Spline Subdivision Schemes for Convex Compact Sets
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The application of spline subdivision schemes to data consisting of convex compact sets,
with addition replaced by Minkowski sums of sets, is investigated. These methods generate
in the limit set-valued functions, which can be expressed explicitly in terms of linear com-
binations of integer shifts of B-splines with the initial data as coefficients. The subdivision
techniques are used to conclude that these limit set-valued spline functions have shape pre-
serving properties similar to those of the usual spline functions. This extension of subdivision
methods from the scalar setting to the set-valued case has application in the approximate
reconstruction of 3-D bodies from finite collections of their parallel cross-sections.
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1 Introduction

Subdivision schemes are recursive methods for the generation of smooth functions from
discrete data. By these methods at each recursion step, new discrete values on a finer grid
are computed by weighted sums of the already existing discrete values. In the limit of the
recursive process, data is defined on a dense set of points. Considering this data as function
values, under certain conditions, a limit continuous function is defined by this process. The
theory of subdivision processes is presented in e.g. [4], [6].

In this work we apply a class of subdivision methods with positive weights to data
consisting of convex compact sets, replacing the addition by Minkowski sums of sets, and
obtain in the limit set-valued functions.

This extension of subdivision methods from the scalar setting to the set-valued case has
application in the approximate reconstruction of 3-D bodies from finite collections of their
parallel cross-sections.

The class of subdivision methods considered here consists of methods which generate
spline functions in the scalar setting. These methods have shape preserving properties and
approximation properties in the set-valued case, similar to those in the scalar case.

The proof of the shape preserving properties of the limit set-valued functions relies on
the subdivision technique. Yet the limit multifunction (set-valued function) has a simple
explicit form in terms of the initial sets and integer shifts of B-splines, and there is no need to
compute it recursively. This explicit form also yields the smoothness and the approximation
properties of the limit set-valued function.

Among the spline subdivision schemes, there is a scheme which generates in the limit
piecewise linear interpolants to the given data of sets. In [11] piecewise linear approximation
to convex set-valued functions is studied. This approximation consists of a piecewiswe linear
interpolant to samples of a multifunction, with addition replaced by Minikowski sums. Thus,
one can regard the present paper as an extension of [11].



The mathematical tools used for analysing set-valued functions include the support func-
tion technique for describing convex compact sets (see e.g. [10]) and methods of embedding
the cone of convex compact subsets of R™ in a linear normed space, with addition defined as
the Minkowski sum of sets ([2], [7], [8], [9]). In any such linear normed space, we introduce a
partial order generated by the set inclusion order in the cone of convex compact sets. Thus
a multifunction with convex compact images from R to R™ is considered as an abstract func-
tion with values in a partially ordered normed linear space. Monotonicity and convexity of
such abstract functions are easily expressed by the positivity of their first and second finite
differences.

The paper is organised as follows. In section 2 basic facts about convex compact sets,
their support functions and their embedding in a normed linear space with a partial order, are
presented. Section 3 presents a simple example of a shape-preserving set-valued subdivision
scheme. The main results about spline subdivision methods applied to convex compact sets
are derived in Section 4. The explicit form of the limit multivalued spline function is obtained
together with its approximation and shape-preserving properties.

2 Preliminaries

Denote by C(R™) the cone of nonempty convex compact subsets of R™. Recall the definitions
of Minkowski sum and multiplication by scalars of sets 4, B € C(R") :

A+B={a+blacA be B}, A= {da|a€ A}

Since the technique of support functions is central to this text, we recall the definition and
the basic properties of these functions (see e.g. [7], [10]). For a set A € C(R"™) its support
function §*(A4,-) : R® — R is defined as follows:

§*(A,l) = max(l,a), 1 €R",

acA

where (-, ) is the Euclidean inner product. Note that for any fixed [ € R*, §*(A4,1) is finite.
The following properties of §* are well known ([10]):

1°. §(A4, Al) = M*(A,1), A>0.
20 §*(A, L + 1) < 6*(A4, 1) + (A, L).

