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The application of spline subdivision schemes to data consisting of convex compact sets�
with addition replaced by Minkowski sums of sets� is investigated� These methods generate
in the limit set�valued functions� which can be expressed explicitly in terms of linear com�
binations of integer shifts of B�splines with the initial data as coe�cients� The subdivision
techniques are used to conclude that these limit set�valued spline functions have shape pre�
serving properties similar to those of the usual spline functions� This extension of subdivision
methods from the scalar setting to the set�valued case has application in the approximate
reconstruction of ��D bodies from �nite collections of their parallel cross�sections�
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� Introduction

Subdivision schemes are recursive methods for the generation of smooth functions from
discrete data� By these methods at each recursion step� new discrete values on a �ner grid
are computed by weighted sums of the already existing discrete values� In the limit of the
recursive process� data is de�ned on a dense set of points� Considering this data as function
values� under certain conditions� a limit continuous function is de�ned by this process� The
theory of subdivision processes is presented in e�g� ���� �	��

In this work we apply a class of subdivision methods with positive weights to data
consisting of convex compact sets� replacing the addition by Minkowski sums of sets� and
obtain in the limit set�valued functions�

This extension of subdivision methods from the scalar setting to the set�valued case has
application in the approximate reconstruction of ��D bodies from �nite collections of their
parallel cross�sections�

The class of subdivision methods considered here consists of methods which generate
spline functions in the scalar setting� These methods have shape preserving properties and
approximation properties in the set�valued case� similar to those in the scalar case�

The proof of the shape preserving properties of the limit set�valued functions relies on
the subdivision technique� Yet the limit multifunction 
set�valued function� has a simple
explicit form in terms of the initial sets and integer shifts of B�splines� and there is no need to
compute it recursively� This explicit form also yields the smoothness and the approximation
properties of the limit set�valued function�

Among the spline subdivision schemes� there is a scheme which generates in the limit
piecewise linear interpolants to the given data of sets� In ���� piecewise linear approximation
to convex set�valued functions is studied� This approximation consists of a piecewiswe linear
interpolant to samples of a multifunction� with addition replaced by Minikowski sums� Thus�
one can regard the present paper as an extension of �����
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The mathematical tools used for analysing set�valued functions include the support func�
tion technique for describing convex compact sets 
see e�g� ���� and methods of embedding
the cone of convex compact subsets of Rn in a linear normed space� with addition de�ned as
the Minkowski sum of sets 
���� ���� ���� ����� In any such linear normed space� we introduce a
partial order generated by the set inclusion order in the cone of convex compact sets� Thus
a multifunction with convex compact images from R to Rn is considered as an abstract func�
tion with values in a partially ordered normed linear space� Monotonicity and convexity of
such abstract functions are easily expressed by the positivity of their �rst and second �nite
di�erences�

The paper is organised as follows� In section � basic facts about convex compact sets�
their support functions and their embedding in a normed linear space with a partial order� are
presented� Section � presents a simple example of a shape�preserving set�valued subdivision
scheme� The main results about spline subdivision methods applied to convex compact sets
are derived in Section �� The explicit form of the limit multivalued spline function is obtained
together with its approximation and shape�preserving properties�

� Preliminaries

Denote by C
Rn� the cone of nonempty convex compact subsets of Rn� Recall the de�nitions
of Minkowski sum and multiplication by scalars of sets A�B � C
Rn� �

A�B � f a� b j a � A� b � B g� �A � f �a j a � A g�

Since the technique of support functions is central to this text� we recall the de�nition and
the basic properties of these functions 
see e�g� ���� ����� For a set A � C
Rn� its support
function ��
A� �� � Rn � R is de�ned as follows�

��
A� l� � max
a�A

hl� ai� l � Rn�

where h�� �i is the Euclidean inner product� Note that for any �xed l � Rn� ��
A� l� is �nite�
The following properties of �� are well known 
�����

�o� ��
A��l� � ���
A� l�� � � �

�o� ��
A� l� � l�� � ��
A� l�� � ��
A� l���

�o� ��
A� �� is Lipschitz continuous� with a constant kAk � max
a�A

kak� where k � k is the

Euclidean norm� namely j��
A� l��� ��
A� l��j � kAkkl� � l�k� for l�� l� � Rn�

�o� A scalar function �� � Rn � R is a support function of a convex compact set i� it
satis�es �o� �o 
see e�g� ���� Theorem ���� and its corollaries��

�o� ��
A�B� �� � ��
A� �� � ��
B� ���

	o� ��
�A� �� � ���
A� ��� � � �

�o� A � B �� ��
A� l� � ��
B� l� for each l � Rn�
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�o� The Hausdor� distance between two sets A�B � C
Rn� is given� in terms of the support
functions of these two sets� by

haus
A�B� � max
l�Sn��

j��
A� l�� ��
B� l�j�

where Sn�� is the unit sphere in Rn�

Note that by �o and �o� ��
A� �� is positively homogeneous and convex� Also� functions
satisfying �o� �o are called sublinear� As we noted in �o� 
see e�g� ����� sublinear functions
de�ned on all Rn are Lipschitz continuous� The next proposition will be used in what follows�

Proposition ��� Let A�� A�� B�� B� � C
Rn� and A� 	 B�� Then the equality A� � B� �
A� �B� implies A� 	 B��

Proof� The proof follows from properties �o� �o�

A� �B� � A� �B� �� ��
A�� �� � ��
B�� �� � ��
A�� �� � ��
B�� ���

From A� 	 B� follows ��
A�� �� � ��
B�� ��� This� combined with the above equality implies
��
B�� �� � ��
A�� �� �� B� � A��

There are various ways to construct a linear normed vector space D
Rn� relative to
the Minkowski sum� in which the cone C
Rn� is embedded by an embedding J � C
Rn� �
D
Rn� with the following properties
see e�g� ���� ���� �����


i� J
A�B� � J
A� � J
B��


ii� J
�A� � �J
A�� � � �


iii� J
A� � J
B� �� A � B�


iv� kJ
A�� J
B�k � haus
A�B��

These properties imply J
fg� � �� where � is the zero element of D
Rn��
A simple embedding is J
A� � ��
A� ��� It is easy to check � using the above stated

properties of support functions� that this embedding has the required four properties�
Having an embedding of the cone C
Rn� into a linear normed vector space D
Rn�� we can

introduce a partial order in D
Rn� and therefore in C
Rn�� For that� we de�ne the following
cone in D
Rn��

K �
n
C � D
Rn�j C � J
A�� J
B�� A�B � C
Rn�� A 	 B

o

��

The cone K determines the following partial order in D
Rn� �

For A�B � D
Rn� A � B �� B �A � K� 
��

Remark ��� Here are some observations regarding the partial order introduced above�

�� By �i� and �ii� K is a convex cone�
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�� Note that ��� does not depend on the choice of the sets A and B in the following sense�
if C � J
A�� � J
B�� � J
A�� � J
B��� where A� 	 B�� then by �i� and �iii� we get
A� �B� � A� �B� and by Proposition ��� A� 	 B��

�� By the previous observation� the order de�ned in D
Rn� by ��� induces the regular
inclusion order in C
Rn�� namely for A�B � C
Rn�

A � B �� J
A� � J
B��

Thus we denote for A�B � C
Rn� A � B i	 A � B�


� Our de�nition of the positive cone K in D
Rn� coincides with the positive cone in some
concrete linear spaces in which C
Rn� is embedded� like the space of the pairs of convex
compact sets and the space of di	erences of support functions �see e�g� ����

Remark ��� It follows from the facts that K is a cone and D
Rn� is a linear space that for
A � B

�a� �A � �B�

�b� A� C � B � C for every C � D
Rn��

�c� If C � D� then �A� �C � �B � �D for �� � � �

The previous remark justi�es the notions of positive and negative elements of D
Rn�� The
element A � D
Rn� is called nonnegative when � � A� i�e�A � K� If A � �� A 
� �� then
A is called positive� The element B � D
Rn� is called nonpositive if �B is nonnegative
and B is negative when �B is positive�

We will call a convex compact set A nonnegative when J
A� � �� i�e�  � A� A is positive
i�  � A and A 
� fg�

We are interested in this work in set�valued mappings from R to C
Rn� 
called also
multimaps or multifunctions�� and in particular in multimaps of the form

F 
t� �
NX
i��

Aifi
t�� 
��

where Ai � C
Rn�� fi � R �� R� fi
t� �  for all t � R� Let S be the cone of maps of the
form 
��� We say that F � S is Ck if in 
�� fi � Ck for i � �� ���� N �

De�nition ��� A mapping F � R� D
Rn� is called


A� monotone increasing if t� � t� implies F 
t�� � F 
t�� �i�e� F 
t��� F 
t�� � K��


B� monotone decreasing if F 
�t� is monotone increasing�


C� convex if

F 
�t� � 
�� ��t�� � �F 
t�� � 
�� ��F 
t�� for each � � �� ��� t�� t� � R� 
��
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D� concave if F 
�t� is convex�

De�nition ��� De�ne for a given function F � R�D
Rn� the k�th forward �nite di	erence
at the point t with a step h � 

�k
hF 
t� �

kX
j��


���k�j
�
k

j

�
F 
t� jh��

For a sequence fFigi we de�ne


�kF �i �
kX

j��


���k�j
�
k

j

�
Fi�j�

In case ��F is nonnegative for all t� h �  �i�� the function �sequence� is monotone increa�
sing� If ��F is nonpositive for all t� h �  �i�� the function �sequence� is called convex�

Remark ��� For the sake of simplicity we sometimes identify the set A � C
Rn� with
its embedded image J
A� and for sets A�B � C
Rn� we denote by A � B the di	erence
J
A�� J
B�� Geometrically� a monotone increasing set�valued map F � R� C
Rn� has a
growing image as the argument t increases� Formally� F is monotone when for a given h � 
the �rst di	erence ��

h
t� � F 
t� h� � F 
t� is of a constant sign� Similarly� the convexity
means that the second di	erence

��
hF 
t� � F 
t� � F 
t� �h� � �F 
t� h�

is nonpositive �i�e� F 
t� � F 
t � �h� � �F 
t � h��� The inequality �
� is opposite to the
common de�nition of convex scalar functions� We choose it this way in order to ensure the
convexity of the graph of F� Clearly� in the case of a convex map F � R� C
Rn�

F 
�t� � 
�� ��t�� 	 �F 
t�� � 
� � ��F 
t�� for each � � �� ��� t�� t� � R�

which means that the graph of F is a convex set in Rn��� The last inclusion and property �o

of support functions imply that for each given direction l the support function ��
F 
��� l� of
the convex multimap F is a concave scalar function�

� Chaikin Subdivision Scheme for

Convex Compact Sets

Let F �
i � i � � � � � � N be convex compact sets in Rn� We seek a set�valued function in S

which has a similar structure to the the piecewise linear multifunction F � R� R
n de�ned

by
F 
i� �� � 
�� ��F �

i � �F �
i���  � � � �� i � � �� ���� N � ��

but is smoother in the sense of 
��� Note that every piecewise linear multifunction is in S
and is C��
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Consider the following iterative procedure of reconstructing F� known as Chaikin algo�
rithm when applied to scalar functions 
���� �	��� At level k � �� k �  of the procedure we
calculate for i � � ���� �k
N � �� the sets

F k��
�i �

�

�
F k
i�� �

�

�
F k
i � 
��

F k��
�i�� �

�

�
F k
i�� �

�

�
F k
i � 
	�

Thanks to the positivity of the coe�cients� we obtain convex compact sets at each stage of
the process� Moreover� since the coe�cients form a convex combination� the scheme has two
noticeable properties�

�� It preserves monotonicity� i�e�

If for all i F k
i�� � F k

i � then F k��
�i�� � F k��

�i � F k��
�i�� for all i�

This follows directly from the equalities

F k��
�i � F k��

�i�� �
�

�

F k

i�� � F k
i���� F k��

�i�� � F k��
�i �

�

�

F k

i�� � F k
i �� 
��

which means that the �rst �nite di�erences remain in K at each stage of the process if
they are in K for k � �

�� It preserves convexity� namely the second di�erences remain in K at each iteration if
they are in it for k � � since

F k��
�i � F k��

�i�� � �F k��
�i�� �

�

�

F k

i � F k
i�� � �F k

i����

F k��
�i�� � F k��

�i�� � �F k��
�i �

�

�

F k

i�� � F k
i�� � �F k

i ��

At the k�th iteration 
k � �� we construct a piecewise linear multimap F k � �� N�����k ��
C
Rn� satisfying

F k
t� �
tki � t

tki � tki��
F k
i�� �

t� tki��
tki � tki��

F k
i � tki�� � t � tki �

Lemma ��� The sequence of set�valued functions fF k
t�g�k�� converges �uniformly in the
interval �� N � ��� to a Lipschitz continuous multifunction F�
t� with convex values�

Proof� Denote the support functions �ki 
l� � ��
F k
i � l� and �k
l� t� � ��
F k
t�� l�� Then by


��� 
	� and properties �o� 	o of support functions it follows that for each �xed direction
l � Rn

�k��
�i 
l� �

�

�
�ki��
l� �

�

�
�ki 
l�

�k��
�i��
l� �

�

�
�ki��
l� �

�

�
�ki 
l��

	



It means that for each given l the Chaikin subdivision procedure is realized on the scalar
values �ki 
l�� Hence by the well known convergence of the Chaikin algorithm for scalar
subdivision 
see e�g� �	�� for each �xed l � Rn there exists a limit function

��
l� t� � lim
k��

�k
l� t��

In the following we prove that ��
l� t� is Lipschitz continuous in l and t�
Let us �x a point t � �� N � ��� By properties �o� �o of the support functions �k
�� t��
it follows that the limit function ��
�� t� satis�es �o� �o� Moreover� since the initial sets
F �
i � i � � � � � N are uniformly bounded� then by 
��� 
	� F k

i � i � � � � � �k
N � �� � � and
F k
t� are uniformly bounded by the same constant� Hence by property �o the functions
�k
�� t� are Lipschitz continuous with an absolute constant� independent of t and k� and
therefore the limit function ��
�� t� is Lipschitz continuous with the same constant and the
convergence is uniform with respect to l�

Moreover� properties �o� �o characterizing each support function hold for the limit function
��
�� t� for �xed t� Therefore� by �o ��
�� t� is the support function of a convex compact set
which is denoted by F�
t�� That F�
t� � lim

k��
F k
t� can be concluded from

haus
F�
t�� F k
t�� � max
l�S�

j��
l� t�� �k
l� t�j �  as k ���

To see that this convergence is uniform for t � �� N � ��� we observe by 
�� and by
property 
iv� of J that

haus
F k
i � F

k
i��� � ��k max

��j�N��
haus
F �

j��� F
�
j ��

This means that the Lipschitz constants of the piecewise linear maps F k
t�� and therefore of
F�
t�� 
 or of the functions �k
l� ��� ��
l� �� � do not exceed the constant max

��i�N
haus
F �

i � F
�
i����

Hence �k
l� �� and F k
�� are uniformly Lipschitz continuous with the same constant in the
interval �� N��� and converge uniformly to ��
l� �� and F�
��� respectively� on this interval�

The shape preserving properties of F�
t� and its smoothness follow from the analysis of
more general schemes� done in the next section�

� A Class of Shape Preserving Subdivision Schemes

Let the initial sequence F �
i � i � � � � � � N of convex compact sets in Rn be given� For

convenience we de�ne F �
i � fg for i � Zn f� �� ���� Ng� Consider a �nitely supported

subdivision scheme given by

F k��
i �

X
j�Z

a
�m�
i��jF

k
j � i �Z� k � � �� �� ��� 
��

with the spline weights a
�m�
i �

�
m��
i

�
	�m� i � � �� ����m � � and a

�m�
i �  for i � Zn

f� �� ����m� �g� Note that Chaikin algorithm is the special case m � ��
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The scheme 
�� when applied to scalar values ff�
i gi� is uniformly convergent and its limit

function f�
�� is of the form 
see e�g� �	��

f�
t� �
X
i�Z

f�
i Bm
t� i�� 
��

where the function Bm
�� is a B�spline of degree m� with integer knots and support ��m����
In the following we obtain a set�valued analog of 
���

As in the previous section� at the k�th iteration 
k � �� we construct a piecewise linear
multimap F k � R� C
Rn� satisfying F k
tki � � F k

i for tki � ��ki�

Let the generating function of the sequence fa�m�
i gi be

a�m�
z� �
m��X
i��

a
�m�
i zi�

Then a�m�
�� has the form

a�m�
z� �

� � z�m��

�m
�

Clearly the coe�cients a
�m�
i are nonnegative numbers and satisfy

X
i�Z

a
�m�
�i � ��

X
i�Z

a
�m�
�i�� � �� 
��

Denote the di�erences Gk
i � J
F k

i �� J
F k
i���� i � �� k � � Note that Gk

i � D
R
n��

It is easy to show as in the case of scalar functions 
see e�g��	�� that

Proposition ��� The di	erences Gk
i satisfy

Gk��
i �

X
j

b
�m�
i��jG

k
j � i �Z� k � � �� ���� 
���

where the generating function b�m�
�� of the sequence fb
�m�
i gi is

b�m�
z� �
X
i�Z

b
�m�
i zi �

a�m�
z�

� � z
�


� � z�m

�m
� 
���

It is clear from the last Proposition that the coe�cients b
�m�
i are nonnegative and

�m
�
�X

i��

b
�m�
�i �

�m
�
�X

i��

b
�m�
�i�� �

�

�
� 
���

This means that if the initial sets fF �
i g

N
i�� form a monotone increasing sequence 
i�e� the

di�erences G�
i � i � �� ���� N are in the cone K� then the di�erences Gk

i � i � �� ���� N remain
in this cone at each stage of the subdivision process 
���� i�e� for each k the sequence fF k

i gi
is monotone increasing�

�



By the same reasoning the second di�erences Hk
i � Gk

i � Gk
i�� can be obtained by a

subdivision scheme with a generating function

c�m�
z� �
b�m�
z�

� � z
�


� � z�m��

�m
� 
���

Since c�m�
z� has nonnegative coe�cients� the second di�erences remain in K at each
iteration k� provided they are in K for k � � Therefore the scheme 
�� is shape preserving�

By the above argumentation it is easy to conclude that the subdivision schemes 
��
preserve the sign of the di�erences ��F k of order 
� � � 
 � m� i�e� 
��F k�i belongs to
K� provided 
��F ��i � K for all i�

Thus we have proved the following

Proposition ��� The subdivision scheme ��� is monotonicity and convexity preserving� i�e�

F k
j � F k

j�� for all j �� F k��
i � F k��

i�� for all i� 
���

F k
j�� � F k

j�� � �F k
j for all j �� F k��

i�� � F k��
i�� � �F k��

i � F k��
i�� for all i� 
�	�

Theorem ��� The set�valued mappings fF k
��g�k�� converge uniformly on R to a spline
multimap F�
�� with convex images of the form

F�
t� �
X
i�Z

F �
i Bm
t� i� for each t � R� 
���

Proof� Fix a direction l � Rn and denote �ki 
l� � ��
F k
i � l�� �

k
l� t� � ��
F k
t�� l��
Then 
�� implies

�k��
i 
l� �

X
j�Z

a
�m�
i��j�

k
j 
l��

hence by 
�� for each l
��
l� t� �

X
i�Z

��i 
l�Bm
t� i��

Since the last sum is �nite for any t� and since the coe�cients Bm
t� i� are nonnegative� it
follows that for �xed t the scalar function ��
�� t� is a support function of the set

F�
t� �
X
i�Z

F �
i Bm
t� i�� 
���

The fact that F�
t� � lim
k��

F k
t� can be proved by the same argumentation as in the proof

of Lemma ��� with 
�� replaced by 
��� and 
����
The next corollary follows from the fact that Bm � Cm���

Corollary ��� F� � S and F� � Cm���

For m � �� F� is piecewise linear multifunction interpolating fF �
i gi i�e� satisfying F�
i� �

F �
i � F

�
t� � 
t� i�F �
i�� � 
i� �� t�F �

i for i � t � i� �� i �Z�
For m � � 
the Chaikin scheme�� F� � C� and it is piecewise quadratic in the sense that
for each �xed l the support function �
l� �� is a linear combination of quadratic B�splines�

The following shape preserving properties of F� follow from Proposition ��� and the
discussion above it�

�



Corollary ��� Let fF �
i g

N
i�� be an initial sequence of compact convex sets�


a� If the initial sequence fF �
i g

N
i�� is monotone increasing� i�e� F �

i � F �
i��� i � �� � � � � N�

�� then the map F�
t� is monotone increasing in the sense of Remark ����

b� If the initial sequence is convex� i�e� F �

i �F �
i�� � F �

i��� i � � � � � N � �� then the map
F�
t� has a convex graph�

Proof�

a� With the notations of the previous theorem� it follows from 
��� that for every l � Rn

�ki 
l� � �ki��
l��

Since a piecewise linear interpolating scalar function of monotone data is itself monotone� it
follows that for each l � Rn

�k
l� t� h� � �k
l� t�

for every t and h � � The last inequality implies

F k
t� h� 	 F k
t�

for all t and h � � Therefore the set�valued map F k
�� is monotone increasing� The last
conclusion holds also for the limit F�
t� � lim

k��
F k
t��

The proof of 
b� is similar� based on 
�	� and the fact that a scalar piecewise linear
interpolant of convex 
concave� data is convex 
concave�� Note that in this case the set�
valued functions are convex� but their support functions are concave for each �xed direction
l 
see Remark �����

The limit multimaps generated by the above subdivision processes approximate smooth
multimaps in S with the same approximation order as the limit functions generated by the
corresponding scalar schemes approximate smooth scalar functions�

Proposition ��� Let F � S  Cr with r � � Then

haus
F 
t��
X
j�Z

F 
jh�Bm

t

h
� j�� � chs�

where s � minfr� �g and the constant c depends only on F �

Proof� Let F 
t� �
P
i�I

Aifi
t�� where I is a �nite subset of Z� and fi � Cr� Denote

�fi
t� �
P
j�Z

fi
jh�Bm

t

h
� j�� Then by a well�known approximation result for scalar functions


see e�g� ����� we obtain
kfi � �fik� � cih

s�

with the constant ci depending only on fi� Let �F 
t� �
P
i�I

Ai
�fi
t�� then

�F 
t� �
X
j�Z

Bm

t

h
� j�F 
jh��

�



Hence for each t

haus
F 
t�� �F
t�� � kJ

X
i�I

Aifi
t��� J

X
i�I

Ai
�fi
t��k �

X
i�I

kAik kfi � �fik� � chs� 
���

where we used property 
iv� of the embedding J �
For general multimaps 
not from S� which are Hausdor� continuous� we get a weaker

approximation result�

Proposition ��� Let F be a general multimap with values in C
Rn� which is Hausdor	
continuous� then

haus
F 
t��
X
j�Z

F 
jh�Bm

t

h
� j�� � o
���

Proof� For a �xed t there is only a �nite number of terms in
P
j�Z

F 
jh�Bm

t

h
� j� � Now

since
P
j�Z

Bm

t

h
� j� � � � we can write F 
t� �

P
j�Z

F 
t�Bm

t

h
� j�� Using an argument similar

to 
��� and by the fact that F is continuous� we obtain

haus
F 
t��
X
j�Z

F 
jh�Bm

t

h
� j�� � k

X
j�� t

h
�m� t

h
��Z

�
J
F 
t��� J
F 
jh��

�
Bm


t

h
� j�k � o
���

If we assume enough smoothness on the support functions of the sets F 
t� for all t � we
get a similar result to that of Proposition ����

Proposition ��� Let F be a multimap de�ned on R with values in C
Rn� such that the
t�dependent support function ��
F 
��� l� has a second derivative in t uniformly bounded in t
and in l � Sn��� Then

haus
F 
t��
X
j�Z

F 
jh�Bm

t

h
� j�� � O
h���

Proof� Let us denote the spline multifunction

Sh
mF 
t� �

X
j�Z

F 
jh�Bm

t

h
� j� �

X
j�� t

h
�m� t

h
��Z

F 
jh�Bm

t

h
� j��

Then
haus
F 
t�� 
Sh

mF �
t�� � k��
F 
t�� ��� ��

Sh
mF �
t�� ��k��Sn���

Denote for any l � Rn �l
t� � �
t� l� � ��
F 
t�� l�� For scalar functions it is known that

jf
t�� 
Sh
mf�
t�j �

�

�
sup
t

j
d�f
t�

dt�
jh�� 
��

Set f
t� � �l
t�� Since Sh
m�

�
F 
��� l� � ��
Sh
mF 
��� l�� we get

��
F 
t�� l�� ��

Sh
mF �
t�� l�j �

�

�
k
d�

dt�
�l
��k�h

��

��



Now� by our assumptions sup
l�Sn��

j d
�

dt�
�l
��j � L� and we obtain for every t

k��
F 
t�� ��� ��

Sh
mF �
t�� ��k��Sn�� �

�

�
Lh��

Note that if F is de�ned in the �nite interval �� N �� then the estimate near the boundary
of the interval is O
h�� This follows from the corresponding result in the scalar case �

Before concluding the paper� we state a conjecture that was inspired by the famous
theorem of R� Aumann ��� stating that the integral of a compact�valued multimap is a
convex set� Since the Riemann integral is the limit of Riemann sums� which are in essence
averages with positive weights� we expect that the repeated application of 
�� with the spline
weights generates in the limit a convex� valued multifunction� even when the initial sets are
compact but not convex�

Conjecture� Any of the subdivision methods 
�� with m � � applied to initial compact
sets� fF �

j g � generates as a limit a convex�valued multifunction� given by

F�
t� �
X
j�Z

coF �
j Bm
t� j��

where coA denotes the convex hull of A�

References

��� R� J� Aumann�Integrals of set�valued functions� J� of Math� Analysis and Applications�
�� 
��	�� �����

��� R� Baier and E� Farkhi�Directed Sets and Di�erences of Convex Compact Sets� in� M�P�
Polis� A�L� Dontchev� P� Kall� I� Lasiecka and A�W� Olbrot� eds�� Systems Modelling
and Optimization� Proc� of the ��th IFIP TC� Conference� CRC Research Notes in
Mathematics� 
Chapman and Hall������ ��������

��� C� deBoor�A Practical Guide to Splines 
Springer Verlag� New York�������

��� A� S� Cavaretta� W� Dahmen and C�A� Micchelli�Stationary Subdivision� Memoirs of
AMS� No� ��� 
������

��� G� M� Chaikin�An algorithm for high speed curve generation� Computer Graphics and
Image Processing� � 
����� ��	�����

�	� N� Dyn�Subdivision schemes in Computer�Aided Geometric Design� in� W� Light� ed��
Advances in Numerical Analysis� Vol� II� Wavelets� Subdivision Algorithms and Radial
Basis Functions 
Clarendon Press� Oxford� ����� �	����

��� L� H�ormander�Sur la fonction d�appui des ensembles convexes dans un espace localement
convexe� Arkiv f�or Matematik� � 
�����������	�

��



��� B� Margolis�Compact� Convex Sets in Rn and a new Banach Lattice� I�� Theory� Nu�
mer� Funct� Anal� Optimiz� �� 
���� ������	�

��� H� R�adstr�om�An embedding theorem for spaces of convex sets� Proceedings of the Ame�
rican Mathematical Society � 
����� �	���	��

��� R� T� Rockafellar�Convex Analysis 
Princeton University Press� Princeton� �����

���� R� A� Vitale�Approximations of convex set�valued functions� J� Approx� Theory �	

����� �����	�

Nira Dyn Elza Farkhi
niradyn�math�tau�ac�il elza�math�tau�ac�il

School of Mathematical Sciences
Sackler Faculty of Exact Sciences
Tel Aviv University� 	���� Tel Aviv� Israel

��


