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Abstract

In this work, we consider the problems of testing whether a distribution over{0, 1}n is k-wise or
(ǫ, k)-wise independent using samples drawn from that distribution.

To distinguishk-wise independent distributions from those that areδ-far in statistical distance, we
upper bound the number of required samples byÕ(nk/δ2) and lower bound it byΩ(n

k−1
2 /δ) (these bounds

hold for constantk, and essentially the same bounds hold for generalk). To achieve these bounds, we
use Fourier analysis to relate a distribution’s distance fromk-wise independence to itsbiases(a measure
of the parity imbalance it induces on a set of variables). Therelationships we derive are tighter than
previously known, and are of independent interest.

To distinguish (ǫ, k)-wise independent distributions from those that areδ-far in statistical distance, we

upper bound the number of required samples byO
(

k logn
δ2ǫ2

)
and lower bound it byΩ

( √
k logn

(ǫ+δ)
√

log 1/(ǫ+δ)

)
. Al-

though these bounds are an exponential improvement (in terms ofn andk) over the corresponding bounds
for testingk-wise independence, we show that thetimecomplexity of testing (ǫ, k)-wise independence
is unlikely to be poly(n, 1/ǫ, 1/δ) for k = Θ(logn), since this would disprove a plausible conjecture
about the hardness of finding hidden cliques in random graphs. Under the conjecture, our result implies
that for, say,k = logn andǫ = 1/n0.99, there is a set of (ǫ, k)-wise independent distributions, and a set
of distributions at distanceδ = 1/n0.51 from (ǫ, k)-wise independence, which are indistinguishable by
polynomial time algorithms.
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1 Introduction
A probability distribution over{0, 1}n is k-wise independentif its restriction to anyk coordinates is uni-
form. Similarly a distribution is (ǫ, k)-wise independentif, roughly, its restriction to anyk coordinates is
almost uniform. Such distributions look random “locally,”to an observer of onlyk coordinates, even though
they may be far from random “globally.” Because of this key feature,k-wise and (ǫ, k)-wise independent
distributions are important concepts in probability, complexity, and algorithm design [19, 21, 24, 25].

Given samples drawn from a distribution over{0, 1}n, it is natural to wonder whether the distribution
generating those samples isk-wise independent. An experimenter, for example, who receives data in the
form of a vector ofn bits might like to know whether every setting ofk of those bits is equally likely to
occur, or whether some settings ofk bits are more or less likely.

In this work, we seek new ways of elucidating the structure ofk-wise independent distributions, and
of analyzing a distribution’s statistical distance tok-wise independence. We use our new understanding to
develop efficient algorithms fortesting k-wise and (ǫ, k)-wise independence – that is, algorithms that with
high probability accept distributions which arek-wise independent, and reject distributions which areδ-far
in statistical distance from anyk-wise independent distribution.

Previous work addressed the problem of testing related properties of distributions, including unifor-
mity [17, 8] and independence [7, 26, 9]. Although we are unaware of any previous work on testingk-wise
and (ǫ, k)-wise independence, the theorems in [4] combined with a generalization of the algorithm in [17]
yield natural testing algorithms which we improve upon.

1.1 Our Results and Techniques

The formal definition of a testing algorithm fork-wise or (ǫ, k)-wise independent distributions is given below.
The complexity of a testing algorithm is measured both in terms of the number of samples required (sample
complexity), and the computational time needed to process those samples (time complexity).

Definition 1.1 (Testingk-wise ((ǫ, k)-wise) independence). Let0 < ǫ, δ < 1, and let D be a distribution over
{0, 1}n. We say that an algorithmtestsk-wise ((ǫ, k)-wise) independenceif, given access to a set Q⊂ {0, 1}n
of samples drawn independently from D, it outputs: 1) “Yes” if D is a k-wise ((ǫ, k)-wise) independent
distribution, 2) “No” if the statistical distance of D to anyk-wise ((ǫ, k)-wise) independent distribution is
at leastδ. The tester may fail to give the right answer with probability at most1/3. We call|Q| thequery
complexityof the algorithm.

In Table 1, we summarize the sample and time bounds that our algorithms achieve, along with the lower
bounds that we prove for the associated testing problems. Ininterpreting these results, it is useful to think of
δ andǫ as constants, so that the complexity measures are functionsof only n andk. TheO∗ andΩ∗ notation
is defined as follows:O∗( f ) = O( f 1+o(1)) andΩ∗( f ) = Ω( f 1−o(1)). For constantk, one can replace theO∗

andΩ∗ in the statement of our results with̃O andΩ respectively.

1.1.1 Testingk-wise independence

In Section 3, we present an algorithm for testingk-wise independence. We use the notion of abias over a
set Twhich is a measure of the parity imbalance of the distribution over the setT of variables:

Definition 1.2. For a distribution D over{0, 1}n, thebiasof D over a non-empty set T⊆ [n] is defined as
biasD(T) , Prx←D[⊕i∈T xi = 0] − Prx←D[⊕i∈T xi = 1]. We say biasD(T) is an l-th level bias if|T | = l.

A well-known fact says that a distribution isk-wise independent iff its biasesbiasD(T) are zero for all
nonempty setsT ⊂ [n] of size at mostk.

This suggests the following simple algorithm: estimate allthebiasesof the distribution over sets of size
up tok and output “Yes” iff all of those biases are small enough. We show that this algorithm hasO∗(nk/δ2)
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Table 1: Summary of Testing Results

Reference
Sample Complexity Time Complexity

Upper Lower Upper Lower

Testingk-wise independence
this paper O∗(nk

δ2
) Ω∗(n

k−1
2

δ ) O∗(n2k

δ2
) -

[4]† O∗(n2k

δ2
) Ω∗(n

k
4 ) O∗(n3k

δ2
) -

Testing (ǫ, k)-wise independence this paper O(k logn
δ2ǫ2

) Ω


√

k logn

(ǫ+δ)
√

log 1
(ǫ+δ)

 nO(k)

poly(ǫ,δ)
‡ nω(1) §

†These bounds can be derived from theorems in [4], though theydid not explicitly consider the testing problem.
‡This can be achieved trivially.
§This lower bound applies whenk = Θ(logn) andǫδ = n−Θ(1). It is contingent upon a conjecture discussed below.

sample complexity andO∗(n2k/δ2) time complexity. We also prove a sample complexity lower bound of
Ω∗(n

k−1
2 /δ), showing our upper bound is at most a quadratic factor from optimal.

The analysis of our testing algorithm is based on Theorem 3.1. Let∆(D,Dkwi) denote the statistical dis-
tance between distributionD and the set ofk-wise independent distributionsDkwi . Theorem 3.1 shows that

∆ (D,Dkwi) ≤ O
(√∑

|T |≤k(bias(T))2 logk/2 n
)
. Previously, the only non-trivial bound on∆(D,Dkwi ) is the

one implicit in [4]: ∆(D,Dkwi) ≤
∑
|T |≤k |bias(T)|. In most of the interesting cases, our new bound improves

upon their result. For example, the main upper bound result in [4] is: if all the biases of a distributionD
over non-empty subsets up to sizek are at mostǫ, then∆(D,Dkwi) ≤ nk · ǫ. Using Theorem 3.1, this can be
improved to∆(D,Dkwi) ≤ O((

√
n logn)k) · ǫ.

Our sample lower bound is based on a Random Distribution Lemma (Lemma 3.6), which shows that a

uniform distribution over a random set of sizeO
(

(n/k)k−1

δ2

)
is almost surelyδ-far from anyk-wise independent

distribution. In contrast, the lower bound result in [4] shows that any distribution with support sizeO
(

nk/2

kk

)
is

always 1/2-far from anyk-wise independent distribution. Our result applies to random uniform distributions
over a large range of support sizes, and shows a tradeoff between a distribution’s support size and its distance
to k-wise independent distributions.

Fourier-analytic interpretation of our bounds on ∆(D,Dkwi ).

Our upper and lower bounds on∆(D,Dkwi), together with the proof techniques, may be of independent
interest when interpreted as Fourier-analytic inequalities for bounded functions on the hypercube. The
harmonic analysis of such functions has been considered in the Computer Science literature, e.g., in [14].
The connection to Fourier analysis comes from the basic factthat the biases of a distributionD are equal to
D’s Fourier coefficients (up to a normalization factor).

Bounds on∆(D,Dkwi) may be viewed as part of the following general question: fix afamily F of
functions on the hypercube and a subfamilyH ⊂ F of functions defined via a restriction on their Fourier
coefficients. Then, for functionf ∈ F, what is theℓ1 distance fromf to its projection inH, i.e.,ℓ1( f ,H)?1

In our caseF is the set of all bounded functions that sum up to 1 (i.e., distributions), andH further requires
that the functions have no non-zero Fourier coefficients over non-empty subsets of size at mostk. Then, for
example, Parseval’s equality gives the following bound on the ℓ2-norm: ℓ2( f ,H) ≥ ‖ f≤k‖2 where f≤k(x) ,∑

0<|S|≤k f̂SχS(x) is the truncation off to the low-level Fourier spectrum (the inequality would be an equality
if the functions were not bounded). Unfortunately, such a bound implies only very weak bounds for theℓ1-
norm.

1The distance of a function to a set,ℓp( f ,H), is defined to be minh∈H ‖ f − h‖p.
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In contrast, our upper bound on∆(D,Dkwi ) says thatℓ1( f ,H) ≤ ‖ f≤k‖2 · O(logk/2 n). To prove such an
inequality, we proceed as follows. Given a distributionD = f , we approximateD using a functionD1,
obtained by forcing all ofD’s first k-level Fourier coefficients to zero while keeping all others unchanged.
Although D1 is not necessarily a probability distribution (it may map some inputs to negative values), we
show how to turn it back into ak-wise independent distribution by “mending” it with a series of carefully
chosen small weightk-wise independent distributions. By a deep result in Fourier analysis, the Bonami-
Beckner inequality, we bound the distance incurred by the “mending” process. Thus, we are able to bound
the totalℓ1 distance ofD to k-wise independence by the distance fromD to D1 plus the “mending” cost.