3°. 8*(A4,-) is Lipschitz continuous. with a constant |[|A| = maj{HaH, where || - || is the

Euclidean norm, namely |§*(A4,1;) — 6*(A, )| < ||A||||li — L]|, for l;,1, € R™

4°. A scalar function 6* : R™ — R is a support function of a convex compact set iff it
satisfies 1°,2° (see e.g. [10], Theorem 13.2 and its corollaries).

5°. §*(A+ B,-) = §*(4,-) + §*(B, ).
6°. 8*(AA,-) = Ad*(4,:), A >0,
7. AC B < (A1) <é*(B,l) for each I € R™
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8°. The Hausdorff distance between two sets A, B € C(R™) is given, in terms of the support
functions of these two sets, by

haus(A, B) = max |§*(4,1) — 6*(B,1)],

lESn 1

where 5,,_; is the unit sphere in R™

Note that by 1° and 2°, §*(A,-) is positively homogeneous and convex. Also, functions
satisfying 1°, 2° are called sublinear. As we noted in 3°, (see e.g. [10]), sublinear functions
defined on all R™ are Lipschitz continuous. The next proposition will be used in what follows.

Proposition 2.1 Let A;, A3, By, By € C(R™) and A; O B;. Then the equality A; + By =
Ag + Bl zmplzes Ag 2 Bz.

Proof: The proof follows from properties 5°, 7°.
Al + By = Az + B; <— 5*(141, ) + 5*(32, ) = 5*(142, ) + 5*(31, )

From A; O B follows 6*(A1,-) > §*(By,-). This, combined with the above equality implies
8%(Ba,-) < 6*(As,-) = By C A,. n

There are various ways to construct a linear normed vector space D(R") relative to
the Minkowski sum, in which the cone C(R") is embedded by an embedding J : C(R") —
D(R™) with the following properties(see e.g. [7], [9], [8]):

(i
(i
(i
(i

These properties imply J({0}) = 6, where 8 is the zero element of D(R").
A simple embedding is J(A) = 6*(A,). It is easy to check , using the above stated
properties of support functions, that this embedding has the required four properties.
Having an embedding of the cone C(R") into a linear normed vector space D(R™), we can
introduce a partial order in D(R") and therefore in C(R™). For that, we define the following
cone in D(R™):

) J(A+ B) = J(A) + J(B).
) J(AA) = AJ(A), A>0.
i) J(A)=J(B) < A=B.
v)

17(A) = J(B)|| = haus(4, B).

K ={C e DR")| C =J(A) - J(B), A,BEC(R"), AD B} (1)
The cone K determines the following partial order in D(R") :
For A,B € D(R") A<B < B-Ack. (2)
Remark 2.1 Here are some observations regarding the partial order introduced above:

1. By (i) and (ii) K is a convez cone.



2. Note that (1) does not depend on the choice of the sets A and B in the following sense:
if C = J(A1) — J(B1) = J(A42) — J(B2), where A; O By, then by (i) and (i1) we get
Ay + By = Ay + B; and by Proposition 2.1 Ay O B,.

3. By the previous observation, the order defined in D(R™) by (2) induces the regular
inclusion order in C(R™), namely for A, B € C(R")

ACB < J(A) < J(B).
Thus we denote for A,B € C(R") A< B iff AC B.

4. Our definition of the positive cone K in D(R™) coincides with the positive cone in some
concrete linear spaces in which C(R™) is embedded, like the space of the pairs of convex
compact sets and the space of differences of support functions (see e.g. [8]).

Remark 2.2 It follows from the facts that K is a cone and D(R"™) is a linear space that for
A<B

(a) —A>—-B,
(b)) A+ C < B+C forevery C € D(R"),
(c) If C < D, then aA+BC <aB+pD for a,f>0.

The previous remark justifies the notions of positive and negative elements of D(R™). The
element A € D(R™) is called nonnegative when § < A, ieAc K. If A> 6§, A # 0, then
A is called positive. The element B € D(R™) is called nonpositive if —B is nonnegative
and B is negative when — B is positive.

We will call a convex compact set A nonnegative when J(A) > 6,i.e. 0 € A. A is positive
iff 0 € Aand A +# {0}.

