
Blending Based Chaikin type Subdivision

Schemes for Nets of Curves

Costanza Conti and Nira Dyn

Abstract. The paper presents a new subdivision scheme, which
constructs a surface approximating a given net of 3D-curves. Sim-
ilar to the well known Chaikin algorithm for points, having a re-
finement step based on piecewise linear interpolation of the control
points followed by evaluation at 1/4 and 3/4 of the local parameter
value, the refinement step in the proposed subdivision scheme is
based on piecewise Coons patch interpolation followed by evalua-
tion at 1/4 and 3/4 of the local parameters values in both directions,
which results in a refined net of curves. We prove the convergence of
the scheme to a continuous surface. The proof is based on the ”prox-
imity” of the scheme to a new, convergent subdivision scheme for
points. Some examples, illustrating the performance of our scheme,
are given.

§1. Introduction

Subdivision algorithms for points are efficient iterative means to generate
recursively denser and denser sequences of points. At each step of the
subdivision recursion a new sequence of points is obtained by weighted
average of topologically neighboring points previously determined. The
averaging coefficients (used to generate the new points) together with their
topological location characterize the subdivision scheme and form the so
called mask of the scheme. When the mask and the topological relation
between the points are well chosen, the iterative procedure is convergent
to at least a continuous surface.

The goal of this paper is to define an efficient procedure for generating
recursively denser and denser nets of curves from a given net of curves.
The strategy we present is based on to the following steps: we start by
using a simple and local transfinite scheme to interpolate all the trans-
finite information given by the net of curves. This produces a piecewise
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interpolating surface which is locally evaluated at two parameter values
for each direction in order to generate, locally, four new curves. Then
a new net of curves is defined by patching together the locally defined
curves and it is used to restart the procedure. We prove that this iterative
scheme converges, and that the limit is a continuous surface. In fact we
expect that the limit surface is C1, as are the limit curves generated by
the Chaikin algorithm and as indicated by our simulations (see Section 4),
but we do not have a proof. From similar reasons we also expect that our
scheme has shape preserving properties. In case our scheme has these two
properties, then it is advantageous over algebraic transfinite constructions
of C1 piecewise local patches, in the same way that Chaikin algorithm is
advantageous over piecewise cubic Hermite polynomials.

The paper is organized as follows. In Section 2 we first recall shortly
the Chaikin subdivision algorithm for points and some simple facts about
transfinite interpolation of four curves by Coons patch and about bilinear
interpolation of four points. Then we describe the blending based Chaikin
type subdivision algorithm for net of curves. Next in Section 3 we discuss
its convergence. The latter is based on important consequences of what we
call the M-property of curves, which allows us to show the ”proximity” of
the intersection points of the generated nets of curves and the points gen-
erated by a new convergent subdivision scheme for points discussed in the
Appendix (see [5] for a detailed investigation of the proximity conditions
and their consequences). In the closing Section 4, some figures are given to
illustrate the performance of the blending-based Chaikin-type subdivision
algorithm on two examples of net of curves.

§2. The Blending-Based Chaikin-type Algorithm for Net of Curves

The Chaikin subdivision algorithm for points -also known as corner
cutting algorithm- was introduced by Chaikin in [1] already in the 70s.
It was preceded by the work of de Rahm [3], which was the first work
about subdivision schemes. The Chaikin algorithm is known to converge
to a quadratic spline curve with the initial control points as coefficients of
the B-splines. This subdivision algorithm in each iteration (see Figures 1
and 2 below) first constructs the polygonal line through the control points
(also termed control polygon) and then every linear piece of the control
polygon is evaluated at 1

4 and 3
4 of its length. This procedure generates

a denser set of control points which is used at the next iteration (see [1]
and [4] for a detailed analysis of the algorithm).
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Fig. 1. The control polygon (left) and its evaluation at 1
4
, 3

4
of each edge (right).
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Fig. 2. The control polygon after 1-iteration (left)

and the limit quadratic spline with the initial control polygon (right).