Furthermore, our lower bound technique (employed by the Random Distribution Lemma) implies that
ℓ1( f ,H) ≥ ‖ f≤k‖2

‖ f≤k‖∞ , which is already useful when we takef to be a uniform function on a randomly chosen
support. This inequality follows by taking the convolutionof D = f with an auxiliary function and then
applying Young’s convolution inequality to lower bound theℓ1-norm of D − D′, whereD′ is thek-wise
independent distribution closest toD.

1.1.2 Testing(ǫ, k)-wise independence

In Section 4, we give an algorithm for testing (ǫ, k)-wise independence that usesO(k logn/δ2ǫ2) samples,

and we show thatΩ

( √
k logn

(ǫ+δ)
√

log 1/(ǫ+δ)

)
samples are required. The lower bound on the sample complexity is

achieved by obtaining anΩ
(

k logn
ǫ2 log(1/ǫ)

)
lower bound on the support size of a (ǫ, k)-wise independent distribu-

tion. The proof of the lower bound uses significantly different ideas from the lower bound for testingk-wise
independence.

In terms ofn andk, the sample complexity of testing (ǫ, k)-wise independence is exponentially better
than that of testingk-wise independence. However, the time complexity of testing (ǫ, k)-wise independence
presents another story. Since the number of samples required by our testing algorithm is only poly(n/ǫδ),
one would hope that the time complexity is polynomial as well. However, we show that for somek this is
not likely to be the case. Specifically, in Theorem 4.4 we showthat fork = Θ(logn) andǫδ = n−O(1), no
polynomial time tester exists for this testing problem, under a plausible conjecture on the hardness of finding
a hidden clique in random graphs. Finding hidden cliques in random graphs has been studied since [18, 23].
We discuss our conjecture in detail in Section 4.

Computational indistinguishability of (ǫ, k)-wise independent distributions.

The initial motivation of [4] was to show that a randomized algorithm requiring onlyk-wise indepen-
dent distributions (i.e.,O(k logn) random bits) can be further derandomized using (ǫ, k)-wise independent
distributions (requiring onlyO(k+ log(n/ǫ)) random bits), by showing that any (ǫ, k)-wise independent dis-
tribution is close in statistical distance to somek-wise independent distribution forǫ = 1/poly(n, 2k). They
instead proved that an (ǫ, k)-wise independent distribution can be at distance≥ 1/2 from k-wise indepen-
dence even forǫ as small asǫ = n−k/5. One can view their results as showing thatk-wise (i.e., (0, k)-wise)
and (n−k/5, k)-wise independent distributions are far apart information-theoretically.

Despite the large statistical distance, one can ask whetherthere are (1/poly(n, 2k), k)-wise independent
distributions that are poly-time indistinguishable from (0, k)-wise independence, under some computational
hardness assumption (such (ǫ, k)-wise independent distributions should still requireO(k+ log(n/ǫ)) random
bits to be useful for derandomization). Although we do not answer the above question or give a result
useful for derandomization, our above hardness of testing result yields some evidence for an affirmative
answer. Specifically, we show that for, say,k = logn, there is a family of (n−0.99, k)-wise independent
distributions, and a family of (n−0.51, k)-wise independent distributions that are poly-time indistinguishable
under the aforementioned hidden clique conjecture. Even though any distribution from the first family is at
distanceδ ≥ n−0.52 from any distribution from the second family (as we show), the conjecture implies that
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distinguishing a random distribution from the first family from a random member of the second cannot be
done in polynomial time with a polynomial number of samples.

2 Preliminaries

We use [n] to denote the set{1, . . . , n}. For an integerk = o(n), defineMn,k =
∑k

i=1

(
n
i

)
to be the number of

non-empty subsets of [n] of size at mostk. ThenMn,k ≤ nk andMn,k = Ω
∗(nk).

We will restrict our attention to probability distributions over{0, 1}n which are specified by distribution
functionsD : {0, 1}n → [0, 1] such that

∑
x∈{0,1}n D(x) = 1. Thesupportof D, Supp(D), is the set of points

x at whichD(x) , 0. Let A = {a1, . . . , am} be a multiset of cardinalitym, whereai ∈ {0, 1}n. The uniform
distribution overA, denotedUA, is defined to beUA(x) = |{i ∈ [m]: ai = x}|

m . We useUn to denote the uniform
distribution over{0, 1}n.

2.1 k-wise and(ǫ, k)-wise Independent Distributions, and Distances

Definition 2.1. A distribution D is(ǫ, k)-wise independentif for any k indexes i1 < i2 < . . . < ik, and any

vector−→v ∈ {0, 1}k of k bits,
∣∣∣∣Prx←D

[
xi1 xi2 . . . xik =

−→v
]
− 2−k

∣∣∣∣ ≤ ǫ. Whenǫ = 0, we say that D is just k-wise
independent. The set of all k-wise independent distributions and(ǫ, k)-wise independent distributions are
denoted byDkwi andD(ǫ,k) respectively.

For two distributionsD1,D2, we denote their statistical distance by∆(D1,D2) , maxS⊆{0,1}n |Pr[D1(S)]−
Pr[D2(S)]|. It is immediate to verify that∆(D1,D2) = 1

2

∑
x |D1(x) − D2(x)| and 0≤ ∆(D1,D2) ≤ 1.

Thedistance of a distribution D to k-wise independence, denoted∆(D,Dkwi), is defined to be the mini-
mum statistical distance ofD to anyk-wise independent distribution, i.e.∆(D,Dkwi) , minD′∈Dkwi ∆(D,D′).
If ∆(D,Dkwi ) ≤ δ, we sayD is δ-close to k-wise independence. Otherwise, we sayD is δ-far. These
concepts are defined identically for (ǫ, k)-wise independence, withD(ǫ,k) in place ofDkwi .

2.2 The Fourier Transform and the Bonami-Beckner Inequality

The set of functionsf : {0, 1}n → R is a vector space of dimension 2n in which the inner product between
two elementsf andg is defined as〈 f , g〉 = 1

2n

∑
x∈{0,1}n f (x)g(x). For eachS ⊆ [n], define the character

χS : {0, 1}n → {−1, 1} asχS(x) = (−1)
∑

i∈S xi . The set of 2n functions,{χS : S ⊆ [n]}, forms an orthonormal
basis for the vector space. This implies that any functionf : {0, 1}n → R can be expanded uniquely as
f (x) =

∑
S⊆[n] f̂ (S)χS(x), where f̂ (S) = 〈 f , χS(x)〉 is the Fourier coefficient of f over setS. The p-norm

of f is ‖ f ‖p =
(

1
2n

∑
x∈{0,1}n | f (x)|p

)1/p
. Parseval’s equality,‖ f ‖22 =

∑
S⊆[n] f̂ (S)2, follows directly from the

orthonormality of the basis.
For two functionsf , g : {0, 1}n→ R, theirconvolutionis defined as (f ∗ g)(x) , 1

2n

∑
y∈{0,1}n f (y)g(x− y).

It is easy to show that̂f g = f̂ ∗̂ĝ and f̂ ∗ g = f̂ ĝ for any f , g : {0, 1}n → R. It is also easy to show that
‖ f ∗ g‖∞ ≤ ‖ f ‖∞‖g‖1, which is a simple special case of Young’s convolution inequality.

A powerful tool in Fourier analysis over{0, 1}n is the hyper-contractive estimate due independently to
Beckner [10] and Bonami [12]. The following is one form, proven in [12]:

Theorem 2.2. Let f : {0, 1}n→ R be a function that is a linear combination of{χT : |T | ≤ k}. Then, for any

even p> 2, ‖ f ‖p ≤
( √

p− 1
)k ‖ f ‖2.

2.3 Characterizingk-wise Independence Using Biases

Up to a normalization factor, the biases are equal to the Fourier coefficients of the distribution functionD.
More precisely,D̂(T) = 1

2n biasD(T), for T , ∅. Thus, we sometimes use the terms biases and Fourier
coefficients interchangeably. The following well-known facts relate biases tok-wise independence:
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Fact 2.3. A distribution is k-wise independent iff all the biases over sets T⊂ [n], 0 < |T | ≤ k, are zero. In
particular, for the uniform distribution Un, biasUn(T) = 0 for all T .

Fact 2.4. ∆(D,Dkwi) ≥ 1
2 maxT⊆[n],0<|T |≤k biasD(T).

3 Testingk-wise independence

In this section, we study the problem of testing whether a distribution isk-wise independent orδ-far from
from k-wise independence. Our upper bound and lower bound resultsfor testing are based on new upper and
lower bounds on∆(D,Dkwi ) in term ofD’s first k-level biases. We present our upper bounds in Section 3.1
and lower bounds in Section 3.2.

3.1 Upper bounds

In this section, we first prove an upper bound on∆(D,Dkwi ), then present our testing algorithm as well
as the sample and time complexity of our algorithm. For brevity, let b1 ,

∑
|S|≤k |biasD(S)| and b2 ,√∑

|S|≤k biasD(S)2. Note thatb2 ≤ b1 ≤
√

Mn,kb2 < nk/2b2.
The only previously known upper bound for∆(D,Dkwi ) is given in [4], where it is implicitly shown that

∆(D,Dkwi) ≤ b1. Our new bound is the following.

Theorem 3.1(Upper bound on distance). ∆(D,Dkwi) ≤ O
(
(logn)k/2

√∑
|S|≤k biasD(S)2

)
. Consequently,

∆(D,Dkwi) ≤ O
(
(n logn)k/2

)
max|S|≤k |biasD(S)|.

Sinceb2 is always smaller than or equal tob1, our upper bound is no weaker than that of [4] up to
a polylogarithmic factor. However, for many distributionsof interest,b2 is much smaller thanb1 (e.g.,
when all the biases are roughly of the same magnitude, as in the case of random uniform distributions, then
b2 = O∗(b1/nk/2)).

The basic ideas of our proof are the following. We first operate in the Fourier space to construct a
“pseudo-distribution”D1 by forcing all the firstk-level Fourier coefficients to be zero.D1 is not a distribution
because it may assume negative values at some points. We thencorrect all these negative points by a series
of convex combinations ofD1 with k-wise independent distributions. In this way we maintain that all the
first k-level Fourier coefficients are still zero; on the other hand, we increase the weights at negative points
so that they now assume non-negative values. During the correction, we distinguish between two kinds
of points which have negative weights: Light points whose magnitudes are small and heavy points whose
magnitudes are large. We use two different types ofk-wise independent distributions to handle these two
kinds of points. Using Bonami-Beckner’s inequality, we show that only a small number of points are heavy,
thus obtaining a better bound for∆(D,Dkwi).

Proof of Theorem 3.1.The following lemma bounds theℓ1-distance between a function and its convex com-
bination with other distributions.

Lemma 3.2. Let f be a real function defined on a domainD such that
∑

x∈D f (x) = 1. Let D1, . . . ,Dℓ
be distributions over the same domainD. Suppose there exist positive real numbers w1, . . . ,wℓ such that
D′ , 1

1+
∑ℓ

i=1 wi
( f +

∑ℓ
i=1 wiDi) is non-negative for all x∈ D. Then‖ f (x) − D′(x)‖1 ≤ 2−n+1 ∑ℓ

i=1 wi .

Proof. ‖ f (x) − D′(x)‖1 = ‖
∑ℓ

i=i wi(D′ − Di)‖1 ≤
∑ℓ

i=i wi‖D′ − Di‖1 ≤ 2−n+1 ∑ℓ
i=i wi . �
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We first construct a real functionD1 : {0, 1}n→ R based onD but forcing all its firstk-level biases to be
zero.D1 is defined by explicitly specifying all of its Fourier coefficients:

D̂1(S) =


0, if S , ∅ and|S| ≤ k

D̂(S), otherwise.

SinceD̂1(∅) = D̂(∅) = 1
2n , we have

∑
x D1(x) = 1. Note that in generalD1 is not a distribution because it

is possible that for somex, D1(x) < 0. By Parseval’s equality,‖D − D1‖2 = 1
2n

√∑
|T |≤k biasD(T)2 = 1

2n b2.

Hence by the Cauchy-Schwartz inequality, we can upper boundtheℓ1-norm ofD−D1 as‖D−D1‖1 ≤ 2−n·b2.
Now we define another functionD2 : {0, 1}n→ R as

D̂2(S) =


D̂(S), if S , ∅ and|S| ≤ k

0, otherwise.

By the linearity of the Fourier transform,D1(x) + D2(x) = D(x). SinceD(x) ≥ 0 for all x ∈ {0, 1}n, we have
D1(x) ≥ −D2(x). By the Fourier transform,|D2(x)| =

∣∣∣ 1
2n

∑
1≤|S|≤k biasD(S)χS(x)

∣∣∣ ≤ 1
2n

∑
1≤|S|≤k |biasD(S)| =

1
2n b1. Hence the magnitudes ofD1(x)’s negative points are upper bounded by1

2n b1, i.e. D2(x) ≥ − 1
2n b1.

By the linearity of the Fourier transform, if we define a function D′ as the convex combination ofD1

with somek-wise independent distributions so thatD′ is non-negative, thenD′ will be ak-wise independent
distribution, since all the Fourier coefficients ofD′ on the firstk levels are zero.

If we use a uniform distribution to correct all the negative weights ofD1, then we will get an upper
bound almost the same (up to a factor of 3/2) as that of [4]. To improve on this, we distinguish between two
kinds of points whereD1 may assume negative weights: heavy points and light points.Let λ = (2

√
logn)k.

We call a pointx heavyif D2(x) ≥ λb2/2n, and light if 0 < D2(x) < λb2/2n. For light points, we still
use a uniform distribution to correct them; but foreachheavy point, sayz, we will use a specialk-wise
independent distributionUBCH-z(x), constructed by [2]:

Theorem 3.3. ([2]) For any z ∈ {0, 1}n, there is a k-wise independent distribution UBCH-z(x) over {0, 1}n
such that UBCH-z(z) = 1

|Supp(UBCH-z)| = Ω(n−⌊k/2⌋). 2

Thus, we defineD′ by

D′(x) =
D1(x) + λb2Un(x) +

∑
z is heavywUBCH-z(x)

1+ λb2 +
∑

z is heavyw
.

We selectw = |Supp(UBCH-z)|
2n b1. SinceD1(x) ≥ −b1

2n , one can check thatD′(x) is non-negative for both
heavy and light points. HenceD′ is ak-wise independent distribution.

Next we bound the number of heavy points. Note thatD2(x) has only the firstk-level Fourier coefficients,
hence we can use Bonami-Beckner’s inequality to bound the probability of |D2(x)| assuming large values,
and thus the total number of heavy points.

First we scaleD2(x) to make it of unitℓ2-norm. Define f (x) = 2n

b2
D2(x). Then ‖ f ‖2 = 2n

b2
‖D2‖2 =

2n

b2

√
1
2n

∑
x∈{0,1}n D2(x)2 = 2n

b2

√
1

22n

∑
1≤|S|≤k biasD(S)2 = 1, where the second to last step follows from Parse-

val’s equality. Now using the higher moment inequality method, we have, for evenp,

Pr[| f (x)| ≥ λ] ≤ Ex
[| f (x)|p]

λp =
‖ f ‖pp
λp .

2Note that, as shown by [13, 2], the support sizes of such constructions are essentially optimal.
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By Lemma 2.2,‖ f ‖p ≤
( √

p− 1
)k ‖ f ‖2 =

( √
p− 1

)k
. Plug inλ = (2

√
logn)k and p = logn, and w.l.o.g.

assume thatp is even, then we have

Pr[| f (x)| ≥ 2k logk/2 n] ≤ (p− 1)pk/2

λp <
ppk/2

(
2
√

logn
)pk
= (

1
2

)k logn =
1

nk
.

Therefore,

Pr

[
D1(x) ≤ −2k(logn)k/2 b2

2n

]
≤ Pr

[
D2(x) ≥ 2k(logn)k/2b2/2

n
]
≤ Pr

[
|D2(x)| ≥ 2k(logn)k/2b2/2

n
]

= Pr
[
| f (x)| ≥ 2k(logn)k/2

]
< 1/nk.

In other words, there are at most 2n/nk heavy points. By Lemma 3.2 we get (recall that|Supp(UBCH-z)| =
O

(
n⌊k/2⌋

)
andb1 ≤ nk/2b2)

1
2
|D′−D1|1 ≤ λb2+

∑

z heavy

w(z) ≤ (2
√

logn)kb2+
2n

nk

|Supp(UBCH-z)|
2n b1 = (2

√
logn)kb2+O (b2) = O

(
(logn)k/2b2

)
.

Finally, by the triangle inequality,∆(D,D′) = 2n

2 ‖D−D′‖1 ≤ 2n

2 (‖D−D1‖1+ ‖D1−D′‖1) = O
(
(logn)k/2b2

)
.

�

Armed with Theorem 3.1, we are ready to describe our algorithm for testingk-wise independence. The
algorithm is simple in nature: it estimates all the firstk-level biases of the distribution and returns “Yes” if
they are all small. LetCk be the hidden constant inO (·) in the second part of Theorem 3.1.

Algorithm Test-KWI-Closeness(D,k,δ)
FromD, draw a setQ of samples of size|Q| = O

(
k logn/δ′2

)
, whereδ′ = δ

3Ck(n logn)k/2 .

For each non-empty subsetS ⊆ [n], |S| ≤ k, useQ to estimatebiasD(S) to within an additive term ofδ′.
If maxS |biasD(S)| ≤ 2δ′ return“Yes” ; else return“No” .

The analysis ofTest-KWI-Closenessestablishes the following theorem (full proof appears in Appendix A.1).

Theorem 3.4 (Testingk-wise independence upper bounds). Testing k-wise independence can be solved
using O(k(logn)k+1nk/δ2) = O∗(nk

δ2
) samples from the distribution and in time O∗(n2k

δ2
).

3.2 Lower bounds

In this section, we give a lower bound on the sample complexity of our testing algorithm. However, we first
motivate our study from the perspective of real functions defined over the boolean cube.

The upper bound given in Theorem 3.1 naturally raises the following question: Can we give a lower
bound on∆(D,Dkwi ) in term of the firstk-level biases ofD? The only known answer to this question we are
aware of is the folklore lower bound in Fact 2.4:∆(D,Dkwi ) ≥ 1

2 max1≤|S|≤k |biasD(S)|. This bound is too
weak for many distributions, as demonstrated in [4], who gave a family of distributions that have all the first
k-level biases at mostO

(
1

n1/5

)
, but are at least 1/2-away from anyk-wise independent distribution. Their

proof is based on a min-entropy argument, which seems to workonly for distributions with small support
size.

