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Abstract� To de�ne spline subdivision schemes for general compact
sets� we use the representation of spline subdivision schemes in terms of
repeated averages� and replace the usual average �convex combination�
by a binary averaging operation between two compact sets� introduced
in ��� and termed here the �metric average�	 These schemes are shown to
converge in the Hausdor
 metric� and to provide O�h� approximation	

x�� Introduction

In this paper� we introduce spline subdivision schemes for general compact
sets�

Motivated by the problem of the reconstruction of �D objects from their
�D cross�sections� we consider spline subdivision schemes operating on data
consisting of compact sets� A spline subdivision scheme generates from such
initial data a sequence of set�valued functions� with compact sets as images�
which converges in the Hausdor� metric to a limit set�valued function� In the
case of �D sets� the limit set valued function� with �D sets as images� describes
a �D object�

For the case of initial data consisting of convex compact sets� we intro�
duced in ��� spline subdivision schemes� where the usual addition of numbers
is replaced by Minkowski sums of sets� Then� the spline subdivision schemes
generate limit set�valued functions with convex compact images which can be
expressed as linear combinations of integer shifts of a B�spline� with the initial
sets as coe�cients� The subdivision techniques are used to conclude that these
limit 	set�valued spline functions
 have shape preserving properties similar to
those of scalar spline functions� for shape properties de�ned on sequences of
sets and on set�valued functions�

For the case of non�convex initial sets� it is shown in ��� that the limit set�
valued function� generated by a spline subdivision scheme� using the Minkow�
ski sums� coincides with the limit set�valued function� generated by the same
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subdivision scheme from the convex hulls of the initial sets� Therefore� this
generated set�valued function has too large images to be a good approximation
to the set�valued function from which the initial non�convex sets were sampled�

To de�ne spline subdivision schemes for general compact sets which do
not convexify the initial data� i�e�� preserve the non�convexity� we use the
representation of spline subdivision schemes in terms of repeated averages� as
presented in Section �� The usual Minkowski average is replaced by a binary
operation between two compact sets� introduced in ���� This binary operation
between sets� termed here the 	metric average
� is discussed in Section �� As
is shown in Section �� spline subdivision schemes� based on the metric average�
converge� in the Hausdor� metric� to set�valued functions which are Lipschitz
continuous� Also� for initial data sampled from a Lipschitz continuous set�
valued function with compact images� the limit function of a spline subdivision
scheme approximates the sampled set�valued function to order O�h��

x�� Spline Subdivision Schemes via Repeated Binary Averages

An m�th degree spline subdivision scheme� in the scalar setting� re�nes the
values

fk�� � ffk��� j� � ZZg � IR�

where fk is de�ned by

fk� �
X
��ZZ

a
�m�
����f

k��
� � � � ZZ� k � �� �� �� ���� ���

with the mask a
�m�

���m��

�
�
�
�
m��
�

�
��m� � � �� �� ����m� �� and a

�m�

���m��

�
�
� ��

for � � ZZnf�� �� ����m��g� It is clear from ��� and the mask formulae that fk�
is an average of two or more values from fk��� It is well known that the values
fk can be obtained by one step of �rst degree spline subdivision followed by
a sequence of binary averaging� Thus� �rst de�ne

fk���� � fk��� � fk������ �
�
�
�fk��� � fk������� � � ZZ� ���

Then� for � � j �m� �� de�ne the intermediate averages

fk�j
��

�
�

� �
� �f

k�j��
� � fk�j����� �� � � Ij �

where

Ij �

�
ZZ� j odd�
�
�
ZZnZZ� j even�

���

The �nal values at level k are

fk� � fk�m��� � for m odd� � � ZZ �

fk� � fk�m��
�� �

�

� for m even� � � ZZ�
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For example� in the case m � �� one step of averaging yields the Chaikin
algorithm in the form

fk�i �
�
�
fk��i�� � �

�
fk��i �

fk�i�� �
�
�f

k��
i�� � �

�f
k��
i �

At each level k� the piecewise linear function� interpolating the data ���k��fk���
� � ZZ� is de�ned on IR by

fk�t� �

�
��k�� � ��� t

��k

�
fk� �

�
t � ��k�

��k

�
fk���� ���

for ���k � t � �� � ����k� Note that� by ���� every value of fk�t� is a
weighted average of two consecutive elements in fk� If the constructed se�
quence ffk�t�gk�ZZ� converges uniformly to a continuous function f��t�� then
f���� is de�ned as the limit function of the subdivision scheme ���� Thus� the
limit function of spline subdivision schemes can be described in terms of binary
averages only�

In this paper� we study spline subdivision schemes for compact sets in�
stead of scalars� Since we want to avoid the convexi�cation caused by the use
of Minkowski averages ���� we propose� in the next section� to use instead the
binary metric average introduced in ����

x�� The Metric Average of Two Sets

In many applications� averages of sets are de�ned as Minkowski averages�
Here� we propose to use a di�erent kind of a weighted average of two sets�
which is a subset of the Minkowski convex combination and which possesses
several important properties�

First� we introduce some notations� The collection of all compact subsets
of IRn is denoted by Kn�

�
�� �
�
is the inner product in IRn� jxj is the Euclidean

norm of x � IRn� the Hausdor� distance between the sets A�B � Kn is
haus�A�B�� coA denotes the convex hull of A� the Euclidean distance from a
point x to a set A � Kn is dist�x�A�� The set of all projections of x on the
set A is

�A�x� �
�
a � A � ja� xj � dist�x�A�

�
�

The set di�erence of A�B � Kn is

A nB � fa � a � A� a �� Bg�

A linear Minkowski combination of two sets A and B is

�A� �B � f�a� �b � a � A� b � Bg�

for A�B � Kn and �� � � IR� The Minkowski sum A � B corresponds to a
linear Minkowski combination with � � � � ��
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A segment is denoted by

�c� d� �
�
�c� �� � ��d � � � � � �

�
� c� d � IRn

De�nition ���� Let A�B � Kn and � � t � �� The t�weightedmetric average
of A and B is�

A �t B � M�A� t�B�
	

M�B� � � t� A� ���

with

M�A� t�B� �
	
a�A

�
tfag� ��� t��B�a�

�
� ���

where the linear combinations in the last equality are in the Minkowski sense�

The metric average and its two components in ��� have several noticeable
properties�

Theorem ���� Let A�B�C � Kn and � � t � �� � � s � �� Then� the
following properties hold�

�� M�M�A� t�B�� s�B� � M�A� ts�B��
�� M�A �B� t�B� � A �B �M�B� s�A��
�� A�t B � �A �B�

S
M�A nB� t�B�

S
M�B nA� � � t� A��

�� A�� B � B�A �� B � A�A �t B � B ���t A�
�� A�t A � A�
	� A�t B � tA � �� � t�B � co�A 	 B��

� If B is a convex superset of A� then� for � � t � s � ��

A � A�s B � A�t B � B �

�� The Hausdor� distance between A�tB and each of the given sets A and
B is a linear function of t� or� more generally� for s� t � ��� ���

haus�A �t B�A �s B� � jt� sjhaus�A�B��

Proof� The proof of Property � is easily obtained by the observation that�
for every b � �B�a� and � � t � ��

�B�ta � ��� t�b� � fbg�

Otherwise� there is a closer point to a from B� Therefore�

M
�
M�A� t�B�� s�B

�
�
�
s�ta � ��� t�b� � ��� s�b ja � A� b � �B�a�

�
�
�
�ts�a � ��� ts�b ja � A� b � �B�a�

�
� M�A� ts�B��

Properties ��� follow from the de�nition� Property � is proved in ����
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To prove Property �� we note that since A � B� A � A � B � B�
By Property �� M�A� t�B� � M�A � B� t�B� � M�B� � � t� A�� therefore
A�t B �M�B� � � t� A�� Hence� by Property � and the convexity of B�

A � A �B �M�B� � � t� A� � A�t B � co�A 	B� � B�

Thus� it remains to prove that M�B� � � s�A� � M�B� � � t� A�� This is
easily established by the convexity of B� which yields that� for each b � B and
a � �A�b�� the whole segment �a� ta � �� � t�b� is a subset of M�B� � � t� A��
Since� for s 
 t� �a� sa � �� � s�b� � �a� ta � �� � t�b�� the desired inclusion
follows�

Remark ���� In contrast to Property �� the equality tA � �� � t�A � A
with the Minkowski average� is true only if A is convex� Generally� only
an inclusion holds� A � tA � �� � t�A � coA� It is well�known that the
sequence of increasing Minkowski averages of a set A tends to coA� �See e�g��
��� Example �������

Note that A �t B may be non�convex even for convex sets A� B � IRn�
for n 
 � ������

It follows from Property � that A � B �� A � A �t B� In general� in
the nonconvex case� it is not true that A � B �� A �t B � B� This is true
only if B is convex and is proved in Property ��

Example ���� Let the sets A and B in IR� be a ring and its center� respec�
tively�

A �
�
�x� y� � IR� � r� � x� � y� � r�

�
� B �

�
��� ��

�
�

Then it is not hard to see that the metric average of A and B with a weight
t � ��� �� is the t times contracted ring A�

A�t B �
�
�x� y� � IR� � t�r� � x� � y� � t�r�

�
�

x�� Metric Spline Subdivision Schemes for Compact Sets

Given fF �
�g��ZZ� a sequence of compact sets in IRn� we de�ne recursively a

sequence of sequences
�
fF k

�g��ZZ
�
k�ZZ�

of compact sets�

First� we de�ne the initial sets at level k� from the sets at level k � �� by

F k��
�� � F k��

� � F k��
���� � F k��

� � �
�
F k��
��� � � � ZZ� ���

Then� for � � j �m� �� we de�ne the intermediate metric averages

F k�j

���
�

� F k�j��
� � �

�
F k�j��
��� � � � Ij � ���
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where Ij is de�ned in ���� The �nal sets at level k are de�ned as

F k
� � F k�m��

� for m odd� ��

F k
� � F k�m��

�� �
�

for m even� ����

for � � ZZ� with the corresponding piecewise�linear interpolating set�valued
function F k����

F k�t� � F k
��� ��kt�� F

k
� � ���k � t � �� � ����k� � � ZZ� ����

First� we prove two basic metric results which are used in the proof of the
convergence theorem and in the proof of the approximation result�

Lemma ���� Let F k � fF k
� j � � ZZg be dened as above and let

dk � sup
��ZZ

haus�F k
� � F

k
�����

Then
dk � ��kd�� ����

Proof� If we denote

dk�j � sup
��Ij��

haus�F k�j
� � F k�j

����� ����

then it follows from ��� and Property � that

haus�F k��
� � F k��

���� �
�
�d

k��� � � ZZ�

and� therefore
dk�� � �

�d
k��� ����

Also� for � � Ij � by ���� the triangle inequality and Property ��

haus�F k�j

�� �
�

� F k�j

�� �
�

� � haus�F k�j

�� �
�

� F k�j��
� � � haus�F k�j��

� � F k�j

�� �
�

�

� �
�haus�F

k�j��
��� � F k�j��

� � � �
�haus�F

k�j��
� � F k�j��

��� �

� dk�j���

which implies dk�j � dk�j��� and therefore

dk�j � dk��� ����

This� together with ���� yields

dk � dk�m�� � �
�d

k��� ����

hence ���� holds�
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Lemma ���� Let the sequence fF k���gk�ZZ� be dened as above� Then�

haus
�
F k���t�� F k�t�

�
� Cdk� k � ZZ�� ����

where C � �
�
� m

�
� with m the degree of the spline subdivision scheme�

Proof� First� we prove the inequality

haus�F k��
�� � F k

�� �
m� �

�
dk� k � ZZ�� ����

We prove ���� for m odd� The case of m even is similar� By ���� �� and the
triangle inequality we get

haus�F k
� � F

k��
�� � � haus�F k����

�� � F k���m��
�� �

� haus�F k����
�� � F k����

��� �
�

� � haus�F k����

��� �
�

� F k����
�� � � � � �

�haus�F k���m��

��� �
�

� F k���m��
�� ��

It follows by ���� ���� and Property �� that

haus�F k
� � F

k��
�� � �

m��X
j��

�
�d

k���j�

Using ���� and ����� one gets

haus�F k
� � F

k��
�� � �

�m� ��dk����

�
�

�m � ��dk

�
�

Now� we prove ����� Let ���k � t � ��� �
� ��

�k� It follows from ���� and the
metric Property �� that

haus
�
F k
� � F

k�t�
�
� �

�d
k� haus

�
F k���t�� F k��

��

�
� dk���

hence� by the triangle inequality� ����� Property � and ����� we obtain

haus
�
F k���t�� F k�t�

�
� haus

�
F k���t�� F k��

��

�
� haus

�
F k��
�� � F k

�

�
�haus

�
F k
� � F

k�t�
�

� dk�� �
m� �

�
dk � �

�
dk � Cdk�

For �� � �
� ��

�k � t � �� � ����k� we have a similar bound� using F k��
�	���


instead of F k��
�� �

Theorem ���� The sequence fF k���gk�ZZ� converges uniformly to a set�
valued function F����� which is Hausdor� Lipschitz continuous with a Lips�
chitz constant d� � sup