We are interested in this work in set-valued mappings from R to C(R™) (called also
multimaps or multifunctions), and in particular in multimaps of the form

F(t) = > Aifit), (3)
where 4; € C(R"), f; : R— R, fi(t) > 0for all t € R. Let S be the cone of maps of the
form (3). We say that F € Sis C*ifin (3) fic C*fori=1,...,N.

Definition 2.1 A mapping F : R — D(R") is called
(A) monotone increasing if t; < ty implies F(t1) < F(t2) (i.e. F(t2) — F(t1) € K).
(B) monotone decreasing if F'(—t) is monotone increasing.

(C) convex if

F(at; + (1 — a)ty) > aF(t1) + (1 — a)F(t2) for each a € [0,1], ti,ta € R. (4)



(D) concave if F(—t) is convez.

Definition 2.2 Define for a given function F : R — D(R"™) the k-th forward finite difference
at the point t with a step h > 0

ARF(t) =Y (1) (’;) F(t+ jh).

=0

For a sequence {F;}; we define

(A ) = (1) (£)

=0

In case A'F is nonnegative for all t,h > 0 (i), the function (sequence) is monotone increa-
sing. If A®F is nonpositive for all t,h > 0 (i), the function (sequence) is called convez.

Remark 2.3 For the sake of simplicity we sometimes identify the set A € C(R™) with
its embedded image J(A) and for sets A, B € C(R™) we denote by A — B the difference
J(A) — J(B). Geometrically, a monotone increasing set-valued map F : R — C(R") has a
growing image as the argument t increases. Formally, F' is monotone when for a given h > 0
the first difference Ai(t) = F(t + h) — F(t) is of a constant sign. Similarly, the convezity
means that the second difference

A2F(t) = F(t) + F(t +2h) — 2F(t + h)

is nonpositive (i.e. F(t)+ F(t+ 2h) C 2F(t + h)). The inequality (4) is opposite to the
common definition of convezr scalar functions. We choose it this way in order to ensure the
convezity of the graph of F. Clearly, in the case of a convez map F : R — C(R")

F(at; + (1 — a)ty) 2 aF(t1) + (1 — a)F(t2) for each a € [0,1], ti,t; € R,

which means that the graph of F is a convez set in R™*1. The last inclusion and property T°
of support functions imply that for each given direction | the support function §*(F(-),l) of
the convex multimap F is a concave scalar function.

3 Chaikin Subdivision Scheme for
Convex Compact Sets

Let F?, 1 =20,...,N be convex compact sets in R™. We seek a set-valued function in S
which has a similar structure to the the piecewise linear multifunction F : R — R™ defined
by

but is smoother in the sense of (3). Note that every piecewise linear multifunction is in S

and is C°.



Consider the following iterative procedure of reconstructing F, known as Chaikin algo-
rithm when applied to scalar functions ([5], [6]). At level &+ 1, k > 0 of the procedure we
calculate for 7 = 0, ...,2°F(N — 1) the sets

1 3

Fytt = Zlej—l + ZFika (5)
3 1
k k k
FZ'L—I-I_—ll = ZFZ'H + At (6)

Thanks to the positivity of the coefficients, we obtain convex compact sets at each stage of
the process. Moreover, since the coefficients form a convex combination, the scheme has two
noticeable properties:

1. It preserves monotonicity, i.e.
If for all < Fk CFF, then FETL C FEFL C FZI":L-I-l——ll for all 1.

This follows directly from the equalities

1 1
B F = MR, - FR), R ES =L, )

which means that the first finite differences remain in X at each stage of the process if
they are in K for k = 0.

2. It preserves convexity, namely the second differences remain in K at each iteration if
they are in it for k = 0, since

1

FA 4L - 2RK = (FF4 Fh, - 28%),
1
FEL 4 FE —2FFT = Z(F"k—l + FF, —2FF).

At the k-th iteration (k > 1) we construct a piecewise linear multimap F* : [0, N—1+27%] —
C(R"™) satisfying

ti'c —t k t— ti'c—l k k k
tk—tk z’—l‘l'tk tk Fi: ti—lgtgti'
: i—1 i—1

p PR

F*(t) =

Lemma 3.1 The sequence of set-valued functions {F*(t)}$2, converges (uniformly in the
interval [0, N — 1]) to a Lipschitz continuous multifunction F*(t) with convez values.