To construct a surface approximating a given net of curves we propose
a subdivision procedure based on repeated piecewise Coons transfinite
interpolation followed by its evaluation at the values 1

4 and 3
4 of the two

local parameters.
We begin by recalling the definition of a Coons patch and of a bilinear

interpolant ([2], [6]).

Definition 1. For φ0(s), φ1(s) with s ∈ [0, d] and ψ0(t), ψ1(t) with t ∈
[0, d] such that Pji := φi(jd) = ψj(id), i, j = 0, 1, the bilinear surface
interpolating the four intersection points of the four curves is

BL({Pij}1i,j=0; d)(s, t) := (1− s
d )

(
(1− t

d )P00+ t
dP01

)
+ s

d

(
(1− t

d )P10+ t
dP11

)
,

and the Coons patch interpolating the four curves is

C(φ0, φ1, ψ0, ψ1; d)(s, t) := (1− s
d )ψ0(t) + s

dψ1(t)+

(1− t
d )φ0(s) + t

dφ1(s)− BL({Pij}1i,j=0; d)(s, t) .

It is easy to verify the interpolation properties of the Coons patch, i.e.

C(φ0, φ1, ψ0, ψ1; d)(0, t) = ψ0(t), C(φ0, φ1, ψ0, ψ1; d)(d, t) = ψ1(t),

C(φ0, φ1, ψ0, ψ1; d)(s, 0) = φ0(s), C(φ0, φ1, ψ0, ψ1; d)(s, d) = φ1(s),
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and of the bilinear interpolant i.e.

BL({Pij}1i,j=0; d)(id, jd) = Pij , i, j = 0, 1.

Next we continue with the definition of a net of compatible curves N and
a piecewise Coons patch surface interpolating a net of compatible curves
N .

Definition 2. A net of continuous curves N = N(d, n + 1,m + 1)

N = {φ0(s), · · · , φn(s), ψ0(t), · · · , ψm(t)}
with φ0, · · · , φn defined on [0,md] and ψ0, · · · , ψm defined on [0, nd] is
said to be compatible if φi(jd) = ψj(id), i = 0, . . . , n, j = 0, . . . ,m.

Definition 3. For a compatible net of curves N = N(d, n + 1, m + 1) =
{φ0(s), · · · , φn(s), ψ0(t), · · · , ψm(t)} the piecewise Coons patch interpolat-
ing the net of curves N is locally defined on each sub-domain [id, (i+1)d]×
[jd, (j + 1)d] as

C(N)(s, t) = C(φi, φi+1, ψj , ψj+1; d)(s− id, t− jd) ,
i = 0, . . . , n− 1, j = 0, . . . , m− 1 .

Before describing the subdivision procedure we introduce some notation.

Notation

• N = N(d, n,m) is a given net of n × m compatible s-curves and
t-curves having common domain of definition [0, (m−1)d] and [0, (n−
1)d] respectively;

• C(N) is the piecewise Coons patch interpolating a net of curves N ;

• BC(C(N)) is the net of curves obtained by sampling each Coons
patch of C(N) at 1

4 and 3
4 of the two local parameters s and t i.e.

for N = N(d, n, m)

BC(C(N)) := {∪`=1,3 ∪m−2
j=0 C(N)(s, (j + `

4 )d)}⋃

{∪`=1,3 ∪n−2
i=0 C(N)((i + `

4 )d, t)}
where s ∈ [0, (m− 1)d] and t ∈ [0, (n− 1)d];

• M(C(N)) is the net of curves obtained by sampling each Coons patch
of C(N) at 1

2 of the two local parameters s and t i.e. for N =
N(d, n,m)

M(C(N)) := {∪m−2
j=0 C(N)(s, (j +

1
2
)d)}

⋃
{∪n−2

i=0 C(N)((i +
1
2
)d, t)};
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• N
′
= N ∪M(C(N));

• E(N) is the set of intersection points of the curve network N ;

• BL(E(N)) is the piecewise bilinear surface interpolating the points
E(N);

• the symbol ‖ • ‖ stands for sup
t∈I

|f(t)|, for f : I → R3, and where | · |
is a fixed norm in R3.

