
Polynomial Reproduction by Symmetric Subdivision Schemes

Nira Dyn
School of Mathematical Sciences

Tel Aviv University

Malcolm A. Sabin
Computer Laboratory

University of Cambridge

Kai Hormann
Department of Informatics

Clausthal University of Technology

Zuowei Shen∗

Department of Mathematics
National University of Singapore

Abstract

We first present necessary and sufficient conditions for a linear, binary, uniform, and stationary sub-
division scheme to have polynomial reproduction of degree d and thus approximation order d + 1.
Our conditions are partly algebraic and easy to check by considering the symbol of a subdivision
scheme, but also relate to the parameterization of the scheme. After discussing some special prop-
erties that hold for symmetric schemes, we then use our conditions to derive the maximum degree
of polynomial reproduction for two families of symmetric schemes, the family of pseudo-splines and
a new family of dual pseudo-splines.

Keywords: subdivision schemes, polynomial reproduction, polynomial generation, approximation
order, quasi-interpolation.

1 Introduction

This paper investigates certain aspects of subdivision schemes in the functional setting. We follow the
notation of Dyn and Levin [2002] and consider uniform and stationary subdivision schemes Sa that are
determined by their masks a = (ai)i∈Z. Starting from some initial data f0 = (f0

i )i∈Z with f0
i ∈ R at

level zero, such a scheme generates refined data fk+1 = (fk+1
i )i∈Z at subsequent levels k + 1 for any

k ∈ N0 according to the refinement equation

fk+1
i =

∑
j∈Z

ai−2jf
k
j , i ∈ Z. (1)

The refinement rule (1) can be split into an even and an odd rule,

fk+1
2i =

∑
j∈Z

a2(i−j)f
k
j and fk+1

2i+1 =
∑
j∈Z

a2(i−j)+1f
k
j , (2)

to emphasize the fact that only the mask coefficients ai with even indices are used to compute the new
data with even indices, and that the new data with odd indices depends only on the mask coefficients ai

with odd indices. In this paper we consider only schemes with a finite number of non-zero coefficients
in their masks.

It is also common to attach the data fk
i to some parameter values tki with tki < tki+1 such that

tki+1 − tki = 2−k for i ∈ Z and to define F k to be the piecewise linear function that interpolates the
data, namely

F k(tki ) = fk
i , F k|[tk

i ,tk
i+1]

∈ π1, i ∈ Z, k ∈ N0,

∗The author was partially supported under Grant R-146-000-060-112 at the National University of Singapore.
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where πd denotes the space of polynomials of degree d. If the sequence (F k)k∈N0
converges, then we

denote its limit by
S∞a f0 = lim

k→∞
F k

and say that S∞a f0 is the limit function of the subdivision scheme Sa for the data f0. If S∞a f0 exists
for any f0, then Sa is termed convergent. We restrict most of our discussion to non-singular schemes
for which S∞a f0 ≡ 0 if and only if f0 ≡ 0.

The main contribution of this paper is twofold. In Section 4 we first derive necessary and sufficient
conditions for a subdivision scheme to have polynomial reproduction in the following sense.

Definition 1.1 (Polynomial reproduction). A subdivision scheme Sa reproduces polynomials of degree d
if it is convergent and if S∞a f0 = p for any polynomial p ∈ πd and initial data f0

i = p(t0i ), i ∈ Z.

In Section 6 we then use these conditions to derive the maximum degree of polynomial reproduction
for the members of two general families of subdivision schemes. One is the family of pseudo-splines
(of type II) [Dong and Shen, 2007] that contains the schemes for uniform B-splines with odd degree
and the 2n-point interpolatory schemes of Deslauriers and Dubuc [1989] as special cases. The other
is a new family that we call dual pseudo-splines. It nicely complements the family of pseudo-splines
and contains the even degree B-splines and the dual 2n-point schemes [Dyn et al., 2005] as special
cases. While dealing with polynomial reproduction requires only simple algebraic considerations, we
plan to use Fourier analysis to derive further properties of these subdivision schemes like smoothness
and non-singularity.

Polynomial reproduction is a desirable property because any convergent subdivision scheme that
reproduces polynomials of degree d has approximation order d+1. That is, if we take the values of any
function f ∈ Cd+1 with ‖f (d+1)‖∞ < ∞ at uniform grids of width h, then the limit functions generated
by the subdivision scheme from such initial data converge to f as h → 0 and the rate of convergence
is O(hd+1) [Levin, 2003]. In fact, pseudo-splines (of type I) were first introduced by Daubechies et al.
[2003] to obtain tight framelet systems with a desirable approximation order.