�

haus�F �
�� F

�
�����

Proof� By Lemma ���� ����� and Property �� it follows that� for every �

haus
�
F k�t � ��� F k�t�

�
� ��kdk � �d��
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Hence� the set�valued functions F k��� are uniformly Lipschitz continuous with
the constant d�� By the triangle inequality�

haus
�
F k�M �t�� F k�t�

�
�

k�M��X
i�k

haus
�
F i���t�� F i�t�

�
�

and� by Lemmas ��� and ���� for any positive integer M �

haus
�
F k�M �t�� F k�t�

�
� C

k�M��X
i�k

di � C
d�

�k��
� ���

where C is de�ned in Lemma ���� This implies that� for every t� the sequence
fF k�t�gk is a Cauchy sequence in Kn� and� since Kn is a closed metric space
under the Hausdor� metric� the sequence fF k�t�gk tends� for each t� to a
compact set F��t�� The convergence is uniform in t by ���� The uniform
Lipschitz continuity of fF k���gk yields that F��t� is Lipschitz continuous with
the same constant d��

Theorem ���� Let the set�valued function G��� � IR � Kn be Lipschitz
continuous with a Lipschitz constant L� and let the initial sets be given by
F �
� � G�a � �h�� � � ZZ� for arbitrary a � ��� h�� Then�

haus
�
F k�t�� G�t�

�
� Ckh� for each k � �� �� ���� ����

where F k��� is dened in ����� and

Ck �

�
� �m

�

�
L� k 
 �� C� � �L�

Proof� By ���� the triangle inequality and the metric Property �� we get�
for k 
 � and t satisfying �h � t � ��� ��h�

haus
�
F k�t�� G�t�

�
� haus

�
F k�t�� F ��t�

�
� haus

�
F ��t�� F �

�

�
� haus

�
F �
�� G�t�

�
� �Cd� � d� �Lh � ��C � ��Lh�

where C is de�ned in Lemma ���� Here� we used the Lipschitz condition on
G which yields that d� � Lh� This proves the claim of the theorem� since� for
k � �� the term with C is missing�

Corollary ���� Under the assumptions of Theorem ���� the distance between
the original set�valued function G��� and the limit set�valued function F����
is bounded by

max
t

haus�F��t�� G�t�� �
� �m

�
Lh� ����

Remark ���� The last corollary indicates that the metric spline subdivision
scheme produces good approximations of G��� even for non�convex�valued set�
valued function G��� with non�convex images� An analogous result for spline
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Fig� �� A shell included between two quarters of spheres	
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Fig� �� Four crosssections of the �nal body	

subdivision schemes� based on Minkowski sums of sets� is true only for convex�
valued G���� since� as is shown in ���� the limit set�valued functions generated
by such schemes are convex�valued� The inequality ���� implies that� if the
initial set�valued function G is not convex�valued� then� for small h� the limit
set�valued function F� has non�convex images� which are close to those of G
in the Hausdor� metric�

This approximation property is also attained by F ����� according to The�
orem ���� Yet� it is expected that F� is 	smoother
 than F �� as is indicated
by our numerical tests� In the future work� we intend to develop smoothness
measures for such set�valued functions in order to quantify this statement�

Example ��	� A shell included between two quarters of spheres is represented
in Figure �� This body can be represented by the following set�valued function
F �x�� de�ned� for � � x � �� by

F �x� �
�
�y� z� � IR� j z � �� r�x� � y� � z� � R�x�

�
�

where r�x� � � � x�� R�x� � ������ � x�� Given the initial cross�sections
F ���� F �h�� F ��h�� ���� F ���� we reconstruct this shell by a metric subdivision
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scheme of Chaikin type� and obtain a sequence of piecewise linear �in a metric
sense� set�valued functions F k � �ak� bk� � Kn� where ak � �

� �� � ��k�h�

bk � � � ak� The cross�sections F ��h� � ����i�� i � �� �� �� �� of F �� obtained
after three subdivision iterations from the initial sets as above with h � ������
are presented in Figure �� The maximal error between these cross�sections at
the third iteration and the corresponding cross�sections of the initial object is
������� The calculations and pictures are obtained using MATLAB ��

Remark ��
� The application of Corollary ��� to the reconstruction of �D
objects from their �D cross�sections� as in Example ���� is not as wide as
might be expected� It is very easy to observe that� for a nonconvex compact
�D object� even if its boundaries �outer and inner boundaries� are smooth�
the univariate set�valued function� with images the �D parallel cross�sections
of the object� might be discontinuous at certain points of the boundary� Dis�
continuity points are boundary points with a tangent plane parallel to the
cross�sections planes� and the last planes have empty intersection with the
object in the neighborhood of the contact point� Our conclusion is that a �D
object can be approximated by a spline subdivision scheme� for any direction
of parallel cross�sections� if it is a smooth convex object with smooth convex
holes�

In our approach� we approximate the object 	inside
 its domain� namely�
for those values of the �D variable corresponding to non�empty cross�sections�
Our method� as it is represented here� does not approximate well the object
near the boundary of its domain�
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