In fact, this statistical distance lower bound problem can be put into a more general framework. Given
a function f : {0, 1}n → R, can we give a lower bound on‖ f ‖1 if only the firstk-level Fourier coefficients
of f are known? Hausdorff-Young’s inequality gives‖ f ‖1 ≥ ‖ f̂ ‖∞, which leads directly to the bound we just

7



discussed (Fact 2.4). We develop a new approach to lower bound ‖ f ‖1 in terms of f ’s first k-level Fourier
coefficients (details appear in Appendix A.2). Our method works for generalk and is based on convolving
f with an auxiliary function and then applying Young’s convolution inequality. Applying our lower bound
result to∆(D,Dkwi ), we get:

Theorem 3.5(Lower bound on distance). Given a distribution D over{0, 1}n, define a family of functions
Dg ⊆ R{0,1}

n
such that for all g∈ Dg, the Fourier coefficients of g satisfy:

ĝ(S) =



0, if S = ∅ or |S| > k

sign(biasD(S)) if |S| ≤ k and biasD(S) , 0

±1, if |S| ≤ k and biasD(S) = 0,

where sign(x) = 1 if x > 0, sign(x) = −1 if x < 0 and sign(x) = 0 otherwise. Then for all g∈ Dg,

∆(D,Dkwi) ≥
1
2
∑
|S|≤k |biasD(S)|
‖g‖∞ .

Under this framework, we prove the following lower bound on distances between random uniform dis-
tributions andk-wise independence, which is the basis of our sample lower bound result, Theorem 3.7 (The
proof is deferred to Appendix A.3). Note that by Theorem 3.1,this bound is almost tight (see Proposi-
tion A.16 for details).

Lemma 3.6 (Random Distribution Lemma). Let k > 2. Let Q = Mn,k

nδ2 < 2n1/3
, with δ ≤ 1. If we sample

uniformly at random Q strings from{0, 1}n to form a random multisetQ and let UQ(x) be the uniform
distribution overQ, then for all large enough n,PrQ[∆(UQ,Dkwi) > 0.228δ] = 1− o(1).

Theorem 3.7(Sample lower bound). For k > 2 and δ ≤ 0.228, Testing k-wise independence requires at
least|Q| = Ω

(
1
δ · (

n
k )

k−1
2

)
samples from the distribution.

Our lower bound result rules out the possibility of polynomial time testing algorithms fork = ω(1).
To give an idea of how Theorem 3.7 follows from Lemma 3.6, notethatUn is k-wise independent, and by
Lemma 3.6,UQ is far fromk-wise independent. But any algorithm makingo(

√
Q) will not see any collisions

and thus will fail to distinguish between these two distributions.

4 Testing(ǫ, k)-wise independence

In this section, we study the sample and time complexity of distinguishing whether a distribution is (ǫ, k)-
wise independent or is at distance at leastδ from any (ǫ, k)-wise independent distribution (as defined in 1.1).
We call this testing problem T(ǫ, k)- to within distanceδ (we drop the reference toδ when-
ever it is clear from the context). On one hand, compared to testing k-wise independence, we prove that
exponentially fewer samples suffice for T(ǫ, k)-. On the other hand, this exponential im-
provement does not carry over to the time complexity; we showthat it is unlikely that there is a poly(n) time
algorithm for T(ǫ, k)-.

We begin by describing our sample complexity results: whiletestingk-wise independence requires
Ω(n

k−1
2 ) samples, we show thatO

(
k lg n
ǫ2δ2

)
samples suffice for testing (ǫ, k)-wise independence. In particular,

the sample complexity of T(ǫ, k)- is only poly(n/ǫδ), even for the case whenk = ω(1) and
ǫ, δ = n−O(1). Specifically, we show that:

Theorem 4.1(Sample upper bound). For any0 < ǫ, δ < 1, T(ǫ, k)- to within distanceδ can
be solved using|Q| = O

(
k logn
ǫ2δ2

)
samples from the distribution D.
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Theorem 4.2(Sample lower bound). For ǫ > 1
nk/4 , 0 < δ < 1

2 − ǫ, any tester solvingT(ǫ, k)-

to within distanceδ requires at least|Q| = Ω
( √

k logn

(ǫ+δ)
√

log 1/(ǫ+δ)

)
samples from the distribution.

To prove the sample upper bound Theorem 4.1, we prove a relationship between T(ǫ, k)-
and the problem of distinguishing an (ǫ, k)-wise independent distribution from one that is not even (ǫ′, k)-
wise independent, for someǫ′ > ǫ > 0 (see definition 4.5 for a formal statement). For the latter problem, we
simply compute the minimum ˜ǫ such thatD is (ǫ̃ , k)-wise independent, and compare ˜ǫ to ǫ andǫ′.

To obtain the lower bound, we study the minimum support of a distribution D which is (ǫ, k)-wise

independent, and show it isΩ
(

k logn
ǫ2 log(1/ǫ)

)
; the rest of the proof is similar to the proof of Theorem 3.7 (full

proofs appear in Appendix B).
We now turn to the time complexity result. In contrast to the positive result for sample complexity,

we show that the time complexitycannot bepoly (n/ǫδ) for k = Θ(logn), under the following conjecture
regarding the hardness of finding a hidden clique in a random graph. In the following, lett = t(n) be a
nondecreasing function ofn so thatt(n) > lg3 n (the biggert(n), the stronger the conjecture and our result).

Conjecture 4.3(HC-F[t]). For n > 0, let G be a random graph on n vertices generated by the following
process,Gn,1/2,t: connect each pair of vertices with probability1/2, then choose a random set of t vertices,
and interconnect these vertices to form a clique (called thehidden clique). Then there is no randomized
poly(n) time algorithm that, for all n, given G, outputs a clique of size t, with success probability at least
1− 1/n.

We discuss this conjecture in more detail in Section 4.1. Assuming the conjecture, we prove the follow-
ing theorem on time complexity of T(ǫ, k)-.

Theorem 4.4 (Time lower bound). Assume conjectureHC-F[t(n)] holds for some t(n) ≥ lg3 n. Let

k = α lg n for a constantα ≤ 1, ǫ = 2α lg2 n
nα , andδ = t(nα/6)

2nα . Then there is nopoly(n) time algorithm that
solvesT(ǫ, k)- to within distanceδ, even given access to any polynomial number of samples
from the distribution.

The proof of the theorem appears in Section 4.2. Note that forthe above settings, T(ǫ, k)-
can be solved innO(k) = 2O(log2 n) time, and thus it is not a priori clear whether one can prove such hardness
result under a more standard assumption, such asP , NP.

To prove our results on the sample and time complexity of T(ǫ, k)-, we study a closely
related problem. Specifically, we consider the problem of distinguishing between a distributionD that is
(ǫ, k)-wise independent and a distribution that is not even (ǫ′, k)-wise independent forǫ′ > ǫ > 0. It is
somewhat easier to obtain upper and lower bounds for the latter problem from which we can deduce the
bounds on the original T(ǫ, k)- problem. We define the new problem below and describe its
relation to T(ǫ, k)-; the proof of the relation is deferred to Appendix B.1. As mentioned in
the preliminaries,D(ǫ,k) denotes the set of all (ǫ, k)-wise independent distributions.

Definition 4.5 (T(ǫ, k)--(ǫ′ , k)-). Let0 < ǫ < ǫ′ < 1, and D be a distribution over{0, 1}n.
We call atester for T(ǫ, k)--(ǫ′ , k)- an algorithm that, given a set Q⊂ {0, 1}n drawn i.i.d.
from D, outputs: 1) “Yes”, if D∈ D(ǫ,k); and 2) “No”, if D < D(ǫ′,k). The tester may fail with probability at
most1/3.

Lemma 4.6. Let 0 < ǫ, δ < 1. If there exists a tester forT(ǫ, k)--(ǫ + ǫδ, k)- using
Q = Q(n, k, ǫ, δ) samples and T= T(n, k, ǫ, δ) time, then there exists a tester forT(ǫ, k)- to
within distanceδ using Q samples and T time.

Conversely, if there exists a tester forT(ǫ, k)- to within distanceδ using Q samples and
T time, then there exists a tester forT(ǫ, k)--(ǫ + δ, k)- using Q samples and T time.

In the rest of the section, we discuss the plausibility of thehidden clique conjecture 4.3, and present the
proof of the Theorem 4.4 based on the conjecture.
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4.1 The Hidden Clique Conjecture

The problem of finding a hidden clique in a random graph has been open since the works of [18, 23]. For
t = o(

√
n), there is no known polynomial time algorithm that finds evena (1+ ǫ) log2 n clique, for any

constantǫ > 0. Whent ≥ Ω(
√

n), [5] and [15] exhibit polynomial time algorithms that do find the hidden
clique of sizet.

Conjecture 4.3 is a generalization of the conjecture of the hardness of the problem of finding a (1+
ǫ) log2 n clique in a random graph fromGn,1/2 = Gn,1/2,0 (i.e.,without inserting any hidden clique) [20, 18].
This problem is a long-standing open question raised by [22](see also the survey of [16] and the references
therein). Although a random graphGn,1/2 has a clique of size (2−o(1)) log2 n with high probability [6], there
is no known polynomial time algorithm that finds even a cliqueof size (1+ ǫ) log2 n for constantǫ > 0 (a
simple greedy algorithm finds a (1− ǫ) log2 n clique, w.h.p.). The failure to exhibit such a polynomial time
algorithm led to the conjecture that there is no algorithm able to find a (1+ ǫ) log2 n clique in polynomial
time [18, 20]. Furthermore, the problem of finding a clique ofsize 3

2 log2 n in a random graph has been
proposed as a “hard problem” for cryptographic purposes [20].

4.2 Time complexity lower bound: proof of Theorem 4.4

Below we show that if conjecture HC-F[t] holds, then the running time of any tester for T(ǫ, k)--

(ǫ′, k)- is super-polynomial inn for k = α lg n, for any constantα ≤ 1, andǫ = 2α lg2 n
nα = n−O(1),

ǫ′ = t(nα/6)
nα = n−O(1). The theorem then follows by applying Lemma 4.6.

To prove the theorem, we first prove that the conjecture HC-F[t] implies the following conjecture on
the hardness ofdecidingwhether a hidden clique is present or not in a random graph. The conjecture is also
parametrized by the minimum size of the hidden clique,t = t(n), a non-decreasing function ofn.