A simple observation regarding polynomial reproduction is that any convergent scheme reproduces
constant functions. In fact, it was shown by Cavaretta et al. [1991] and Dyn [1992] that if Sa is
convergent then ∑

i∈Z
a2i =

∑
i∈Z

a2i+1 = 1. (3)

Therefore, any initial constant data f0 ≡ c is reproduced by the refinement rules (2) and hence F k ≡ c
for all k ∈ N0. While the choice of parameter values tki does not matter in this particular case, we shall
see in Section 2 that it plays a crucial role for polynomial reproduction of higher degree.

In this paper, we restrict our discussion to primal and dual parameterizations (see Section 2) and the
results of Section 4 allow us to conclude that for symmetric subdivision schemes the maximum degree
of polynomial reproduction is achieved by using the primal parameterization in case of odd symmetry,
whereas the dual parameterization has to be used if the symmetry is even (see Section 5). For non-
symmetric schemes, although the results of Sections 3 and 4 hold, it is possible to achieve a higher
degree of polynomial reproduction by other parameterizations. This will be investigated elsewhere.

2 Parameterization

As the choice of specific parameter values tki affects neither the convergence of a subdivision scheme Sa

nor the smoothness of its limit functions, most standard tools for analysing both properties [Cavaretta
et al., 1991; Dyn and Levin, 2002] simply use the parameterization that we refer to as the primal
parameterization.

Definition 2.1 (Primal parameterization). The primal parameterization of a subdivision scheme is based
on the parameter values

tki = i/2k, i ∈ Z, k ∈ N0, (4)
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Figure 1: Primal parameterization.
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Figure 2: Dual parameterization.

so that tk+1
2i = tki and tk+1

2i+1 = (tki + tki+1)/2. Accordingly, we can say that each subdivision step replaces
the old data fk

i by the new data fk+1
2i with even indices and the new data fk+1

2i+1 with odd indices is added
halfway between the old data fk

i and fk
i+1 (see Figure 1).

But in so far as the polynomial reproduction property of Sa is concerned, this parameterization does
not always yield the highest degree possible. Motivated by the following example, we also consider the
dual parameterization in this paper.

Definition 2.2 (Dual parameterization). The dual parameterization of a subdivision scheme attaches the
data fk

i to the parameter values

tki = (i− 1
2 )/2k, i ∈ Z, k ∈ N0, (5)

with tk+1
2i−1 = (tki−1 + 3tki )/4 and tk+1

2i = (3tki + tki+1)/4. In this setting, each subdivision step replaces
the old data fk

i by the new data fk+1
2i−1 and fk+1

2i , one to the left, the other to the right, and both at one
quarter the distance to the neighbours fk

i−1 and fk
i+1 (see Figure 2).

Note that the parameter values in (4) and (5) differ only by a shift of 1/2k+1 that vanishes as k →∞,
so that the limit function S∞a f0 for any fixed initial data f0 is the same, no matter which of the two
parameterizations is used. However, in the context of polynomial reproduction there still remains an
important difference, because the initial data with respect to the primal parameterization is f0

i = p(i),
whereas f0

i = p(i− 1/2) is used in the case of the dual parameterization.
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For example, let us consider the uniform linear B-spline scheme with mask [a−1, a0, a1] = [ 12 , 1, 1
2 ]

and assume the initial data to be sampled from the linear polynomial p(x) = x, that is, f0
i = t0i . If the

primal parameter values in (4) are used, then it is easy to see that (S∞a f0)(x) = x, whereas the dual
parameter values in (5) give the limit function x − 1/2. On the other hand, the limit function of the
uniform quadratic B-spline scheme with mask [a−2, a−1, a0, a1] = [14 , 3

4 , 3
4 , 1

4 ] is x + 1/2 for the primal
and x for the dual parameterization. Both examples are special cases of schemes with a symmetric
mask, and we shall come back to such schemes in Section 5.

3 Polynomial Generation

An obvious necessary condition for a subdivision scheme Sa to reproduce polynomials of degree d is
that it must be able to generate polynomials of the same degree as limit functions for some initial data.
For the kind of subdivision schemes that we consider, this property is equivalent to a simple condition
on the mask a that can best be stated by using the algebraic formalism of z-transforms.