Proof: Denote the support functions §%(1) = §*(FF,1) and §*(I,t) = §*(F*(t),1). Then by
(5), (6) and properties 5°,6° of support functions it follows that for each fixed direction
[eR"

1 3
B0 = 30t (1) + 5840

3 1
5;6;11(1) = Z‘sﬁl(l) + ZJf(l)
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It means that for each given [ the Chaikin subdivision procedure is realized on the scalar
values 6(I). Hence by the well known convergence of the Chaikin algorithm for scalar
subdivision (see e.g. [6]) for each fixed [ € R™ there exists a limit function

§(l,t) = lim & (1, ).

In the following we prove that §°(l,¢) is Lipschitz continuous in [ and ¢.
Let us fix a point ¢ € [0, N — 1]. By properties 1°,2° of the support functions §*(-,¢),
it follows that the limit function §°°(-,t) satisfies 1°,2°. Moreover, since the initial sets
F? i =0,...N are uniformly bounded, then by (5), (6) FF, i =0,...2%(N — 1) + 1 and
F*(t) are uniformly bounded by the same constant. Hence by property 3° the functions
8F(-,t) are Lipschitz continuous with an absolute constant, independent of ¢ and k, and
therefore the limit function §°°(-,¢) is Lipschitz continuous with the same constant and the
convergence is uniform with respect to /.

Moreover, properties 1°,2° characterizing each support function hold for the limit function
§°(-,t) for fixed t. Therefore, by 4° §°°(-,t) is the support function of a convex compact set

which is denoted by F*(t). That F*(t) = klim F*(t) can be concluded from
—00

haus(F>(t), F*(t)) = max 16%°(1,t) — 65(1,t)] = 0 as k— oo.
€91
To see that this convergence is uniform for ¢t € [0, N — 1], we observe by (7) and by
property (iv) of J that
haus(FF, Ff ) <27% max haus(F? , FY).

0<i<N-1 AR

This means that the Lipschitz constants of the piecewise linear maps F*(¢), and therefore of
F*(t), (or of the functions §*(l,-), §°(l,-) ) do not exceed the constant max haus(F?, FY,).

Hence 6%(,-) and F*(.) are uniformly Lipschitz continuous with the same constant in the

interval [0, N —1] and converge uniformly to §°(l, -) and F'*(-)) respectively, on this interval.

]

The shape preserving properties of F*°(t) and its smoothness follow from the analysis of
more general schemes, done in the next section.

4 A Class of Shape Preserving Subdivision Schemes

Let the initial sequence F?, 1 = 0,..., N of convex compact sets in R™ be given. For

convenience we define FY = {0} for 2 € Z\ {0,1,..., N}. Consider a finitely supported
subdivision scheme given by

Fik+1 _ ZGET]ZJ'F](C7 1€Z, k=0,1,2,.. (8)
J€Z

with the spline weights aEm] = (mjl)/2m, 1 =0,1,...,m+ 1 and aEm] =0for: € Z\
{0,1,...,m + 1}. Note that Chaikin algorithm is the special case m = 2.



The scheme (8) when applied to scalar values {f{};, is uniformly convergent and its limit
function f*°(-) is of the form (see e.g. [6])

Feo(t) =X ) Bm(t — 1), (9)

i€Z

where the function B,,(-) is a B-spline of degree m, with integer knots and support [0, m +1].
In the following we obtain a set-valued analog of (9).

As in the previous section, at the k-th iteration (k > 1) we construct a piecewise linear
multimap F* : R — C(R") satisfying F*(t¥) = FF for tf = 27%;.

Let the generating function of the sequence {aEm]}i be

m+1
a[m](z) = Z CLEM]ZZ
2=0
Then a[m](-) has the form
1 m+1
a[m](z) — %

[m]

Clearly the coefficients a; = are nonnegative numbers and satisfy

Safl=1,  Yal =1 (10)

1€Z i€Z

Denote the differences G¥ = J(FF) — J(FF,), i>1, k> 0. Note that G*¥ € D(R").