Conjecture 4.7(HC-D[t]). For n > 0, let G be a random graph on n vertices that is generated via either
Gn,1/2 or Gn,1/2,t′ , where t′ ≥ t(n) may be chosen adversarialy. Then there is no polynomial timealgorithm
that for any n, given G, can output whether G came fromGn,1/2 or Gn,1/2,t′ , with success probability at least
1− 1/n3.

We show in Appendix B.4 that if HC-F[t] holds, then HC-D[t/3] also holds.
Now, to prove the theorem, it is sufficient to give a reduction from the problem of distinguishingbetween

Gm,1/2 andGm,1/2,t′ to the problem T(ǫ, k)--(ǫ′ , k)-, where t′ ≥ t, m = 2k−1 = nΩ(1),

ǫ =
2α lg2 n

nα , ǫ′ = t(nα/6)
nα . LetT be a tester that decides whetherD ∈ Dǫ,k or D < Dǫ′,k with error probability

≤ n−4 (we can amplify the success probability by running the tester T for O(logn) times, each with a new
set of samplesQ).

Suppose we are given a graphG on m = 2k−1 vertices, generated either viaGm,1/2 or Gm,1/2,t′(m). Let A
be the adjacency matrix ofG with the diagonal entries set randomly to 0 or 1. From the matrix A ∈ Mm,m,
we construct a new matrixB ∈ Mm,n by appendingn − m columns to the right, where each new entry is
randomly chosen from{0, 1}. We view matrixB as describing a distributionDB : {0, 1}n→ [0, 1] defined to
be uniform on the set of them rows ofB: DB(x) = |{i|Bi=x}|

m , whereBi is theith row of B.
We claim that, with high probability, ifG ∈ Gm,1/2, thenDB ∈ D(ǫ,k), and, conversely, ifG ∈ Gm,1/2,t′ ,

thenDB < D(ǫ′,k). These properties immediately imply the reduction to the tester for T(ǫ, k)--(ǫ′ , k)-
: generate the sample setQ by drawing samples according the distributionDB and feed it to
the tester. If the tester returns “Yes” (i.e.,DB ∈ D(ǫ,k)), returnG ∈ Gm,1/2. Otherwise (i.e.,DB < D(ǫ′,k)),
returnG ∈ Gm,1/2,t(m).

Next we prove that ifG ∈ Gm,1/2 then w.h.p.DB ∈ D(ǫ,k), and ifG ∈ Gm,1/2,t(m) thenDB < D(ǫ′,k). To
simplify the argument, for a matrixB, we define a parametergk(B) that roughly corresponds to the minimum
ǫ̃ such thatDB is (ǫ̃ , k)-wise independent:
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Definition 4.8. Let k be such that1 ≤ k ≤ n. For a matrix B∈ Mm,n({0, 1}) and−→v ∈ {0, 1}k, we define
a (k,−→v )-repetition to be a set of distinct columns C= {i1, i2, . . . , ik} and a set of distinct rows R, such
that R = {r ∈ [m] | Bri1Bri2 . . . Brik =

−→v }. We define gk(B) to be the maximum value of|R|/m, over all
(k,−→v )-repetitions for all choices of−→v ∈ {0, 1}k.

Note that when gk(B) ≥ 2 · 2−k, the minimum̃ǫ for which DB ∈ D(ǫ̃,k) is ǫ̃ = gk(B) − 2−k.

Now, on one hand, ifG ∈ Gm,1/2, thenB is a random 0/1 matrix, and by an easy union bound calculation,
gk(B) ≤ k lg n

(k−lg m)m with probability at least 1−O
(
(2e/k)k

)
≥ 1− n−4. Thus, sincegk(B) ≥ 1/m= 2 · 2−k, we

conclude thatDB ∈ D(ǫ,k), whereǫ ≤ k lg n
(k−lg m)m − 2−k ≤ 2α lg2 n

nα . This is the only part where the reduction can
fail.

On the other hand, ifG ∈ Gm,1/2,t′ , thenB contains a clique of sizet′ ≥ t(m) and thus a (k, 1k)-repetition
with |R| ≥ t(m)−1

2 , implying thatgk(B) ≥ t(m)−1
2m . ThusDB < D(ǫ′,k), whereǫ′ = t(m)−1

2m − 2−k =
t(nα/2)−2

nα ≥
t(nα/2)

nα .
The total error probability is at mostn−4 from the tester, plusn−4 from the above reduction. This finishes

the proof of the Theorem 4.4.
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A Testing k-wise independent distributions

In this section we provide the omitted details from Section 3.
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A.1 Testing algorithm and its analysis

In this section we will present our testing algorithm in details. Recall thatCk denotes the hidden constant in
Theorem 3.1, i.e.∆(D,Dkwi ) ≤ Ck(n logn)k/2 maxS,∅,|S|≤k |biasD(S)|.

We will use the following algorithm to estimate the bias of a distribution D over any non-empty subset
S with error parameterδ.

Algorithm Estimate-Bias(D,S,k,δ)
Setm= O

(
(k logn)/δ2

)
.

Setnodd = 0.
(Assume the sample set isQ = {X1, . . . ,Xm})
For i = 1 tom

If ⊕ j∈SXi
j = 1

nodd = nodd+ 1.
OutputbiasD(S) = 2nodd

m − 1.

Lemma A.1. Let biasD(S) be the bias computed byEstimate-Bias(D,S,k,δ), and biasD(S) be the
expected value of biasD(S) (i.e., the bias of distribution D over S ). Then with probability at least1 − 1

3nk ,

|biasD(S) − biasD(S)| ≤ δ.

Proof. Let nodd and neven be the number of strings of odd parity and even parity, respectively, over S.
Without loss of generality, assume thatbiasD(S) ≥ 0 (otherwise replacenodd with neven in the following
argument). Define the indicator random variablesχi for i = 1, . . . ,m, such thatχi = ⊕ j∈SXi

j . It is clear
thatχi are 0/1 random variables andE

[
χi

]
= nodd/m ≥ 1/2. Now applying Chernoff bound toχi gives the

desired result, sincebiasD(S) = 2E
[
χi

] − 1. �

Now we are ready to describe the algorithm of testing closeness tok-wise independence, which (implic-
itly) usesEstimate-Bias as a subroutine.

Algorithm Test-KWI-Closeness(D,k,δ)
Setδ′ = δ

3Ck(n logn)k/2 .

Setm= O
(
k logn/δ′2

)
.

For each non-empty subsetS ⊆ [n] of size at mostk
Setnodd(S) = 0.

(Assume the sample set isQ = {X1, . . . ,Xm})
For i = 1 to m

For each non-empty subsetS ⊆ [n] of size at mostk
If ⊕ j∈SXi

j = 1
nodd(S) = nodd(S) + 1.

For each non-empty subsetS ⊆ [n] of size at mostk
biasD(S) = 2nodd(S)

m − 1.
Set∆ = Ck(n logn)k/2 maxS |biasD(S)|.
If ∆ ≤ 2

3δ.

accept;
Else

reject.

Next we prove the correctness ofTest-KWI-Closeness(D,k,δ).
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Theorem 3.4.Let D be a distribution over{0, 1}n. If ∆(D,Dkwi) ≤ 2δ
3Ck(n logn)k/2 , thenTest-KWI-Closeness

accepts with probability at least2/3; If ∆(D,Dkwi) > δ, thenTest-KWI-Closeness accepts with probabil-
ity at most1/3. Furthermore, the sample complexity ofTest-KWI-Closeness is O(kCk(logn)k+1nk/δ2) =
O∗(nk

δ2
), and running time ofTest-KWI-Closeness is O∗(n2k

δ2
).

Proof of Theorem 3.4.The running time and sample complexity analysis is straightforward. If∆(D,Dkwi ) ≤
2δ

3Ck(n logn)k/2 , then by Fact 2.4,biasD(S) ≤ δ
3Ck(n logn)k/2 for every 1≤ |S| ≤ k. By Lemma A.1,|biasD(S) −

biasD(S)| ≤ δ
3Ck(n logn)k/2 with probability at least 1− 1

3nk . Thus union bound gives, with probability at least

1−Mn,k
1

3nk ≥ 2/3 (sinceMn,k ≤ nk), |biasD(S)−biasD(S)| ≤ δ
3Ck(n logn)k/2 holds for eachS. This implies that,

for every non-emptyS of size at mostk, Ck(n logn)k/2|biasD(S)| ≤ 2
3δ. Therefore, the algorithm accepts.

If ∆(D,Dkwi ) > δ, by Theorem 3.1,Ck(n logn)k/2 maxS,∅,|S|≤k |biasD(S)| > δ. A similar analysis shows
that with probability at least 2/3,Ck(n logn)k/2 maxS,∅,|S|≤k |biasD(S)| > 2

3δ and hence the algorithm rejects.
�

Note that for constantk, Test-KWI-Closenessgives an algorithm testingk-wise independence running
in time sublinear (in fact, polylogarithmic) in the size of the support (N = 2n) of the distribution.

A.2 New lower bounds for∆(D,Dkwi )

In this section, we will develop a new framework to prove lower bound on the distance between a distribution
andk-wise independent distributions and apply this method to prove Theorem 3.5. In fact, our techniques
developed here may be of independent interest: We give a new lower bound on theℓ1-norm of a function
f : {0, 1}n → R in terms of f ’s first k-level Fourier coefficients. Our method is based on convolvingf with
an auxiliary function and applying Young’s convolution inequality:

Theorem A.2(Young’s convolution inequality). Let1 ≤ p, q, r ≤ ∞, such that1r =
1
p +

1
q − 1. Then for any

f , g : {0, 1}n→ R, ‖ f ∗ g‖r ≤ ‖ f ‖p‖g‖q.