Note that N ⊂ N
′
and C(N) = C(N ′

). Note also that for N = N(d, n, m)
BC(C(N)) = BC(C(N))(d

2 , 2(n−1), 2(m−1)) and N
′
= N

′
(d
2 , 2n−1, 2m−

1).
We are now in a position to state the

Blending-based Chaikin-type subdivision algorithm (BC-algorithm)

1. Let N0 be a net of compatible curves

2. For k = 0, 1, . . .

2.1. Nk+1 := BC(C(Nk))

§3. Convergence of the Blending-Based Chaikin-Type Subdivi-
sion Algorithm

In this section we give conditions on the initial curves determining
N0 which guarantee the convergence to a continuous surface of the BC-
algorithm.
First, we introduce the M-property of a curve.

Definition 4. A curve φ(s) defined in [0, d] has the M-property over [0, d]
if it satisfies the two conditions

1 φ ∈ C0[0, d] ,

2 |[s1, s2, s3]φ| ≤ M, for all distinct s1, s2, s3 ∈ [0, d] ,

where [s1, s2, s3]φ is the second order divided difference of φ in the points
s1, s2, s3, and | · | is a fixed norm in R3.

Note that the M-property implies that the curve has a first derivative
almost everywhere, but it is not necessarily continuous, yet we expect the
limit surface to be C1.
A first trivial consequence of the M-property is,

Lemma 1. Let φ(s) with s ∈ [0, d] have the M-property. Then

|φ(s)− (1− s
d )φ(0)− s

dφ(d)| ≤ d2

4
M .
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Proof: By Newton interpolation formula, we can write

φ(s) = (1− s
d )φ(0) + s

dφ(d) + (s− d)s[0, s, d]φ (1)

and thus, due to the M-property of φ,

|φ(s)− (1− s
d )φ(0)− s

dφ(d)| = |(s− d)s[0, s, d]φ| ≤ d2

4
M .

A second consequence of the M-property is a bound on the distance be-
tween a Coons patch interpolating four boundary compatible curves and
the bilinear interpolant to the four intersection points of the four curves.

Lemma 2. Let each of the curves of the compatible net of curves N =
N(d, 2, 2) = {φ0(s), φ1(s), ψ0(t), ψ1(t)} have the M-property over [0, d],
and let {Pij}1i,j=0 be as in Definition 1. Then

sup
(s,t)∈[0,d]2

|C(φ0, φ1, ψ0, ψ1; d)(s, t)− BL({Pij}1i,j=0; d)(s, t)| ≤ d2

2
M. (2)

Proof: By (1),

(1− s
d )ψ0(t) + s

dψ1(t) = (1− s
d )

(
(1− t

d )ψ0(0) + t
dψ0(d)+

(t− d)t[0, t, d]ψ0 )

+ s
d

(
(1− t

d )ψ1(0) + t
dψ1(d)

+(t− d)t[0, t, d]ψ1)

that is

(1− s
d )ψ0(t) + s

dψ1(t) = BL({Pij}1i,j=0; d)(s, t)+

(1− s
d )(t− d)t[0, t, d]ψ0+

s
d (t− d)t[0, t, d]ψ1 ,

and, similarly,

(1− t
d )φ0(s) + t

dφ1(s) = BL({Pij}1i,j=0; d)(s, t)+

(1− t
d )(s− d)s[0, s, d]φ0 + t

d (s− d)s[0, s, d]φ1 .
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It follows from Definition 1 that

C(φ0, φ1, ψ0, ψ1; d)(s, t)− BL({Pij}1i,j=0; d)(s, t) =

(1− s
d )(t− d)t[0, t, d]ψ0 + s

d (t− d)t[0, t, d]ψ1+

(1− t
d )(s− d)s[0, s, d]φ0 + t

d (s− d)s[0, s, d]φ1 ,

(3)

and by the M-property of the four curves that

‖C(φ0, φ1, ψ0, ψ1; d)− BL({Pij}1i,j=0; d)‖ ≤ d2

4
M +

d2

4
M =

d2

2
M .

An important consequence of the M-property is its ”preservation” under
Coons patch interpolation and Chaikin-type evaluation.