Definition 3.1 (z-transform). For any sequence c = (ci)i∈Z we denote by

c(z) =
∑
i∈Z

ciz
i

its z-transform and the even and odd components of the z-transform by

ce(z) =
∑
i∈Z

c2iz
2i and co(z) =

∑
i∈Z

c2i+1z
2i+1.

Obviously,
c(z) = ce(z) + co(z), ce(z) =

(
c(z) + c(−z)

)
/2,

c(−z) = ce(z)− co(z), co(z) =
(
c(z)− c(−z)

)
/2.

(6)

Moreover, we can now write the refinement rule (1) as

fk+1(z) = a(z)fk(z2) (7)

and the even and odd rules (2) as

fk+1
e (z) = ae(z)fk(z2) and fk+1

o (z) = ao(z)fk(z2).

Note that the z-transform a(z) of the mask a is usually called the symbol of the scheme Sa and that
a(z) is a Laurent polynomial, as we consider only schemes with masks consisting of a finite number of
non-zero coefficients.

Theorem 3.2 (Polynomial generation). For a non-singular subdivision scheme Sa the condition

(PG) a(z) is divisible by (1 + z)dG+1

is equivalent to the property that there exists for any polynomial p of degree d ≤ dG some initial data
f0 such that S∞a f0 = p. Moreover, f0 is sampled from a polynomial of the same degree and with the
same leading coefficient. In other words, there exists some q ∈ πd such that f0

i = q(t0i ) for i ∈ Z and
p− q ∈ πd−1.

This theorem is proved in a more general setting by Cavaretta et al. [1991, Chapter 6]

Remark 3.3. The non-singularity of the scheme Sa is actually not required for the sufficiency of con-
dition (PG) for polynomial generation, but only needed to show its necessity (see also Dyn and Levin
[2002] and [Warren and Weimer, 2001, Theorem 3.7]).

Levin [2003] showed that any subdivision scheme Sa that generates polynomials of degree d can
also reproduce polynomials of the same degree if the initial data is pre-processed by a suitable linear
operator Q, so that the combination of S∞a and Q gives a quasi-interpolation operator with optimal
approximation order d + 1. In the next section, however, we derive conditions on the symbol a(z) that
guarantee Sa to reproduce polynomials up to degree d without the need for any pre-processing.
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4 Polynomial Reproduction

Let us start by introducing the following definition of data that is generated by uniformly sampling a
polynomial.

Definition 4.1 (Polynomial data). A sequence g = (gi)i∈Z is called polynomial data of degree d if there
exists a polynomial p ∈ πd such that gi = p(i) for all i ∈ Z.

If we denote by ∆` the `-th order finite difference operator on sequences,

∆`g = (∆`gi)i∈Z with ∆`gi =
∑̀
j=0

(−1)j

(
`

j

)
gi−j ,

then such polynomial data is characterized by having vanishing finite differences of order d + 1, namely

∆d+1g ≡ 0,

which in terms of z-transforms translates to the condition

(1− z)d+1
g(z) = 0. (8)

Interestingly, (1− z)d+1 is essentially the only Laurent polynomial that annihilates the z-transforms of
all polynomial data of degree d.

Lemma 4.2. The Laurent polynomial b(z) is divisible by (1− z)d+1 if and only if

b(z)g(z) = 0 (9)

for any polynomial data g of degree d.

Proof. The necessity of condition (9) follows immediately from (8). In order to show the sufficiency we
will prove by induction that there exist Laurent polynomials r0, . . . , rd such that

b(z) = (1− z)k+1
rk(z) (10)

for k = 0, . . . , d. We start with k = 0 and let g be any polynomial data of degree 0 so that its z-transform
is

g(z) = c
∑
i∈Z

zi

for some c ∈ R. Then

b(z)g(z) =
( ∑

i∈Z
biz

i
)(

c
∑
j∈Z

zj
)

= c
∑
j∈Z

zj
( ∑

i∈Z
bi

)
= 0

for any c ∈ R and therefore ∑
i∈Z

bi = b(1) = 0.

In other words, b(z) has a root at z = 1 and there exists some r0(z) with b(z) = (1− z)r0(z).
Now assume that (10) holds for some k < d and let g be any polynomial data of degree k + 1.

By taking the finite differences of degree k + 1 of g we get the constant sequence f = ∆k+1g with
z-transform

f(z) = (1− z)k+1
g(z).

