptive Delaunay triangulation AT

∗: Adaptive Delaunay triangulation

Figure 2: Geometric test image Chessboard.
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Reflex: 128 × 128 JPEG2000: 0.251 bpp, 28.74 dB

AT
∗: 0.251 bpp, 42.86 dB AT

∗: Adaptive Delaunay triangulation

Figure 3: Geometric test image Reflex.

We remark that the compression method AT∗ of this paper shows a much
better performance than our previous compression method AT− of [10] for
all test images which were ever considered in our comparisons, in particu-
lar for all test images presented in this paper, see the results in Table 2.
Therefore, for the following test cases, we prefer to focus on the comparison
between our improved compression method AT∗ and JPEG2000.

For the other geometric test image, Reflex, we fix the compression rate
to 0.251 bpp. The resulting reconstructions by JPEG2000 and AT∗ are dis-
played in Figure 3. AT∗ yields the PSNR value 42.86 dB, whereas JPEG2000
provides the inferior PSNR value 28.74 dB. Hence, with respect to this qual-
ity measure, AT∗ is much better. Moreover, the reconstruction by AT∗

provides a superior visual quality to that of the reconstructed image by
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JPEG2000 (see Figure 3). Indeed, AT∗ manages to localize the sharp edges
of the test image Reflex. Moreover, it avoids undesired oscillations near the
edges, unlike JPEG2000.

The fact that AT∗ outperforms JPEG2000 on the test images Chess-
board and Reflex at low bit rates is not too surprising, insofar as AT∗ was
particularly designed to capture geometric feature lines. But a somewhat
fairer comparison between AT∗ and JPEG2000 is presented in the following
subsection, where three popular real images are used. We have recorded the
results of the two geometric examples of this subsection, along with those
of four comparisons on the three real images in Table 2.

PSNR (in dB)

Test Case bitrate (bpp) JPEG2000 AT− AT∗ |Y |

Chessboard 0.230 18.68 15.24 45.15 299
Reflex 0.251 28.74 41.94 42.86 384
Fruits 0.180 31.88 31.83 32.38 4,044

0.500 36.44 35.81 36.23 13,800
Peppers 0.154 31.94 31.78 32.33 3,244
Lena 0.150 32.04 30.95 31.48 3,244

Table 2: Comparison between JPEG2000, AT−, and AT∗.

4.2 Popular Real Images

We consider three popular real images of size 512 × 512. The first image,
called Fruits, is a part of the standard test case Bike, used in [27]. The
two other images are the standard test cases Peppers and Lena. The three
images are displayed in Figure 4.

For each image, we compare the PSNR values provided by the two com-
pression methods at various bitrates. These comparisons are summarized
by the rate-distortion curves in Figure 4. Moreover, the results of four com-
parisons are shown in Table 2, and the corresponding reconstructions in
Figures 5 and 6, together with the adaptive Delaunay triangulations output
by AT∗.

From the rate-distortion curves in Figure 4 and from Table 2 we conclude
that for the images Fruits and Peppers the PSNR values obtained by AT∗

are slightly larger than those obtained by JPEG2000 at low bitrates, and
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are slightly smaller at higher bitrates. For the image Lena the PSNR values
obtained by AT∗ are slightly smaller than those obtained by JPEG2000
at low bitrates, with the difference between the PSNR values growing with
increasing bitrate.

The comparisons in Figures 5 and 6 exhibit visual differences between
the compressed images output by the two methods. Observe that AT∗ man-
ages to denoise the test images quite successfully and to capture important
features of the images, such as sharp edges and silhouettes. This is because
the Delaunay triangulations, output by AT∗, are well-adapted to the ge-
ometry of the images (see Figures 5 and 6). This, however, leads to higher
coding costs in textured regions of the images, which partly explains the
inferior performance of AT∗ (in comparison with JPEG2000) for the test
image Lena.

Our final conclusion is that the compression method AT∗ recovers the
image geometry very well, and it provides a fairly good alternative to existing
standard methods, including JPEG2000, especially for texture-free images
with distinctive geometric features.
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Figure 4: Images Fruits, Peppers, and Lena with rate-distortion curves for
AT∗ and JPEG2000.
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JPEG2000: 0.18 bpp, 31.88 dB JPEG2000: 0.5 bpp, 36.44 dB

AT
∗: 0.18 bpp, 32.38 dB AT

∗: 0.5 bpp, 36.23 dB

AT
∗: Adaptive Delaunay triangulation AT

∗: Adaptive Delaunay triangulation

Figure 5: Comparisons with Fruits (low and high bitrate).
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JPEG2000: 0.154 bpp, 31.94 dB JPEG2000: 0.15 bpp, 32.04 dB

AT
∗: 0.154 bpp, 32.33 dB AT

∗: 0.15 bpp, 31.48 dB

AT
∗: Adaptive Delaunay triangulation AT

∗: Adaptive Delaunay triangulation

Figure 6: Comparisons with Peppers and Lena (low bitrate).
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