Theorem 1. Let each of the curves of the compatible net of curves N =
N(d, 2, 2) = {φ0(s), φ1(s), ψ0(t), ψ1(t)} have the M-property over [0, d

2 ] and
over [d

2 , d]. Then the curves

ψ 1
4
(t) := C(φ0, φ1, ψ0, ψ1; d)(d

4 , t), ψ 3
4
(t) := C(φ0, φ1, ψ0, ψ1; d)( 3d

4 , t),

φ 1
4
(s) := C(φ0, φ1, ψ0, ψ1; d)(s, d

4 ), φ 3
4
(t) := C(φ0, φ1, ψ0, ψ1; d)(s, 3d

4 ),

have the M-property over [0, d
2 ] and over [d

2 , d].

Proof: Conditions 1 in Definition 4 simply follows from the Coons patch
definition, while for condition 2 we use properties of the second order
divided difference operator. For example for ψ 1

4
(t), by the Coons patch

definition we get

ψ 1
4
(t) = 3

4ψ0(t) + 1
4ψ1(t) + (1− t

d )φ0(d
4 ) + t

dφ1(d
4 )

− 3
4 (1− t

d )φ0(0)− 3
4

t
dφ1(0)

− 1
4 (1− t

d )φ0(d)− 1
4

t
dφ1(d) .

Since the second divided differences of linear functions vanishes, it follows
that for any three values of the parameter in [0, d

2 ] or in [d
2 , d], say t1, t2, t3,

we can write

|[t1, t2, t3]ψ 1
4
| ≤ 3

4
|[t1, t2, t3]ψ0| + |1

4
[t1, t2, t3]ψ1| ≤ M.
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An analogous proof can be given for the three other curves ψ 3
4
(t), φ 1

4
(s)

and φ 3
4
(s).

With the help of the previous results we are able to show that the BC-
algorithm preserves the M-property of the initial net of curves through
the iterations.

Definition 5. A net of compatible curves as in Definition 2 has the M -
property if each curve in the net has the M -property over intervals of
the form [ν d

2 , (ν + 1)d
2 ], ν = 0, 1, . . . , 2m − 1 for the {φi} curves and

ν = 0, 1, . . . , 2n− 1 for the {ψj} curves.

Theorem 2. Let N0 be a net of compatible curves satisfying the M0-
property. Then at each iteration of the BC-algorithm the generated net
of curves Nk is a net of compatible curves which satisfies the M0-property.

Proof: Nk is a net of compatible curves by construction. Also by con-
struction each piece of curve between two intersection points is taken from
at most two patches of C(Nk−1). Thus, by Theorem 1 Nk has the M0-
property if Nk−1 has it with the same constant.

We finally arrive at a convergence result. Before we prove the convergence
of the BC-algorithm we introduce a new bivariate subdivision scheme for
points denoted by Sa. The mask of Sa is given in the Appendix together
with a convergence proof of Sa.

Theorem 3. Let N0 be a net of compatible curves satisfying the M prop-
erty. Then the BC-algorithm is convergent to a continuous surface.