From (9) and (10) we then have

b(z)g(z) = rk(z)(1− z)k+1
g(z) = rk(z)f(z) = 0,

and with the same arguments as in the case k = 0 we conclude that there exists some rk+1(z) with
rk(z) = (1− z)rk+1(z). Therefore,

b(z) = (1− z)k+1
rk(z) = (1− z)k+2

rk+1(z),

which completes the induction step.
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The following equivalence then is an immediate consequence of Theorem 3.2 and Lemma 4.2.

Corollary 4.3. A subdivision scheme Sa generates polynomials of degree d if and only if

a(z)g(−z) = 0 (11)

for any polynomial data g of degree d.

Proof. Theorem 3.2 states that the symbol a(z) of a subdivision scheme that generates polynomials of
degree d is divisible by (1 + z)d+1 so that the Laurent polynomial b(z) = a(−z) is divisible by (1− z)d+1.
By Lemma 4.2 this is equivalent to the property that b(z)g(z) = a(−z)g(z) = 0 for any polynomial
data g of degree d, hence the statement follows by replacing z with −z in (11).

We further need the notion of stepwise polynomial reproduction, which is in fact equivalent to
polynomial reproduction in the limit for non-singular subdivision schemes.

Definition 4.4 (Stepwise polynomial reproduction). We say that Sa reproduces polynomial data of degree
d in each subdivision step if the data fk with fk

i = p(tki ) is refined to fk+1 with fk+1
i = p(tk+1

i ), i ∈ Z
for any p ∈ πd and k ∈ N0.

Corollary 4.5. A subdivision scheme Sa that reproduces polynomial data of degree d in each subdivision
step also reproduces polynomials of degree d and vice versa.

Proof. For any p ∈ πd let f0 be the initial data with f0
i = p(t0i ), i ∈ Z. If Sa reproduces this data in

each subdivision step, then

F k(tki ) = fk
i = p(tki ), i ∈ Z, k ∈ N0,

so that (F k)k∈N0
is a sequence of piecewise linear approximations to p over uniform grids of width

h(k) = 1/2k and thus clearly converges to p as k →∞.
We now assume that Sa reproduces polynomials of degree d and let k ∈ N0. On the one hand,

applying the subdivision scheme to the data fk with fk
i = p(tki ) gives p = S∞a fk = S∞a fk+1, but on

the other we also get p = S∞a gk+1 as the limit function for the data gk+1 with gk+1
i = p(tk+1

i ). By the
linearity of the operator S∞a we then have S∞a (fk+1 − gk+1) ≡ 0 and as we consider only non-singular
schemes, this implies fk+1 = gk+1.

Note that a similar equivalence holds between stepwise polynomial generation and the generation
of polynomials in the limit. We can now establish our conditions for the reproduction of polynomials
that are similar to the one for polynomial generation in Theorem 3.2.

Theorem 4.6 (Primal polynomial reproduction). If Sa is a subdivision scheme that generates polynomials
of degree dG, then it reproduces polynomials of degree dR ≤ dG with respect to the primal parameteriza-
tion if and only if

(PR1) a(z)− 2 is divisible by (1− z)dR+1
.

Proof. Because of Corollary 4.5, it suffices to show that condition (PR1) is equivalent to the property
that Sa reproduces polynomial data of degree dR in each subdivision step. To this end, let tki be the
parameter values from (4) and p ∈ πdR , so that the sequences fk and g with fk

i = p(tki ) and gi = p(tk+1
i ),

i ∈ Z are both polynomial data of degree dR. Since fk
i = g2i, we have

fk(z2) =
∑
i∈Z

fk
i z2i =

∑
i∈Z

g2iz
2i = ge(z) =

(
g(z) + g(−z)

)
/2

and refining the data fk with the subdivision scheme gives, in view of (7),

fk+1(z) = a(z)fk(z2) = a(z)g(z)/2 + a(z)g(−z)/2 = a(z)g(z)/2,
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where the last identity follows from (11). On the other hand, g(z) = fk+1(z), and hence the data fk is
reproduced by subdivision with Sa if and only if

a(z)g(z) = 2g(z),

which, according to Lemma 4.2, is equivalent to (PR1).

