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Abstract

Dubuc’s interpolatory four-point scheme inserts a new point by fitting a cubic polynomial to
neighbouring points over uniformly spaced parameter values. In this paper we replace uniform
parameter values by chordal and centripetal ones. Since we update the parameterization at each
refinement level, both schemes are non-linear. We prove convergence of the two schemes and bound
the distance between the limit curve and the initial control polygon. Our numerical examples
indicate that the limit curves are smooth and that the centripetal one is tighter, as suggested by
our bounds.

Keywords: Non-linear subdivision, chordal curve parameterization, centripetal curve parameteriza-
tion, cubic Lagrange interpolation.

1 Introduction
Dubuc’s four-point subdivision scheme [3] is a method for generating a smooth curve passing through
a sequence of points in Rd. The algorithm is based on fitting cubic polynomials to local data, para-
meterized uniformly. This scheme was generalized by Daubechies, Guskov, and Sweldens [2] to allow
non-uniform parameter values. Yet their scheme is linear in the data. Here we generalize further by
determining the parameterization at each refinement level according to the geometry of the points at
that level. We focus on the chordal and centripetal parameterizations [1, 6, 5]. The resulting two
schemes are non-linear and cannot be analyzed by existing techniques.

Specifically, let P0 = {p0,k : k ∈ Z} with p0,k ∈ Rd and p0,k+1 6= p0,k, be the initial set of
control points, and let Pj = {pj,k : k ∈ Z} with pj,k ∈ Rd be the refined set of control points
at level j. These points determine the set of parameter values {tj,k : k ∈ Z} with tj,0 = 0 and
tj,k+1 − tj,k = ‖pj,k+1 − pj,k‖

α for k ∈ Z, where α = 1 gives chordal parameter values and α = 1/2
gives centripetal ones. Note that α = 0 corresponds to uniform parameterization. The refinement rule
is then

pj+1,2k = pj,k,

pj+1,2k+1 = πj,k(t∗),
(1)

where πj,k is the parametric cubic polynomial that interpolates pj,k−1, pj,k, pj,k+1, pj,k+2 at the values
tj,k−1, tj,k, tj,k+1, tj,k+2 and t∗ = (tj,k +tj,k+1)/2; see Figure 1. We note that the four values tj,k−1, tj,k,
tj,k+1, tj,k+2 must be distinct for the Lagrange interpolation to be well-defined. This in turn requires
that each pair of consecutive points pj,k and pj,k+1 be distinct. We assume this property holds for
j = 0 and we prove that it holds for j ≥ 1 for the chordal and centripetal schemes (α = 1 and α = 1/2,
respectively).

We prove convergence of these two schemes and derive upper bounds on the distance between the
limit curve and the initial control polygon. These schemes are very easy to implement and our numerical
examples suggest that the limit curves are C1, like Dubuc’s scheme, but we have not so far been able
to prove this. The numerical examples and our upper bounds indicate that the centripetal limit curve
is tighter than the chordal and Dubuc’s curves.
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Figure 1: Insertion of a new point.

2 Cubic Lagrange interpolation
In order to analyze the schemes we need to establish some properties of cubic Lagrange interpolation.
Consider functional data f0, f1, f2, f3 ∈ R given at the points t0, t1, t2, t3 and let f be the cubic poly-
nomial satisfying f(ti) = fi for i = 0, 1, 2, 3. Further let g be the linear polynomial that interpolates
f1 and f2 at t1 and t2. Let [s0, s1, . . . , sk]f denote the divided difference of f of order k at the points
s0, s1, . . . , sk.

Lemma 1. For t ∈ R,

f(t)− g(t) =
(t− t1)(t− t2)

t3 − t0

(
(t3 − t)[t0, t1, t2]f + (t− t0)[t1, t2, t3]f

)
.

Proof. By inserting the recurrence formula

[t0, t1, t2, t3]f = ([t1, t2, t3]f − [t0, t1, t2]f)/(t3 − t0)

into the Newton form

f(t) = g(t) + (t− t1)(t− t2)[t0, t1, t2]f + (t− t0)(t− t1)(t− t2)[t0, t1, t2, t3]f,

the result follows.