Given a distributionD over{0, 1}n. Let D′ be thek-wise independent distribution which is closest toD,
i.e.,∆(D,Dkwi) = ∆(D,D′) = 1

2‖D − D′‖1. Define f (x) = D(x) − D′(x). Then we have

f̂ (S) =
1
2n biasD(S), for all non-empty subsetsS with |S| ≤ k,

and

∆(D,Dkwi) =
1
2

∑

x∈{0,1}n
| f (x)| = 2n−1‖ f ‖1.

We will try to get a lower bound on∆(D,Dkwi) by bounding theℓ1-norm of f (x) from below.

Theorem A.3. Let f : {0, 1}n → R. Define a family of functionsFg ⊆ R{0,1}
n

such that for all g∈ Fg, the
Fourier coefficients of g satisfy

ĝ(S) =



0, if S = ∅ or |S| > k

sign( f̂ (S)) if |S| ≤ k and f̂ (S) , 0

±1, if |S| ≤ k and f̂ (S) = 0.

Then for all g∈ Fg,

‖ f ‖1 ≥
∑
|S|≤k | f̂ (S)|
‖g‖∞

.
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In particular,

‖ f ‖1 ≥
∑
|S|≤k | f̂ (S)|

ming∈Fg ‖g‖∞
.

Note that for allS such thatf̂ (S) = 0, we have the freedom of choosing either+1 or −1 to minimize
‖g‖∞ and get better lower bound.

Proof. Settingp = 1, then Young’s convolution inequality (Theorem A.2) gives, for any 1≤ r ≤ ∞, and
any f , g : {0, 1}n→ R,

‖ f ‖1 ≥
‖ f ∗ g‖r
‖g‖r

.

Now we define functiong as in the Theorem and defineh(x) , ( f ∗ g)(x). Then by the convolution theorem,

ĥ(S) =


| f̂ (S)|, if S is non-empty and|S| ≤ k

0, otherwise.

By the definition of the Fourier transform,

|h(x)| = |
∑

S

ĥ(S)χS(x)| =

∣∣∣∣∣∣∣∣

∑

|S|≤k

| f̂ (S)|χS(x)

∣∣∣∣∣∣∣∣
≤

∑

|S|≤k

| f̂ (S)| = h(0),

since for allS ⊆ [n], χS(0) = 1 and the evaluation of any function at 0 is simply the sum of all its Fourier
coefficients. Thus,‖h‖∞ = h(0) =

∑
|S|≤k | f̂ (S)|. Now taker tending to infinity, we get

‖ f ‖1 ≥
∑
|S|≤k | f̂ (S)|
‖g‖∞

. �

Thus we get a lower bound for∆(D,Dkwi ):

Theorem 3.5. Let D be a distribution over{0, 1}n, and letFg be defined as in Theorem A.3 but replacing

f̂ (S) with biasD(S). Then for all g∈ Fg, ∆(D,Dkwi) ≥
1
2
∑
|S|≤k |biasD(S)|
‖g‖∞ .

If all the low level Fourier coefficients of f are non-zero, then there is a uniqueg ∈ Fg that corresponds
to f . Otherwise, there may be manyg’s in Fg all correspond tof . If this is the case, for the purpose of
proving lower bound, we may pick the one with the smallest infinity norm. On the other hand, there are
many different f ’s that correspond to the sameg. A nice property of functiong is that only the firstk-level
Fourier coefficients are non-zero and all these coefficients are in{−1, 1}. By the monotonicity of norms and
Parseval’s equality, we have‖g‖∞ ≥ ‖g‖2 =

√∑
1 ≤|S|≤k 1 =

√
Mn,k. And a trivial upper bound is‖g‖∞ ≤ Mn,k.

Note that if‖g‖∞ ≪ Mn,k, then our new lower bound on∆(D,Dkwi ) probably will give a much better bound
than the trivial lower bound∆(D,Dkwi) ≥ 1

2 maxS |biasD(S)|. Next we will provide some evidence showing

the strength of our new lower bound: among 2Mn,k = 2O(nk) possibleg’s, at most an exponentially small
portion of them may have‖g‖∞ = Ω(

√
nMn,k). Thus mostg’s will give good lower bound.

Theorem A.4. Let~g be an Mn,k-dimensional vector with its Mn,k components being g(x)’s non-zero Fourier
coefficients, then for all c> 0 and for all sufficiently large n,

Pr
~g∈R{−1,1}Mn,k

[
‖g‖∞ > 1.18

√
c+ 1

√
nMn,k

]
< 2−cn.

Proof. We will need the following simple Chernoff-type tail bound (see Corollary A.1.2 of [6])
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Lemma A.5. Let xi , 1 ≤ i ≤ m, be mutually independent random variables withPr[xi = 1] = Pr[xi = −1] =
1
2 and set Sm = x1 + · · · + xm. Let a> 0. Then

Pr[|Sm| > a] < 2e−
a2
2m .

Let x be an arbitrary element in{0, 1}n. Then

g(x) =
Mn,k∑

i=1

ĝ(Si)χSi (x) =
Mn,k∑

i=1

Yi ,

where we defineYi = ĝ(Si)χSi (x). Now if ĝ(Si)’s are independent random variables uniformly distributed
in {−1, 1}Mn,k, so areYi ’s. Hence we can apply Lemma A.5 to bound the probability of|g(x)| assuming

large values. Seta = 1.18
√

(c+ 1)Mn,kn >
√

2.005
log2 eMn,k(cn+ n), thena >

√
2

log2 eMn,k(cn+ n+ 1) and

a2 > 2
log2 eMn,k(cn+ n+ 1) for all sufficiently largen. Now Lemma A.5 gives

Pr~g[|g(x)| > a] = Pr
[∣∣∣∣∣
∑Mn,k

i=1
Yi

∣∣∣∣∣ > a
]
< 2e

− a2
2Mn,k < 2−cn · 2−n

Applying the union bound argument to all 2n strings gives

Pr~g
[‖g‖∞ > a

]
= Pr~g[∃x ∈ {0, 1}n s.t. |g(x)| > a]

< 2−cn.�

A.3 Proof of the Random Distribution Lemma

For completeness, we restate the Lemma here.

Lemma 3.6 (Random Distribution Lemma). Assume that k> 2. Let Q = Mn,k

nδ2 < 2n1/3
, with δ ≤ 1. If we

sample uniformly at random Q strings from{0, 1}n to form a random multisetQ and let UQ(x) be the uniform
distribution overQ, then for all large enough n,PrQ[∆(UQ,Dkwi) > 0.228δ] = 1− o(1).

Proof. We will follow the lower bound techniques developed in the previous section to prove this lemma.
However, for ease of analysis, we will use functions different from those used in the previously. LetD′(x)
be thek-wise independent distribution with minimum statistical distance toUQ. Define

fQ(x) = UQ(x) − D′(x).

Then we have
f̂Q(S) = ÛQ(S), for all S ⊆ [n], S , ∅ and|S| ≤ k,

and
∆(UQ,Dkwi) = 2n−1‖ fQ‖1.

DefinegQ(x) : {0, 1}n→ R as

ĝQ(S) =


f̂Q(S), if S , ∅ and|S| ≤ k,

0, otherwise.
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Also define the convolutionhQ(x) , ( fQ ∗ gQ)(x), then

ĥQ(S) =


f̂Q(S)2, if S , ∅ and|S| ≤ k,

0, otherwise.

by the convolution theorem. Applying Young’s inequality gives

‖ fQ‖1 ≥
‖hQ‖∞
‖gQ‖∞

.

We will prove the Lemma 3.6 by proving the following two lemmas bounding‖hQ‖∞ and‖gQ‖∞, respectively.

Lemma A.6. For all large enough n,PrQ
[
‖hQ‖∞ ≥ 0.999Mn,k

22nQ

]
= 1− o(1).

Lemma A.7. Let Mn,k

n ≤ Q < 2n1/3
. Then for all k> 2 and large enough n,PrQ

[
‖gQ‖∞ ≤ 2.19

2n

√
nMn,k

Q

]
=

1− o(1).

Now we prove the Lemma assuming Lemma A.6 and Lemma A.7: By theunion bound, with probability
1− o(1), both the lower bound of‖hQ‖∞ and the upper bound of‖gQ‖∞ hold. Then we have

∆(UQ,Dkwi) =
1
2

2n‖ fQ‖1 ≥
1
2
·

0.999Mn,k

Q

2.19
√

Mn,kn
Q

> 0.228

√
Mn,k

nQ
,

as desired. �

In the following proofs of Lemma A.6 and Lemma A.7, we will assume that all the elements in multiset
Q are distinct. This will not affect our results, since by the Birthday paradox, the probability of seeing a
collision inQ is o(1).

A.3.1 Proof of Lemma A.6

We prove the lower bound of‖hQ‖∞ by computing the expectation and variance of‖hQ‖∞. Then a simple
application of Chebyshev’s inequality gives the desired bound. The calculations are straightforward but
rather tedious.

Proof of Lemma A.6.By the definition of Fourier transform

|hQ(x)| =

∣∣∣∣∣∣∣∣

∑

1≤|S|≤k

ĥQ(S)χS(x)

∣∣∣∣∣∣∣∣
≤

∑

1≤|S|≤k

∣∣∣ĥQ(S)
∣∣∣ =

∑

1≤|S|≤k

ĥQ(S) = hQ(0).

Therefore
‖hQ‖∞ = hQ(0) =

∑

1≤|S|≤k

f̂Q(S)2.

Then for all non-empty subsetS with |S| ≤ k,

f̂Q(S) =
1
2n

∑

x∈{0,1}n
UQ(x)χS(x)

=
1

2nQ

∑

x∈Q
χS(x);
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and

f̂Q(S)2 =
1

22n

∑

x,y∈{0,1}n
UQ(x)χS(x)UQ(y)χS(y)

=
1

22nQ2

∑

x,y∈Q
χS(x)χS(y);

To facilitate the calculation of the expectation and variance of‖hQ‖∞, we first state two simple technical
claims.