Theorem 4.7 (Dual polynomial reproduction). If Sa is a subdivision scheme that generates polynomials
of degree dG, then it reproduces polynomials of degree dR ≤ dG with respect to the dual parameterization
if and only if

(PR2) a(z2)z − 2 is divisible by (1− z)dR+1

Proof. Due to Corollary 4.5, it is again sufficient to show that condition (PR2) is equivalent to the
property of stepwise polynomial reproduction. Let tki be the parameter values from (5) and p ∈ πdR ,
so that the sequences fk, g, and h with fk

i = p(tki ), gi = p((i− 1)/2k+1), and hi = p((i− 1)/2k+2) for
i ∈ Z are all polynomial data of degree dR. Since fk

i = g2i, we conclude as in the proof of Theorem 4.6
that

fk+1(z) = a(z)g(z)/2. (12)

Noting that gi = h2i−1, we further have

g(z2) =
∑
i∈Z

giz
2i =

∑
i∈Z

h2i−1z
2i−1z = ho(z)z (13)

and therefore
fk+1(z2) = a(z2)ho(z)z/2.

If (PR2) holds, then we know from Lemma 4.2 that

a(z2)h(z)z = 2h(z)

and therefore
a(z2)h(−z)z = −2h(−z)

for any polynomial data h of degree dR. Thus

fk+1(z2) = a(z2)ho(z)z/2 =
(
a(z2)h(z)z − a(z2)h(−z)z

)
/4 =

(
h(z) + h(−z)

)
/2 = he(z).

Comparing the coefficients of fk+1(z2) and he(z), we see that fk+1
i = h2i = p(tk+1

i ) for all i ∈ Z,
hence Sa reproduces polynomials of degree dR. On the other hand, if the scheme has the property that
fk+1

i = h2i, then by (12) and (13) we have

a(z2)ho(z)z/2 = he(z)

for any polynomial data h of degree dR and in particular for the data h̃ with h̃i = hi+1, so that

a(z2)he(z)z/2 = a(z2)h̃o(z)z2/2 = h̃e(z)z = ho(z).

Combining both identities then gives

a(z2)h(z)z =
(
a(z2)he(z)z + a(z2)ho(z)z

)
= 2

(
ho(z) + he(z)

)
= 2h(z)

and condition (PR2) follows from Lemma 4.2.

Remark 4.8. Note that the non-singularity of the scheme Sa is only needed in the second half of the
proof of Corollary 4.5 and is thus not required for the sufficiency of the conditions (PR1) and (PR2) for
polynomial reproduction.
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As mentioned above, the degree dR of polynomial reproduction can never exceed the degree dG of
polynomial generation. We shall now derive an interesting observation in the case that dG > dR. From
Theorem 3.2 we know that for any polynomial p of degree d with dG ≥ d > dR there exists some
polynomial q ∈ πd such that p is the limit function for the initial data f0 sampled from q, and that
p− q ∈ πd−1. The examples from Levin [2003] further suggest that even the two leading coefficients of
p and q agree, that is, p− q ∈ πd−2. This is in fact confirmed by the following more general statement.

Corollary 4.9. Let Sa be a convergent subdivision scheme with generation degree dG and reproduction
degree dR. If p and q are polynomials of degree d ≤ dG such that p = S∞a f0 for f0

i = q(t0i ), i ∈ Z, then
p and q have the same dR + 1 leading coefficients.

Proof. We start by extending the definition of the finite difference operator ∆` to functions, that is,

(∆`f)(x) =
∑̀
j=0

(−1)j

(
`

j

)
f(x− j).

A useful identity that follows immediately from the linearity of the operator S∞a and the relation

(S∞a f0
·+i)(x) = (S∞a f0)(x + i)

is that the operators S∞a and ∆` commute [Dyn and Levin, 2002],

∆`(S∞a f0) = S∞a (∆`f0). (14)

Now let g0 = ∆d−dRf0 be the polynomial data of degree dR that is sampled from the polynomial
∆d−dRq. It then follows from the reproduction property of Sa that the corresponding limit function is

S∞a g0 = ∆d−dRq.

Due to (14) we also have

∆d−dRp = ∆d−dR(S∞a f0) = S∞a (∆d−dRf0) = S∞a g0,

and conclude that ∆d−dR(p − q) ≡ 0. This implies that the degree of the polynomial p − q is at most
d− dR − 1 and so the first dR + 1 leading coefficients of p and q must be identical.