Proof: To prove that the BC-algorithm is convergent to a continuous
surface it is sufficient to show that {C(Nk), k ∈ Z+} is a Cauchy sequence.
This is the case, since {C(Nk), k ∈ Z+} is a sequence of continuous vector
valued functions defined over a fixed domain in the parameter plan. Being
a Cauchy sequence, the sequence has a continuous limit, which is the limit
of the BC-algorithm.
With dk = 1

2k d, we have by Lemma 2 and by the M-property of all nets of
curves generated by the BC-algorithm, as guaranteed by Theorem 2, that

‖C(N ′
k)− BL(E(N

′
k))‖ ≤ d2

k+1

2
M . (4)

Applying the proximity condition (4) to

C(Nk+1)− C(Nk) = C(N ′
k+1)− C(N

′
k) = C(N ′

k+1)− BL(E(N
′
k+1)+

BL(E(N
′
k))− C(N ′

k) + BL(E(N
′
k+1))− BL(E(N

′
k)),
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we obtain

‖C(Nk+1)−C(Nk)‖ ≤ d2
k+2

2
M +

d2
k+1

2
M + ‖BL(E(N

′
k+1))−BL(E(N

′
k))‖ .

(5)
It remains to bound the last term above. This is done with the aid of the
subdivision scheme Sa. Now,

‖BL(E(N
′
k+1))− BL(E(N

′
k))‖ ≤ ‖BL(E(N

′
k+1))− BL(Sa(E(N

′
k)))‖+

‖BL(Sa(E(N
′
k)))− BL(E(N

′
k))‖.

(6)
Since each point of the bilinear patch is a convex combination of the four
corners of the patch,

‖BL(E(N
′
k+1))− BL(Sa(E(N

′
k)))‖ ≤ ‖E(N

′
k+1)− Sa(E(N

′
k))‖, (7)

where the difference sequence between two sequences defined over the same
grid in the (s, t)-plane, is the sequence of differences between correspond-
ing elements in the two sequences. Without loss of generality we assume
that the points of E(N

′
k) correspond to the grid dk+1Z2 in the (s, t)-plane.

In the following we bound ‖E(N
′
k+1) − Sa(E(N

′
k))‖ with the help of two

lemmas.

Lemma 3. For q ∈ dk+2Z2 \ dk+1Z2,

|E(N
′
k+1)(q)− Sa(E(N

′
k))(q)| ≤ d2

k+1M

2
.

Proof: By (19), for q ∈ dk+2Z2 \ dk+1Z2 (see Figure 3),

Sa(E(N
′
k))(q) = BL(E(N

′
k))(q).

On the other hand by the BC-algorithm and the definition of N
′
k+1

E(N
′
k+1)(q) = BC(C(Nk))(q).

The claim of the Lemma follows now from Lemma 2.

The more involved result concerns points corresponding to the grid
dk+1Z2.

Lemma 4. For q ∈ dk+1Z2,

|E(N
′
k+1)(q)− Sa(E(N

′
k))(q)| ≤ 3

2
d2

k+1M.
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Proof: For q ∈ dk+1Z2, E(N
′
k+1)(q) is the mid point of a Coons patch of

C(Nk+1) = C(N ′
k+1). By Definition 1

E(N
′
k+1)(q) =

1
2

∑

e∈F

E(N
′
k+1)(q + (dk+2)e)− 1

4

∑

e∈E

E(N
′
k+1)(q + (dk+2)e)

(8)
where F = {(ε, 0), (0, ε) : ε ∈ {−1, 1}} and E = {(ε1, ε2) : ε1, ε2 ∈
{−1, 1}}. Since for e ∈ E ∪ F , q + (dk+2)e ∈ dk+2Z2 \ dk+1Z2 (see Figure
4) we get from (8) and the previous lemma

|E(N
′
k+1)(q)− 1

2

∑

e∈F

Sa(E(N
′
k))(q + (dk+2)e)+

1
4

∑

e∈E

Sa(E(N
′
k))(q + (dk+2)e)| ≤ 3

2
d2

k+1M.