At the midpoint t∗ = (t1 + t2)/2 of the interval [t1, t2], Lemma 1 yields

f(t∗)−
f1 + f2

2
= −1

4
(t2 − t1)

2

t3 − t0

(
(t3 − t∗)[t0, t1, t2]f + (t∗ − t0)[t1, t2, t3]f

)
. (2)

Consider now the subdivision scheme (1) and let dj,k be the vector

dj,k = pj+1,2k+1 − (pj,k + pj,k+1)/2

depicted in Figure 1. Let ej,k = pj,k+1 − pj,k and consider divided differences at level j,

p
[1]
j,k =

pj,k+1 − pj,k

tj,k+1 − tj,k
=

ej,k

‖ej,k‖α

p
[2]
j,k =

p
[1]
j,k+1 − p

[1]
j,k

tj,k+2 − tj,k
=

(
ej,k+1

‖ej,k+1‖α − ej,k

‖ej,k‖α

)
1

‖ej,k+1‖α + ‖ej,k‖α .

Combining Equation (2) with the subdivision rule in (1), we get
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Lemma 2. For all α ∈ [0, 1],

dj,k = −1
4

(tj,k+1 − tj,k)2

a + b + 1
(
(a + 1/2)p[2]

j,k + (b + 1/2)p[2]
j,k−1

)
(3)

with a = (tj,k − tj,k−1)/(tj,k+1 − tj,k) and b = (tj,k+2 − tj,k+1)/(tj,k+1 − tj,k).

Lemma 3. For α = 0 (uniform parameterization),

‖dj,k‖ ≤
1
8

max{‖ej,k−1‖, ‖ej,k+1‖}, (4)

for α = 1/2 (centripetal parameterization),

‖dj,k‖ ≤
1
4
‖ej,k‖, (5)

and for α = 1 (chordal parameterization),

‖dj,k‖ ≤
3
8

max{‖ej,k−1‖, ‖ej,k‖, ‖ej,k+1‖}. (6)

Proof. Consider first the case α = 0. Then

p
[2]
j,k = (ej,k+1 − ej,k)/2,

and since a = b = 1, Equation (3) reduces to

dj,k = − 1
16

(ej,k+1 − ej,k−1),

so that the estimate (4) follows immediately.
In the case α = 1/2, since ‖p[1]

j,k‖ = ‖ej,k‖1/2, we have

‖p[2]
j,k‖ ≤

‖p[1]
j,k+1‖+ ‖p[1]

j,k‖

‖ej,k+1‖1/2 + ‖ej,k‖1/2
= 1,

and using this inequality in (3) gives (5).
To prove (6) we write (3) as

dj,k = −1
4

tj,k+1 − tj,k
a + b + 1

(
A(p[1]

j,k+1 − p
[1]
j,k) + B(p[1]

j,k − p
[1]
j,k−1)

)
,

where
A =

a + 1/2
b + 1

and B =
b + 1/2
a + 1

.

Then, since ‖p[1]
j,k‖ = 1, we get

‖dj,k‖ ≤
1
4

‖ej,k‖
a + b + 1

(A + |A−B|+ B).

Now suppose that a ≥ b. Then A ≥ B and

‖dj,k‖ ≤
1
4

‖ej,k‖
a + b + 1

2a + 1
b + 1

≤ 2a + 1
4(a + 1)

‖ej,k‖. (7)

For a ≤ 1, this immediately gives

‖dj,k‖ ≤
3
8
‖ej,k‖,

and for a ≥ 1, since a = ‖ej,k−1‖/‖ej,k‖, we have

‖dj,k‖ ≤
2a + 1

4a(a + 1)
‖ej,k−1‖ ≤

3
8
‖ej,k−1‖.

Since the opposite case a ≤ b is similar with ‖ej,k+1‖ replacing ‖ej,k−1‖, Equation (6) follows.
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We are now able to show that the centripetal and chordal subdivision schemes are well-defined.