5 Symmetric Schemes

Let us now investigate the conditions for reproduction of polynomials of low degree in more detail.
According to condition (PG), the generation of constant functions requires the symbol a(z) to have a
zero at z = −1, and it follows from conditions (PR1) and (PR2) that the scheme further reproduces
these functions with respect to the primal as well as the dual parameterization if and only if a(1) = 2.
Combining both conditions, a subdivision scheme Sa reproduces constant polynomials if and only if

a(−1) = 0 and a(1) = 2 ⇐⇒ ae(1) = ao(1) = 1,

where the equivalence to the conditions on the right follows from (6). Note that these latter conditions
are further equivalent to the ones in Equation (3) and thus confirm our previous observation that any
convergent subdivision scheme reproduces constant functions, regardless of the chosen parameterization.

To check reproduction of linear polynomials we have to find out if the roots z = 1 and z = −1 are
double roots of a(z) and a(z) − 2 (or a(z2)z − 2), respectively. It then follows that any scheme with
constant reproduction also reproduces linear functions if and only if

a′(−1) = 0 and a′(1) = 0 (or a′(1) = −1), (15)

8



where the two options in the second condition refer to the primal and the dual parameterization, respec-
tively. Obviously, a scheme cannot reproduce linear functions with respect to both parameterizations,
and the value a′(1) actually tells which of the two should be chosen.

For example, the uniform degree m B-spline schemes all reproduce constant functions, because their
general symbol

bm(z) = 2−m(1 + z)m+1
zn, n ∈ Z,

clearly fulfills the conditions bm(−1) = 0 and bm(1) = 2. For m > 0 we further have b′m(−1) = 0 and
b′m(1) = m + 1 + 2n. Now, by appropriately shifting the symbol with the choice n = −dm+1

2 e, b′m(1)
evaluates to 0 for odd m and to −1 for even m, thus confirming the known fact that all but the piecewise
constant B-splines reproduce linear functions with respect to the appropriate parameterization.

The B-spline schemes are particular examples of odd and even symmetric subdivision schemes,
and we can show more generally which parameterization to choose in order to have at least linear
reproduction.

Definition 5.1 (Symmetric schemes). A subdivision scheme Sa is called odd symmetric if

a−i = ai, i ∈ Z,

and even symmetric if
a−i = ai−1, i ∈ Z.

In terms of Laurent polynomials, these conditions translate to a(z) = a(1/z) and a(z)z = a(1/z),
respectively.

Corollary 5.2. In order to achieve as high degrees of polynomial reproduction as possible, the primal
parameterization should be used for odd symmetric schemes and the dual parameterization for schemes
with even symmetry.

Proof. If Sa is odd symmetric, then by taking the derivative on both sides of the condition a(z) = a(1/z)
we get

a′(z) = −a′(1/z)/z2,

which implies a′(−1) = a′(1) = 0. Thus, according to (15), it is impossible for an odd symmetric
scheme to reproduce linear functions with respect to the dual parameterization. However, linear repro-
duction with respect to the primal parameterization comes for free for any such scheme that reproduces
constants.

If Sa is even symmetric, then the condition a(z)z = a(1/z) gives

a′(z)z + a(z) = −a′(1/z)/z2.

In particular a(−1) = 0 and a′(1) = −a(1)/2. Hence, if the scheme reproduces constants then a′(1) =
−1, so that linear functions with respect to the primal parameterization cannot be reproduced. On the
other hand, linear reproduction with respect to the dual parameterization is guaranteed for all even
symmetric schemes that reproduce constants and generate linear polynomials.

These observations encourage us to always use the appropriate parameterization for odd and even
symmetric schemes by default and call them primal and dual schemes, respectively.

In the proof of the previous corollary some of the conditions for the generation and reproduction
of linear functions follow directly from the symmetry of the schemes. These are in fact special cases
of two more general propositions regarding the degrees of polynomial generation and reproduction of
symmetric schemes.

Corollary 5.3. A symmetric subdivision scheme Sa generates polynomials up to a degree of the same
parity as the parity of its symmetry.
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Proof. Let dG be the maximal degree of polynomial generation of the scheme Sa. Then, according to
condition (PG), there exists a Laurent polynomial r(z) such that

a(z) = (1 + z)dG+1
r(z).

For a scheme with odd symmetry we have

a(z) = a(1/z) = (1 + 1/z)dG+1
r(1/z) = (1 + z)dG+1

z−dG−1r(1/z),

so that
zdG+1r(z) = r(1/z).