It is easy to show as in the case of scalar functions (see e.g.[6]) that

Proposition 4.1 The differences G¥ satisfy

Gt = ZbET]ZjG?, 1€z, k=0,1,.., (11)
J

where the generating function b™(.) of the sequence {bEm]}i 18

dmi(z) (L2

Bl(z) =3 b = = (12)
icZ 142 2
It is clear from the last Proposition that the coefficients bEm] are nonnegative and
(3] (3] 1
by = Db = 5. (13)
=0 =0

This means that if the initial sets {F }Y, form a monotone increasing sequence (i.e. the
differences GY, i = 1,..., N are in the cone K, then the differences G¥, i = 1,..., N remain
in this cone at each stage of the subdivision process (11), i.e. for each k the sequence {FF¥};
1s monotone increasing.



By the same reasoning the second differences Hf¥ = G¥ — G* | can be obtained by a
subdivision scheme with a generating function

blml(2) 1+ z)m_l‘

ml(5) — _
c™(2) 1+ 2z gm

(14)
Since cl™(2z) has nonnegative coefficients, the second differences remain in K at each
iteration k, provided they are in K for k = 0. Therefore the scheme (8) is shape preserving.
By the above argumentation it is easy to conclude that the subdivision schemes (8)
preserve the sign of the differences AYF* of order v, 1 <v < m, i.e. (A”F*); belongs to
K, provided (A*F?); € K for all 1.
Thus we have proved the following

Proposition 4.2 The subdivision scheme (8) is monotonicity and convezity preserving, i.e.

FFCFE, foral j = FF'CFRY fordl 4, (15)
FF .+ FJ’“H C2FF forall j = FM 4+ FF C2FFY + FEL forall 4. (16)

Theorem 4.1 The set-valued mappings {F*(-)}2, converge uniformly on R to a spline
multimap F*°(-) with convez tmages of the form

=Y F?Bn(t—1t) foreachtcR. (17)

i€

Proof: Fix a direction [ € R™ and denote §%(1) = §*(FF, 1), 6%(1,t) = §*(F*(¢),1).
Then (8) implies
5k+1 Zaz 2.7 .7

JEZ

250 m(t —1).

i€

hence by (9) for each !

Since the last sum is finite for any ¢, and since the coeflicients B,,(t — ¢) are nonnegative, it
follows that for fixed ¢ the scalar functlon §°(-,t) is a support function of the set

ZFO (t —1). (18)

i€

The fact that F>(t) = klim F*(t) can be proved by the same argumentation as in the proof
—>00

of Lemma 3.1 with (7) replaced by (11) and (13). [
The next corollary follows from the fact that B,, € C™ L.

Corollary 4.1 F* € S and F>* e C™ '

For m = 1, F* is piecewise linear multifunction interpolating {F}; i.e. satisfying F*°(z) =

F, FR(t)=(t—4)Fi,+(i+1—-t)F) fori<t<i+1,i€Z.

For m = 2 (the Chaikin scheme), F*° € C! and it is piecewise quadratic in the sense that

for each fixed [ the support function §(I,-) is a linear combination of quadratic B-splines.
The following shape preserving properties of F'*° follow from Proposition 4.2 and the

discussion above it.



Corollary 4.2 Let {F?}N | be an initial sequence of compact convex sets.

(a) If the initial sequence { FY}Y., is monotone increasing, i.e. FY C F%,,i=1,...,N—

1, then the map F>(t) is monotone increasing in the sense of Remark 2.3.

(b) If the initial sequence is conves, i.e. F)+ F, C FY,, i=0,...N —2, then the map

F*(t) has a convez graph.

Proof:
(a) With the notations of the previous theorem, it follows from (15) that for every [ € R™

84(1) < 85, (0).

Since a piecewise linear interpolating scalar function of monotone data is itself monotone, it
follows that for each [ € R™
& (1t + h) > 6(1,¢1)

for every t and h > 0. The last inequality implies
F*(t 4+ h) D F*(¢)

for all t and h > 0. Therefore the set-valued map F*(-) is monotone increasing. The last
conclusion holds also for the limit F*(t) = klim F*(t).
—>00

The proof of (b) is similar, based on (16) and the fact that a scalar piecewise linear
interpolant of convex (concave) data is convex (concave). Note that in this case the set-
valued functions are convex, but their support functions are concave for each fixed direction

! (see Remark 2.3). m

The limit multimaps generated by the above subdivision processes approximate smooth
multimaps in S with the same approximation order as the limit functions generated by the
corresponding scalar schemes approximate smooth scalar functions.