Theorem 1. For α = 1/2 and α = 1 any two consecutive points pj,k and pj,k+1 are distinct.

Proof. It is sufficient to show that

‖dj,k‖ <
1
2
‖ej,k‖.

In the centripetal case, α = 1/2, this follows immediately from (5). In the chordal case, α = 1, it follows
from (7) if a ≥ b and similarly for a ≤ b.

3 Convergence
In this section we prove the convergence of the centripetal and the chordal schemes. A key ingredient of
the proof is the fact that the edge lengths ‖ej,k‖ converge to zero as j increases, which follows directly
from Lemma 3.

Lemma 4. For α = 0,

max{‖ej+1,2k‖, ‖ej+1,2k+1‖} ≤
5
8

max{‖ej,k−1‖, ‖ej,k‖, ‖ej,k+1‖},

for α = 1/2,

max{‖ej+1,2k‖, ‖ej+1,2k+1‖} ≤
3
4
‖ej,k‖, (8)

and for α = 1,

max{‖ej+1,2k‖, ‖ej+1,2k+1‖} ≤
7
8

max{‖ej,k−1‖, ‖ej,k‖, ‖ej,k+1‖}. (9)

Proof. By the definition of ej,k and dj,k we have ej+1,2k = ej,k/2 + dj,k and ej+1,2k+1 = ej,k/2− dj,k.
The statement then follows by using the triangle inequality and the bounds on ‖dj,k‖ from Lemma 3.

Next, we represent each polygon Pj parametrically as the continuous piecewise linear function
f j : R → Rd that interpolates the data (2−jk,pj,k) and show that the sequence f0,f1, . . . is a Cauchy
sequence in the sup norm.

Theorem 2. The centripetal and chordal subdivision schemes converge.

Proof. Since
‖f j+1 − f j‖∞ = sup

t∈R
‖f j+1(t)− f j(t)‖ = sup

k∈Z
‖dj,k‖,

it follows from Lemma 3 that
‖f j+1 − f j‖∞ ≤ 3

8
sup
k∈Z

‖ej,k‖.

Since by Lemma 4,
sup
k∈Z

‖ej,k‖ ≤ µ sup
k∈Z

‖ej−1,k‖ ≤ · · · ≤ µj sup
k∈Z

‖e0,k‖, (10)

with µ < 1, the sequence {f j : j ∈ N0} is a Cauchy sequence in the sup norm and therefore converges
to a continuous limit

f = lim
j→∞

f j .

We note that the estimates (6) in Lemma 3 and (9) in Lemma 4 actually hold for all α ∈ [0, 1] if the
scheme is well-defined, so that the above proof implies convergence in that case. However, we found
examples for α ∈ (0, 1/2) where the scheme fails because it generates identical consecutive points.
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4 Distance bounds
In a similar way that Lemma 3 led to the convergence proof in the previous section, the same lemma
can also be used to derive upper bounds on the Hausdorff distance dH between the piece of the limit
curve {f(s) : s ∈ [k, k + 1]} and the line segment [p0,k,p0,k+1]. In order to prove these bounds, let us
first establish a local variant of the estimate in Equation (10).

Lemma 5. For α = 0,

max
2jk−2≤i≤2j(k+1)+1

‖ej,i‖ ≤
(

5
8

)j

max
k−2≤`≤k+2

‖e0,`‖,

for α = 1/2,

max
2jk≤i≤2j(k+1)−1

‖ej,i‖ ≤
(

3
4

)j

‖e0,k‖,

and for α = 1,

max
2jk−2≤i≤2j(k+1)+1

‖ej,i‖ ≤
(

7
8

)j

max
k−2≤`≤k+2

‖e0,`‖.

Proof. Since all the control points at level j between p0,k = pj,2jk and p0,k+1 = pj,2j(k+1) depend only
on the six initial points p0,k−2,p0,k−1, . . . ,p0,k+3, the first and third inequalities follow from Lemma 4
by induction on j. The second inequality also follows by induction on j from (8) in Lemma 4.

The upper bound on the Hausdorff distance now follows from this lemma and Lemma 3.