If we assume dG to be even, then substituting z = −1 gives

−r(−1) = r(−1),

showing that r(z) contains 1 + z as a factor, which in turn contradicts the assumption that dG is
maximal. Therefore, dG is always odd for schemes with odd symmetry and a similar argument shows
that dG is always even for schemes with even symmetry.

Corollary 5.4. Let Sa be a symmetric subdivision scheme with the appropriate parameterization. Then
Sa reproduces polynomials up to an odd degree, provided that it generates polynomials up to that degree.

Proof. Let dR be the maximal degree of polynomial reproduction of Sa. Conditions (PR1) and (PR2)
then imply the existence of a Laurent polynomial r(z) with

a(z)− 2 = (1− z)dR+1
r(z)

if Sa is odd symmetric and with

a(z2)z − 2 = (1− z)dR+1
r(z)

in case of even symmetry. Using the properties that a(z) = a(1/z) for odd and a(z2)z = a(1/z2)/z for
even symmetric schemes, we conclude in both cases that

(1− z)dR+1
r(z) = (1− 1/z)dR+1

r(1/z),

leading to
(−z)dR+1

r(z) = r(1/z).

Assuming dR to be even and substituting z = 1 then yields

−r(1) = r(1),

so that r(z) is divisible by 1− z, contradicting the assumption that dR is maximal.

6 Two Families of Symmetric Subdivision Schemes

As an application of our results, we shall now derive the degree of polynomial reproduction for the
members of a known family of primal subdivision schemes Sal

m
and a new family of dual subdivision

schemes Sãl
m

. We define the Laurent polynomials

σ(z) =
(1 + z)2

4z
, δ(z) = − (1− z)2

4z
, (16)

and note that σ(z) and δ(z) fulfill the two identities

σ(z) + δ(z) = 1 and δ(z2) = 4σ(z)δ(z). (17)
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Then the symbols of the primal schemes are

al
m(z) = 2 σ(z)m

l∑
i=0

(
m + l

i

)
δ(z)i

σ(z)l−i
, (18)

whereas those of the dual schemes are

ãl
m(z) =

1 + z

z
σ(z)m

l∑
i=0

(
m + 1/2 + l

i

)
δ(z)i

σ(z)l−i
, (19)

with m, l ≥ 0. It follows directly from σ(1/z) = σ(z) and δ(1/z) = δ(z) that the schemes Sal
m(z) and

Sãl
m(z) are odd and even symmetric, respectively.
We note that as shown in Dong and Shen [2006b, Equation (2.5)], the primal schemes are equivalent

to the pseudo-splines of type II that were introduced by Dong and Shen [2007] for the construction of
symmetric framelets whose truncated framelet series has a desirable approximation order.

Theorem 6.1. The primal subdivision schemes with symbols al
m(z) reproduce polynomials up to degree

min(2m− 1, 2l + 1).

Proof. It follows directly from (18) that al
m(z) is divisible by (1 + z)2m, hence the scheme generates

polynomials of degree 2m−1. It is further clear that this is the maximal degree of polynomial generation
because the remainder r(z) = al

m(z)/(1 + z)2m evaluates to r(−1) = 2(−1/4)m(
m+l

l

)
6= 0 at z = −1.

According to (17) we have (σ + δ)m+l = 1 and by applying the binomial theorem to the left hand side,
we can write al

m(z) as

al
m(z) = 2− 2

m+l∑
i=l+1

(
m + l

i

)
δ(z)i

σ(z)m+l−i = 2− 2 δ(z)l+1
m∑

i=1

(
m + l

i + l

)
δ(z)i−1

σ(z)m−i
,

showing that al
m(z)−2 is clearly divisible by (1− z)2l+2. This is again maximal, because the remainder

r̃(z) = (al
m(z)− 2)/(1− z)2l+2 evaluates to r̃(1) = −2(−1/4)l+1(m+l

1+l

)
6= 0. The statement then follows

from Theorems 3.2 and 4.6.

This result was first shown by Dong and Shen [2007, Theorem 3.10] using a Fourier analysis approach.
Dong and Shen also noted that a0

m(z) = b2m−1(z), m ≥ 1 are the symbols of the odd degree B-splines
and that an−1

n (z), n ≥ 1 are those of the 2n-point interpolatory schemes of Deslauriers and Dubuc
[1989]. Moreover, it is straightforward to verify that the symbols of the schemes S2L(ω), L ≥ 1 in
[Choi et al., 2006] are affine combinations of aL−1

L+1(z) and aL−1
L (z) with weights αL(ω) = ω16L/

(
2L
L

)
and 1−αL(ω) and that a1

k(z) are the symbols of the schemes S2k, k ≥ 2 in [Hormann and Sabin, 2007].