(9)

Now, for e ∈ E ∪ F , as noticed in the proof of Lemma 3,

Sa(E(N
′
k))(q + (dk+2)e) = BL(E(N

′
k))(q + (dk+2)e). (10)

Since BL(E(N
′
k))(q + (dk+2)e), e ∈ E is a center of its bilinear patch

BL(E(N
′
k))(q + (dk+2)e) =

1
4

∑

ẽ∈E

BL(E(N
′
k))(q + (dk+2)(e + ẽ)),

and thus,

1
4

∑

e∈E

Sa(E(N
′
k))(q + (dk+2)e) = 1

16

∑

ẽ, e∈E

E(N
′
k)(q + (dk+2)(e + ẽ))

= 1
16

(∑

e∈E

E(N
′
k)(q + (dk+1)e))+

2
∑

e∈F

E(N
′
k)(q + (dk+1)e)+

4E(N
′
k)(q)

)
.

(11)
Since BL(E(N

′
k))(q +(dk+2)e), e ∈ F is a center of a boundary edge of its

bilinear patch

BL(E(N
′
k))(q + (dk+2)e) =

1
2

(
E(N

′
k)(q + (dk+1)e) + E(N

′
k)(q)

)
, e ∈ F,
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and thus in view of (10)

1
2

∑

e∈F

Sa(E(N
′
k))(q + (dk+2)e) = 1

2

∑

e∈F

BL(E(N
′
k))(q + (dk+2)e)

= E(N
′
k)(q) + 1

4

∑

e∈F

E(N
′
k)(q + (dk+1)e).

(12)
Note that {q + (dk+1)e, e ∈ F}, {q + (dk+2)(e + ẽ), e, ẽ ∈ E} = {q +
(dk+1)e, e ∈ E∪F} and q are points of dk+1Z2 (see Figure 4). Combining
(11) with (12) and comparing with the last rule in (19), we conclude that

1
2

∑
e∈F Sa(E(N

′
k))(q + (dk+2)e) − 1

4

∑
e∈E Sa(E(N

′
k))(q + (dk+2)e)

= Sa(E(N
′
k))(q).

(13)
Substituting (13) into (9) we obtain the claim of the lemma.

We summarize the results of the last two lemmas in a corollary

Corollary 1. Under the conditions of Theorem 3

‖E(N
′
k+1)− Sa(E(N

′
k))‖ ≤ 3

2
d2

k+1M. (14)

Now, returning to the proof of Theorem 3, we get from (5), (6), (7) and
Corollary 1

‖C(Nk+1)−C(Nk)‖ ≤ d2
k+2

2
M +2d2

k+1M +‖BL(Sa(E(N
′
k))−BL(E(N

′
k))‖.
(15)

Thus, it remains to bound ‖BL(Sa(E(N
′
k)) − BL(E(N

′
k))‖. By Lemma 5

in the Appendix

‖BL(Sa(E(N
′
k))− BL(E(N

′
k))‖ ≤ 2 ‖∆1(E(N

′
k))‖, (16)

with ∆1 defined there. To bound ‖∆1(E(N
′
k))‖, denoted hereafter by τk,

we obtain from (14)

‖∆1(E(N
′
k+1))‖ ≤ ‖∆1Sa(E(N

′
k))‖+ 3d2

k+1M (17)

using the observation that if two sequence of points in R3 P, Q satisfy
‖P−Q‖ ≤ ε then ‖∆1P‖ ≤ ‖∆1Q‖+2ε. Now, as is shown in the Appendix

∆1Sa(E(N
′
k)) = Sb1∆1(E(N

′
k))

and we get from (17) and the fact that ‖Sb1‖ = 3
4 (see Appendix) that

τk+1 ≤ 3
4
τk + 3Md2

k+1 =
3
4
τk + 3Md2 4−(k+1).
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Iterating this inequality we arrive at

τk ≤ (
3
4
)kτ0 + 3Md2 4−k

k−1∑

i=0

3i ≤ (
3
4
)k

(
τ0 +

3
2
Md2

)
. (18)

Recalling that τk := ‖∆1(E(N
′
k))‖, we obtain from (16) and (18)

‖BL(Sa(E(Nk)))− BL(E(Nk))‖ ≤ 2( 3
4 )k

(
∆1(E(N

′
0)) + 3

2Md2
)