Claim A.8. Let x and y be twodistinctstrings chosen uniformly at random from{0, 1}n, then for all n> 1,
x+ y is equal to every element in{0, 1}n \ {0n} with equal probability.

Proof. First we fix anx, then the mapy→ x + y is a one-to-one correspondence between{0, 1}n \ {x} and
{0, 1}n \ {0n}. Then notice thaty equals every element in{0, 1}n \ {x} with equal probability. �

Claim A.9. Let x, y, x′ and y′ be fourdistinctstrings chosen uniformly at random from{0, 1}n. Then for all
n > 2, x+ y+ x′ + y′ is equal to every element in{0, 1}n with equal probability.

Proof. Let z1 = x+ y. By claim A.8,z1 equals all strings in{0, 1}n \ {0n} with equal probability. Thenz1+ x′

equals all strings in{0, 1}n \ {x′} with equal probability. Butx′ takes all values in{0, 1}n equally often, so is
z1 + x′ = x+ y+ x′. Thereforex+ y+ x′ + y′ is uniformly distributed over{0, 1}n. �

Proposition A.10.

EQ
[‖hQ‖∞

]
=

Mn,k

22nQ
(1− Q− 1

2n − 1
).

Proof.

EQ
[‖hQ‖∞

]
= EQ


∑

1≤|S|≤k

f̂Q(S)2



=
1

22nQ2
EQ


∑

1≤|S|≤k

∑

x,y∈Q
χS(x)χS(y)



=
Mn,k

22nQ
+

1

22nQ2
EQ


∑

1≤|S|≤k

∑

x,y∈Q,x,y

χS(x)χS(y)



=
Mn,k

22nQ
+

1
22nQ2

EQ


∑

1≤|S|≤k

∑

x∈Q

∑

z,0n,z−x∈Q
χS(z)



=
Mn,k

22nQ
+

Mn,kQ(Q− 1)

22nQ2
Ez,{0n}

[
χS(z)

]
.

By Claim A.8,z is uniformly distributed over{0, 1}n \ {0n}. Since for anyS , ∅, ∑z∈{0,1}n χS(z) = 0, hence∑
z∈{0,1}n\{0n} χS(z) = −1, andEz∈{0,1}n\{0n}

[
χS(z)

]
= − 1

2n−1. Then we have

EQ
[‖hQ‖∞

]
=

Mn,k

22nQ
(1− Q− 1

2n − 1
).

This completes the proof. �
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Proposition A.11.

EQ
[
‖hQ‖2∞

]
=

M2
n,k

24nQ2
(1− Q− 1

2n − 1
)2 +

2Mn,kQ(Q− 1)

24nQ4
(1− 2(Q− 2)

2n − 1
) − Mn,k(Q− 1)2

24n(2n − 1)2Q2

=
M2

n,k

24nQ2
(1− Q− 1

2n − 1
)2 +

2Mn,k

24nQ2
(1− o(1)).

Proof.

EQ
[
‖hQ‖2∞

]
= EQ

(
∑

1≤|S|≤k

f̂Q(S)2)2



= EQ


∑

1≤|S|≤k

∑

1≤|T |≤k

f̂Q(S)2 f̂Q(T)2



=
1

24nQ4
EQ


∑

1≤|S|≤k

∑

1≤|T |≤k

∑

x,y∈Q

∑

x′,y′∈Q
χS(x+ y)χT (x′ + y′)

 .

Then one can distinguish between 12 different cases and calculate their expectations respectively. We omit
the details here. �

Therefore we have

Var(‖hQ‖∞) =
1

24n

2Mn,k

Q2
(1− o(1)),

and

σ(‖hQ‖∞) =
1

22n

√
2Mn,k

Q
(1− o(1)).

Finally we apply Chebyshev’s inequality, which states thatfor any t > 0 Pr[|X − E [X] | > tσ(X)] < 1
t2

, to
‖hQ‖∞ to finish the proof of Lemma A.6. �

A.3.2 Proof of Lemma A.7

The proof of Lemma A.7 is more involved: A simple calculationshows thatgQ(x) equals a summation of
Q independent random variablesY1, . . . ,YQ determined by the random subsetQ, where−Mn,k ≤ Yi ≤ Mn,k.
However, a direct application of Hoeffding’s bound to the sum can only gives‖gQ‖∞ = O

(
Mn,k

)
, thus

∆(UQ,Dkwi) = Ω( 1
Q), which is too weak. We improve on this is by noticing that thevariance ofYi is small,

thus Bernstein’s inequality [11] gives a better bound. Thisapproach gives us the desired result but also
imposes a restriction thatδ = O (1/n). We overcome this difficulty by the observation that for most of the
random variables,|Yi | is much smaller thanMn,k, as implied by Bonami-Beckner’s inequality. This enables
us to distinguish between two kinds ofYi ’s: Those|Yi | are small and those|Yi | are large, and sum them
separately. Followings are the details.
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Proof of Lemma A.7.Fix an arbitraryx ∈ {0, 1}n. Then

gQ(x) =
∑

1≤|S|≤k

f̂Q(S)χS(x)

=
1
2n

∑

1≤|S|≤k

∑

y∈{0,1}n
UQ(y)χS(x)χS(y)

=
1

2nQ

∑

1≤|S|≤k

∑

y∈Q
χS(x+ y)

=
1

2nQ

∑

y∈Q

∑

1≤|S|≤k

χS(x+ y)

=
1

2nQ

∑

y∈Q
Yx(y),

whereYx(y) ,
∑

1≤|S|≤k χS(x+y). Note that the summation is overindependentrandom variablesYx(y) in Q.
We will distinguish between two kinds of strings: We call a string y is x-bad if |Yx(y)| ≥ Mn,k/n1.1 and

x-goodotherwise. Then we can do the summation over strings that arex-good and strings that arex-bad
separately:

2nQ|gQ(x)| =

∣∣∣∣∣∣∣∣

∑

y∈Q, y is x-good

Yx(y) +
∑

y∈Q, y is x-bad

Yx(y)

∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣

∑

y∈Q, y is x-good

Yx(y)

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

∑

y∈Q, y is x-bad

Yx(y)

∣∣∣∣∣∣∣∣
.

Next we define a setB = {w ∈ {0, 1}n : |∑1≤|S|≤k χS(w)| ≥ Mn,k

n1.1 }. This definition gives us the following
simple characterization of strings those arex-bad by observing thatB is just the set of all strings that are
0n-bad.

Claim A.12. A string y is x-bad if and only if x+ y ∈ B, therefore y isbadfor exactly|B| many of strings.

Proof. The first part follow directly from the definitions ofx-bad and setB. For the second part, note that
for each elementw in B, y is bad fory+ w. �

Our next claim shows that in fact only an exponentially smallportion of all the strings in{0, 1}n are in
B, and hence each stringy is bad for only an exponentially small portion of all stringsin {0, 1}n.

Claim A.13. Let k> 2 be a constant natural number. Then for all large enough n,

|B| < 2n/2n1− 2.3
k
.

Proof. Consider a functionF(x) =
∑

1≤|S|≤k χS(x). By Parseval’s equality,‖F‖2 =
√∑

1≤|S|≤k 1 =
√

Mn,k.
SinceF has only the firstk levels Fourier coefficients, Bonami-Beckner’s inequality applies. Hence we have,
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for all even numberp > 2

Pr
x

[|F(x)| ≥ Mn,k

n1.1
] = Pr

x
[|F(x)| ≥

√
Mn,k

n1.1
‖F‖2]

≤ Ex [|F(x)|p]

(
√

Mn,k

n1.1 ‖F‖2)p

=
‖F‖pp

(
√

Mn,k

n1.1 ‖F‖2)p

≤ (p− 1)pk/2

(
√

Mn,k

n1.1 )p

<


pk/2

√
Mn,k

n1.1



p

.

Now takep = (
√

Mn,k

2n1.1 )2/k, and w.l.o.g. assume thatp is even, we have Prx[|F(x)| ≥ Mn,k

n1.1 ] < (1
2)n1− 2.3

k , for all
sufficiently largen. This completes the proof. �

Since each stringy is only bad for a small number of strings, if we choose uniformly at randomQ < 2n/3

strings to form a setQ, then almost surely there is no stringx in {0, 1}n witnessing more than one string inQ
that isx-bad.

Claim A.14. Let Q be a random subset constructed by uniformly at random choosing Q < 2n/3 distinct
elements from{0, 1}n. Then with probability1 − o(1), for each x∈ {0, 1}n, there is at most one string inQ
which is x-bad.

Proof. We will bound the probability that there is anx which has at least two strings inQ that arex-
bad. Fix an arbitraryx ∈ {0, 1}n. The probability that there are two stringsy1, y2 ∈ Q which arex-bad is(
Q
2

) |B|
2n
|B|−1
2n−1 <

Q2|B|2
22n = o( 1

2n ). We finish the proof by applying a union bound argument over all x ∈ {0, 1}n. �

If we apply the Hoeffding bound directly to the sum of strings that arex-good, we would not get the
desired result. Instead, we will employ the following Bernstein’s inequality [11], which gives a better bound
on the sum of independent random variables when we have a goodbound on the variance of the random
variables being summed.