Theorem 6.2. The dual subdivision schemes with symbols ãl
m(z) reproduce polynomials up to degree

min(2m, 2l + 1).

Proof. For any real α > 0 and |x| ≤ 1,

(1 + x)α =
∞∑

i=0

(
α

i

)
xi.

Now by (17),

1 =
(
σ(z2) + δ(z2)

)m+1/2+l
= σ(z2)

m+1/2+l
(

1 +
δ(z2)
σ(z2)

)m+1/2+l

,

and since δ(z2)
σ(z2) ∈ [−1, 0] for real z, we have

1 =
1 + z2

2z
σ(z2)

m
∞∑

i=0

(
m + 1/2 + l

i

)
δ(z2)

i
σ(z2)

l−i
.
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Using (19) we can rewrite the above equality as

2− ãl
m(z2)z =

1 + z2

z
δ(z2)

l+1
∞∑

i=l+1

(
m + 1/2 + l

i

)
δ(z2)

i−l−1
σ(z2)

m+l−i
.

According to (17), δ(z2)l+1 = 4l+1δ(z)l+1
σ(z)l+1, and we get

2− ãl
m(z2)z = δ(z)l+1

R(z),

with

R(z) =
1 + z2

z
4l+1σ(z)l+1

∞∑
i=l+1

(
m + 1/2 + l

i

)
δ(z2)

i−l−1
σ(z2)

m+l−i
.

By (16), σ(1) = 1 and δ(1) = 0, and thus

R(1) = 22l+3

(
m + 1/2 + l

l + 1

)
6= 0.

On the other hand, R(z) is the rational function

R(z) =
2− ãl

m(z2)z

δ(z)l+1
.

These two properties of R imply that the numerator of R is divisible by exactly 2l + 2 factors 1 − z.
The claim of the theorem now follows from Theorems 3.2 and 4.7.

Like the family of primal schemes, this new family of dual schemes also has some well-known special
cases. The symbols of the even degree B-splines are ã0

m(z) = b2m(z), m ≥ 0, those of the schemes
S2L−1(ω), L ≥ 1 in [Choi et al., 2006] are affine combinations of ãL−1

L (z) and ãL−1
L−1(z) with weights

α̃L(ω) = ω42L−1/
(
2L−3/2

L−1

)
and 1 − α̃L(ω), and ã1

k(z) are the symbols of the schemes S2k+1, k ≥ 1 in
[Hormann and Sabin, 2007]. Moreover, ãn−1

n , n ≥ 1 are the symbols of the dual 2n-point schemes of
Dyn et al. [2005], which are based on interpolating 2n successive data points fk

i−n+1, . . . , f
k
i+n at the

dual parameter values tki−n+1, . . . , t
k
i+n from (5) by a polynomial of degree 2n− 1 and then evaluating

this polynomial at tk+1
2i and tk+1

2i+1 to determine the new data fk+1
2i and fk+1

2i+1. We found that a similar
construction yields the symbols ãn−1

n−1 of the dual (2n− 1)-point schemes for n ≥ 1. Here a polynomial
of degree 2n− 2, interpolating the 2n− 1 points (tkj , fk

j ), |j − i| ≤ n− 1 is constructed, and fk+1
2i−1, fk+1

2i

are the values of this polynomial at tk+1
2i−1, tk+1

2i , respectively. In this construction the parameterization
is again the dual one.

Finally, we would like to note that by using the identity

l∑
i=0

(
r + i

i

)
xi =

l∑
i=0

(
r + 1 + l

i

)
xi(1− x)l−i

,

which can be proved straightforwardly by induction over l for any r, x ∈ R, the symbols from both
families can be expressed in a slightly more compact form, namely

al
m(z) = 2 σ(z)m

l∑
i=0

(
m− 1 + i

i

)
δ(z)i

and

ãl
m(z) =

1 + z

z
σ(z)m

l∑
i=0

(
m− 1/2 + i

i

)
δ(z)i

.

This form of al
m(z) also appears in the papers by Dong and Shen [2006a, 2007].
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