,

which, together with (15), proves that {C(Nk), k ∈ Z+} is a Cauchy se-
quence.

d
k

 

d
k+1

 

d
k+2

 

Fig. 3. Grid in the (s, t)-plane:solid lines for dkZ2 (Nk)
solid lines plus dashed lines for dk+1Z2 (N

′
k)

dotted lines for dk+2Z2 \ dk+1Z2 (Nk+1)
all line for dk+2Z2 (corresponding to N

′
k+1)
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(0,−1) 
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k+1

(1,−1) 
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q+d
k+1

(1,1) q+d
k+1

(0,1) q+d
k+1

(−1,1) 

q+d
k+1

(−1,0) 

q+d
k+1

(−1,−1) q+d
k+1

(0,−1) 

Fig. 4. Points involved in the proof of Lemma 4:
∇− points of type q + (dk+2)e; 4− points of type q + dk+2F ;

¤− points of type q + dk+1(E ∪ F ).
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§4. Examples

We conclude the paper by illustrating the application of the BC-algorithm
to two finite nets of curves. Note that since no special rules for the ”bound-
ary” curves has been defined so far, we only present internal curves. This
is why the domain of definition of the generated nets shrinks at each re-
finement step. The first three figures refer to a net of curves taken from
the function f in [−1, 3]× [−1, 3] defined by

f(x, y) :=

{
− ey−7

(x−2)xy3 for x < 0,

x3y3 otherwise.
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Fig. 5. Original network (left) and 1-iteration network (right)
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Fig. 6. 2-iterations network (left) 3-iterations network (right)
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Fig. 7. 3-iterations network together with the original network

In the last three figures the net is taken from the Franke function in
the square [0, 1]× [0, 1].
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Fig. 8. Original network (left) and 1-iteration network (right)
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Fig. 9. 2-iterations network (left) 3-iterations network (right)
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Fig. 10. 3-iterations network together with the original network

These simulations and many others, with different type of initial nets of
curves, obtained by our Matlab implementation, confirm our conjecture
about the C1-smoothness of the surface generated by the algorithm, and
about their shape preservation properties.

§5. Appendix

Consider the subdivision scheme Sa with rules

P k+1
2i,2j+1 = 1

2

(
P k

i,j + P k
i,j+1

)

P k+1
2i+1,2j = 1

2

(
P k

i,j + P k
i+1,j

)

P k+1
2i+1,2j+1 = 1

4

(
P k

i,j + P k
i+1,j + P k

i,j+1 + P k
i+1,j+1

)

P k+1
2i,2j = 3

4P k
ij + 1

8

(
P k

i+1,j + P k
i−1,j + P k

i,j+1 + P k
i,j−1

)
− 1

16

(
P k

i+1,j+1 + P k
i+1,j−1 + P k

i−1,j+1 + P k
i−1,j−1

)
.

(19)

It is easy to see that the mask of Sa, a = {aα}α∈Z2 , is the sum of two
masks one of which is the mask of tensor product linear spline (bilinear
spline). In fact,

16a =

0 0 0 0 0
0 4 8 4 0
0 8 16 8 0
0 4 8 4 0
0 0 0 0 0

+

−1 0 2 0 −1
0 0 0 0 0
2 0 −4 0 2
0 0 0 0 0

−1 0 2 0 −1

. (20)
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Note that in this presentation of the mask the bold face entry corresponds
to the index (0, 0). It follows that the symbol of Sa is

a(z1, z2) = 1
4z−1

1 z−1
2 (1 + z1)2(1 + z2)2 − 1

4 + 1
8

(
z−2
1 + z2

1 + z−2
2 + z2

2

)

− 1
16

(
z2
1z2

2 + z−2
1 z2

2 + z2
1z−2

2 + z−2
1 z−2

2

)

= 1
4z−1

1 z−1
2 (1 + z1)2(1 + z2)2−

1
16

(
z1z2 + z−1

1 z−1
2 − z1z

−1
2 − z−1

1 z2

)2

= 1
4z−1

1 z−1
2 (1 + z1)2(1 + z2)2 − 1

16z−2
1 z−2

2 (1− z2
1)2(1− z2

2)2

= 1
4z−1

1 z−1
2 (1 + z1)2(1 + z2)2 (1−

1
4z−1

1 z−1
2 (1− z1)2(1− z2)2

)
.

(21)
The symbol of the difference scheme in the z1 direction is

b1(z1, z2) = 1
4z−1

1 z−1
2 (1 + z1)(1 + z2)2 (1−

1
4z−1

1 z−1
2 (1− z1)2(1− z2)2

) (22)

with mask b1 such that

16b1 :=

−1 1 1 −1
0 4 4 0
2 6 6 2
0 4 4 0

−1 1 1 −1

. (23)

It is easy to verify from the mask given by (23), that

‖Sb1‖∞ := max
e∈{0,1}2

{
∑

α∈Z2

|(b1)2α+e|} = max{3
4
,

3
4
,

1
2
,

1
2
}.

Therefore, the norm of the operator Sb1 is 3
4 . By symmetry the norm

of the subdivision operator corresponding to the differences in the z2 di-
rection is also 3

4 . Thus, Sa is a convergent scheme [4].
We prove an important property of the subdivision operator Sa.

Lemma 5. Let P be a set of control points defined on Z2. Then

‖BL(Sa(P))− BL(P)‖ ≤ 2‖∆1P‖, (24)

with (∆1P)i,j = Pi+1,j − Pi,j.
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Proof: Since Sa(P) is defined on 1
2Z

2 we present BL(P) in terms of
control points defined on 1

2Z
2 as BL(P) = BL(BL(P)) with BL(P) the

points obtained from P by one refinement step of the bilinear subdivision
scheme with symbol (1+z1)

2(1+z2)
2

4z1z2
. Since BL(P) are control points defined

on 1
2Z

2,

‖BL(Sa(P))− BL(P)‖ = ‖BL(Sa −BL)(P)‖ ≤ ‖(Sa −BL)(P)‖. (25)

By (21), the symbol of Sa −BL is of the form

c(z1, z2) = − 1
16z−2

1 z−2
2 (1 + z1)2(1 + z2)2(1− z1)2(1− z2)2

= d(z1, z2)
(1+z1)(1+z2)

2

4z1z2
(1 + z1)

with d(z1, z2) = − 1
4z1z2

(1− z1)2(1− z2)2. Thus,

(Sa −BL)(P) = Cd S∆1∆1(P) (26)

where S∆1 is a subdivision scheme with symbol (1+z1)(1+z2)
2

4z1z2
and Cd is a

convolution operator corresponding to the symbol d(z1, z2). It is easy to
verify that ‖S∆1‖ = 1

2 and ‖Cd‖ = 4 so that (24) follows from (25) and
(26).

Acknowledgments. Both authors gratefully acknowledge support from
GNCS and FIRB.

§6. References

1. G.M. Chaikin, An algorithm for high speed curve generation, Computer
Graphics and Image Processing, 3, 346–349, (1974).

2. S.A.Coons, Surface for computer aided design, Technical Report, MIT,
(1964).

3. G. de Rham, Sur une curbe plane, J. Math. Pures Appl. 35(9), 25–42,
(1956)

4. N. Dyn, D. Levin, Subdivision schemes in geometric modelling, Acta
Numerica, pp. 1–72, Cambridge University Press, (2002)

5. N. Dyn, Johannes Wallner, Convergence and C1-analysis of subdivision
schemes on manifolds by proximity, to appear in CAGD.

6. W.J. Gordon, L.C. Thiel, Transfinite Mappings and their Application
to Grid Generation, in Numerical Grid Generation(J.F. Thompson Ed.)
171–192, (1982).



18 C. Conti and N. Dyn

Costanza Conti
Dipartimento di Energetica “Sergio Stecco” Università di Firenze
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