Proposition 4.3 Let F € SNC"™ withr > 0. Then
t
haus(F(2), Y F(iR) Bl — ) < eh’,
JEL
where s = min{r,2} and the constant ¢ depends only on F'.

Proof: Let F(t) = Y A;fi(t), where I is a finite subset of Z, and f; € C". Denote
el
fi(t) = ¥ fi(h)Bm(% — 7). Then by a well-known approximation result for scalar functions
JEL

(see e.g. [3]), we obtain )
1fi = filloo < cih®.
with the constant ¢; depending only on f;. Let F(t) = 3 Aiﬁ-(t), then
el

F(t) = 3 Buly — )F()

JEZ
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Hence for each ¢
haus(F(t), F(t)) = ||J(z; Aifi(t)) — J(z; Asfi)l < 2; 1Al 1 = filloo < b, (19)
1€ 1€ 1€

where we used property (iv) of the embedding J. [
For general multimaps (not from S) which are Hausdorff continuous, we get a weaker
approximation result.

Proposition 4.4 Let F' be a general multimap with values in C(R™) which is Hausdorff
continuous, then

haus(F(t), 3 (i) Bu(y — 7)) = o{1).
JEZL
Proof: For a fixed ¢ there is only a finite number of terms in 3 F(jh)Bm(s —j) - Now
since j%:Z Bn(f—3j) =1, we can write F(t) = j%:Z F(t)Bm (£ — 7). {;Zing an argument similar
to (19) and by the fact that F' is continuous, we obtain

haus(F(t), Y F(M)Ba(y —3) = | 3 (J(F@) — J(F(4) Bl — )] = of1).

JEZ je(i—m,i)nZ

If we assume enough smoothness on the support functions of the sets F(¢) for all ¢t , we
get a similar result to that of Proposition 4.3.

Proposition 4.5 Let F be a multimap defined on R with values in C(R™) such that the
t-dependent support function 6*(F(-),l) has a second derivative in t uniformly bounded in t
and inl € S,_1. Then

t

haus(F (1), Y F(ih) Bl — ) = O(R?).
JEL
Proof: Let us denote the spline multifunction
. t . . t .
SmF(t)=> F(jh)Bu(; —5)= > F(jh)Bu(; — i)
: h e h
JEZ JG(E—m,—)ﬁZ

Then
haus(F(t), (SpF) () = 18°(F(t), ) = 8 ((SmF)(t), )lloo, 50 s -

Denote for any I € R™ §(t) = é(¢,1) = §*(F(¢),!). For scalar functions it is known that

Cf(t),
T |h*.

£(6) ~ (S4.4)(6)| < 5 sup)

(20)
Set f(t) = &(t). Since Sh8*(F(-),1) = §*(S™ F(-),1), we get

* * h 1 d2 2
8 (F(0),1) = 6" (SAF)), D] < 51153610 ash®
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Now, by our assumptions sup |%51(-)| < L, and we obtain for every ¢

n—1

18*(F(£),) = 8*((SmF)(t), *)lloo,50s < %Lhz-

[

Note that if F' is defined in the finite interval [0, N], then the estimate near the boundary
of the interval is O(h). This follows from the corresponding result in the scalar case .

Before concluding the paper, we state a conjecture that was inspired by the famous
theorem of R. Aumann [1] stating that the integral of a compact-valued multimap is a
convex set. Since the Riemann integral is the limit of Riemann sums, which are in essence
averages with positive weights, we expect that the repeated application of (8) with the spline
weights generates in the limit a convex- valued multifunction, even when the initial sets are
compact but not convex.

Conjecture: Any of the subdivision methods (8) with m > 1 applied to initial compact
sets, {F' Jp} , generates as a limit a convex-valued multifunction, given by

F*(t) = ZcoFJme(t —7)s

JEZ

where coA denotes the convex hull of A.
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