Theorem 3. For α = 0,

dH

(
f([k, k + 1]), [p0,k,p0,k+1]

)
≤ 3

13
max

k−2≤`≤k+2
‖e0,`‖,

for α = 1/2,

dH

(
f([k, k + 1]), [p0,k,p0,k+1]

)
≤ 5

7
‖e0,k‖,

and for α = 1,

dH

(
f([k, k + 1]), [p0,k,p0,k+1]

)
≤ 11

5
max

k−2≤`≤k+2
‖e0,`‖.

Proof. Let sj,i = 2−ji and consider the difference between f j+2 and f j . Since

f j+2(s)− f j(s) =


0, s = sj+2,4i,

dj,i/2 + dj+1,2i, s = sj+2,4i+1,

dj,i, s = sj+2,4i+2,

dj,i/2 + dj+1,2i+1, s = sj+2,4i+3,

we have

sup
sj,i≤s≤sj,i+1

‖f j+2(s)− f j(s)‖ ≤ max{‖dj,i‖/2 + ‖dj+1,2i‖, ‖dj,i‖, ‖dj,i‖/2 + ‖dj+1,2i+1‖}.

Using Lemma 3 and Lemma 4 we get the estimates

max{‖dj+1,2i‖, ‖dj+1,2i+1‖} ≤



5
64 max

i−2≤`≤i+2
‖ej,`‖, α = 0,

3
16‖ej,i‖, α = 1/2,

21
64 max

i−2≤`≤i+2
‖ej,`‖, α = 1,
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Figure 2: Examples of the four-point schemes.

and conclude that

sup
sj,i≤s≤sj,i+1

‖f j+2(s)− f j(s)‖ ≤



9
64 max

i−2≤`≤i+2
‖ej,`‖, α = 0,

5
16‖ej,i‖, α = 1/2,

33
64 max

i−2≤`≤i+2
‖ej,`‖, α = 1.

Considering now all intervals [sj,i, sj,i+1] between k and k + 1, that is, 2jk ≤ i ≤ 2j(k + 1) − 1, and
taking Lemma 5 into account, we have

sup
k≤s≤k+1

‖f j+2(s)− f j(s)‖ ≤



9
64

(
5
8

)j max
k−2≤`≤k+2

‖e0,`‖, α = 0,

5
16

(
3
4

)j ‖e0,k‖, α = 1/2,

33
64

(
7
8

)j max
k−2≤`≤k+2

‖e0,`‖, α = 1.

The statement then follows because the Hausdorff distance is clearly bounded from above by the para-
metric distance between f and f0,

dH

(
f([k, k + 1]), [p0,k,p0,k+1]

)
≤ sup

k≤s≤k+1
‖f(s)− f0(s)‖ ≤

∞∑
j=0

sup
k≤s≤k+1

‖f2j+2(s)− f2j(s)‖,

and by noticing that 9
64

∑∞
j=0

(
5
8

)2j = 3
13 , 5

16

∑∞
j=0

(
3
4

)2j = 5
7 , and 33

64

∑∞
j=0

(
7
8

)2j = 11
5 .

5 Numerical examples
We have implemented Dubuc’s scheme and its non-linear siblings corresponding to α = 1/2 and α = 1
in C++. Figure 2 shows the different limit curves for several initial control polygons. The plots confirm
the well-known effect that Dubuc’s scheme tends to give curves that are very tight to long edges and
overshoot at short ones, often leading to unwanted cusps and loops. On the other hand, the non-linear
chordal scheme leads to very roundish shapes that closely follow the short edges and have relatively
large distance to the long ones. The limit curves of the centripetal scheme nicely mediate between these
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Figure 3: Shape effect over a rectangular control polygon.

two extremes: they are relatively close to all initial edges and still have a pleasing shape. Similar effects
are known for cubic spline interpolation with uniform, centripetal, and chordal parameterization [4].

Another example that illustrates these shape effects is given in Figure 3 which shows the local
behaviour of the limit curve over the top edge of a rectangle with fixed width 1 and varying height h.
The dots mark the vertices of the refined polygon after four subdivision steps.
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