Theorem A.15(Bernstein’s inequality). Let X1, . . . ,XQ be independent real-valued random variables such
that |Xi | ≤ C for all 1 ≤ i ≤ Q. Letσ2 = 1

Q

∑Q
i=1 Var(Xi). Then for any t> 0

Pr[|
Q∑

i=1

Xi − E [X] | > Qt] ≤ e
− Qt2

2σ2+ 2Ct
3

We will first compute the expectation and variance ofYx(y) over the universe (namely{0, 1}n). Then due
to the fact that the number ofx-bad strings is exponentially smaller than the cardinalityof the universe, the
expectation as well as the variance of the set ofx-good strings are almost identical to those of the universe.
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Indeed, by direct calculation

Ey
[
Yx(y)

]
= Ey


∑

1≤|S|≤k

χS(y)

 =
∑

1≤|S|≤k

Ey
[
χS(y)

]
=

∑

1≤|S|≤k

0 = 0,

and

Ey

[
Yx(y)2

]
= Ey




∑

1≤|S|≤k

χS(y)


2

= Ey


∑

1≤|S|,|T |≤k

χS(y)χT (y)



= Ey


∑

1≤|S|≤k

χS(y)2

 + Ey


∑

1≤|S|≤k

∑

S′,∅
χS′(y)

 (S′ , S∆T)

= Mn,k + 0

= Mn,k.

Since for allx, y ∈ {0, 1}n, 0 ≤ |Yx(y)| ≤ Mn,k, we have

|Ey is x-good
[
Yx(y)

] | ≤ Mn,k2n

2n1− 2.3
k (2n − 2n1− 2.3

k )
= o(1),

and

Vary is x-good(Yx(y)) ≤ Mn,k2n

2n − 2n1− 2.3
k

− o(1)2 = (1+ o(1))Mn,k.

Now we are ready to put it all together. With probability 1− o(1), for all x ∈ {0, 1}n there is at most
one x-bad string inQ. We will call such random setsgood. Conditioned on this, the contribution of sum
over x-bad strings in (A.3.2) is at mostMn,k. We then apply Bernstein’s inequality to the sum overx-good

strings withσ2 = Mn,k(1+ o(1)),C = Mn,k

n1.1 . By settingt =
√

2.02 ln 2Mn,kn
Q < 1.19

√
Mn,kn

Q , and note that for

all Q ≥ Mn,k/n, Ct = o(σ2), we have

Pr
Q is good



∣∣∣∣∣∣∣∣

∑

y∈Q, y is x-good

Yx(y)

∣∣∣∣∣∣∣∣
≥ Qt

 ≤ 2−n2−0.01n = o(
1
2n ).

The union bound over allx ∈ {0, 1}n implies that, with probability 1− o(1), for all x

2n|gQ(x)| ≤
1.19

√
Mn,knQ+ Mn,k

Q
≤ 2.19

√
Mn,kn

Q
.

i.e. with probability 1− o(1),

‖gQ‖∞ ≤
2.19
2n

√
Mn,kn

Q
.

This completes the proof of Lemma A.7. �
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A.3.3 Tightness of the Lemma 3.6

Our lower bound on the statistical distance between a randomdistribution andk-wise independent distribu-
tions is almost tight due to the following proposition

Proposition A.16. Let S be a random multiset formed by uniformly samplingΩ(k(logn)k+1nk/δ2) times
from {0, 1}n. Then with high probability, US is δ-close to k-wise independent.

Proof. By Chernoff bound, for everyS ⊆ [n], |S| ≤ k,S , ∅, with probability at least (1− 1
3nk ), |biasUS(S)| ≤

O(δ/(n logn)k/2). By a union bound argument, this holds for allS with probability at least 2/3. Applying
Theorem 3.1 gives the desired result. �

A.4 Sample lower bound

For completeness, we give a detailed proof of Theorem 3.7.

Proof of Theorem 3.7.We will show that if the algorithm makes too few queries, thenit cannot successfully
distinguish between two distributions far apart with high probability. Consider the following two distribu-
tions. The first one is the uniform distributionUn over {0, 1}n. Obviously,Un is k-wise independent for all
1 ≤ k ≤ n. The second distributionUQ is a uniform distribution over a multisetQ, whereQ is constructed

by uniformly and randomly samplingZ =
(

0.228
δ (n

k )
k−1
2

)2
≤ 0.2282 Mn,k

nδ2
times from{0, 1}n. By Lemma 3.6,

with probability 1− o(1), UQ is at leastδ-far from anyk-wise independent distribution. Now letA be any
algorithm that makesQ = o(

√
Z) = o

(
1
δ
(n

k)
k−1

2

)
queries. LetDUn andDUQ be distributions over sample sets

of sizeQ that algorithmA obtains fromUn andUQ respectively. By the Birthday Paradox, with probabil-
ity 1 − o(1), all the strings queried fromUn are distinct and all the strings queried fromUQ are distinct.
Conditioned on this, the statistical distance betweenDUn andDUQ is zero, since both of the distributions are
uniform distributions overmdistinct strings randomly selected from{0, 1}n. Therefore,A cannot distinguish
these two distributions with success probability bounded away from 1/2 by a constant. By the union bound,
the total probability thatA succeeds is at most1

2 + o(1). This completes the proof. �

B Testing (ǫ, k)-wise independence

In this section we provide the omitted details from Section 4.

B.1 Relation ofT(ǫ, k)- and T(ǫ, k)--(ǫ′, k)-

Here we prove the Lemma 4.6. We break down the lemma into two propositions and prove each separately.

Proposition B.1. Let 0 < ǫ, δ < 1. If ∆(D,D(ǫ,k)) > δ, then D< D(ǫ+ǫδ,k). Hence any algorithm for solving
T(ǫ, k)--(ǫ + ǫδ, k)- can be used to solveT(ǫ, k)- to within distanceδ with
the same sample and time complexity.

Proof. We prove the contrapositive: that ifD ∈ D(ǫ+ǫδ,k), then∆(D,D(ǫ,k)) ≤ δ. SupposeD is (ǫ+ǫδ, k)-wise
independent. Then construct a new distributionD′ that is (ǫ, k)-wise independent and such that∆(D,D′) ≤ δ
as follows:

D′ =

{
D, with probability 1− δ
Un, with probabilityδ

Clearly,∆(D,D′) ≤ δ. Also, for anyk indicesi1 < i2 < . . . ik, and any vector−→v ∈ {0, 1}k, we have that
∣∣∣∣∣ Pr
x←D′

[
xi1 xi2 . . . xik =

−→v
]
− 2−k

∣∣∣∣∣ ≤ (ǫ + ǫδ)(1− δ) + 0 · δ ≤ ǫ
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Now, to solve the problem T(ǫ, k)- of distribution D, simply invoke T(ǫ, k)--(ǫ +
ǫδ, k)- on D. If D is such that∆(D,D(ǫ,k)) > δ, then D < D(ǫ+ǫδ,k) and the tester for the
latter problem will report “No”. Otherwise, ifD ∈ D(ǫ,k), then the tester for the latter problem with report
“Yes”. �

Next we show how to reduce solving T(ǫ, k)--(ǫ′ , k)- to solving T(ǫ, k)-
to within distanceδ = ǫ′ − ǫ.

Proposition B.2. Let 0 ≤ ǫ < ǫ′ < 1. If ∆(D,D(ǫ,k)) ≤ ǫ′ − ǫ then D∈ D(ǫ′,k). Hence, any algorithm for
solvingT(ǫ, k)- to within distanceδ = ǫ′ − ǫ also solvesT(ǫ, k)--(ǫ′ , k)-
(with the same sample and time complexity).

Proof. Let D′ ∈ D(ǫ,k) be such that∆(D,D′) ≤ δ = ǫ′ − ǫ. Then, for any indicesi1 < i2 < . . . ik, and any
vector−→v ∈ {0, 1}k, we have that

Pr
x←D

[
xi1 xi2 . . . xik =

−→v
]
− 2−k ≤

(
Pr

x←D′

[
xi1 xi2 . . . xik =

−→v
]
+ δ

)
− 2−k ≤ ǫ + δ = ǫ′

and

Pr
x←D

[
xi1 xi2 . . . xik =

−→v
]
− 2−k ≥

(
Pr

x←D′

[
xi1 xi2 . . . xik =

−→v
]
− δ

)
− 2−k ≥ −ǫ − δ = −ǫ′

Thus,D ∈ D(ǫ′,k).
To conclude, we solve T(ǫ, k)--(ǫ′ , k)- on D by a simple invocation to T(ǫ, k)-

 on D. If D is such thatD < D(ǫ′,k) then∆(D,D(ǫ,k)) > ǫ′ − ǫ and the tester for the latter
problem with report “No”. Otherwise, ifD ∈ D(ǫ,k), then the tester returns “Yes”. �

B.2 Sample complexity upper bound: proof of Theorem 4.1

We give an algorithm for T(ǫ, k)--(ǫ′ , k)-, and use the relation of Lemma 4.6 to derive
the upper bound for T(ǫ, k)-. In our algorithm for T(ǫ, k)--(ǫ′ , k)-, we do
not use biases. Note that using biases in the natural way would introduce an approximation error of 2Ω(k)

(see [3] for relations between the parameterǫ and the biases).

Theorem B.3(Sample upper bound). Let 0 ≤ ǫ < ǫ′ < 1. T(ǫ, k)--(ǫ′ , k)- can be solved
using Q= O

(
k logn
(ǫ′−ǫ)2

)
samples from the distribution.

Proof. The algorithm proceeds in a straight-forward way: first, using the samplesQ, compute a distribution
D̃ that is an approximation toD, and then check whether̃D is closer to being (ǫ, k)-wise independent, or is
closer to not even being (ǫ′, k)-wise independent. Specifically, given the multiset of queries Q, construct a
distribution D̃ : {0, 1}d → [0, 1] that is uniformly distributed onQ, i.e., D̃(x) = |{i∈[|Q|] | qi=x}|

|Q| , whereQ =

{q1, . . .q|Q|}. Then we can compute the minimum ˜ǫ such thatD̃ is (ǫ̃, k)-wise independent. If ˜ǫ ≤ ǫ+ǫ′2 , then
we declareD is (ǫ, k)-wise independent, and, if ˜ǫ > ǫ+ǫ

′

2 , we declare thatD is not (ǫ′, k)-wise independent.
For this algorithm, we need to prove two properties. The firstis that ifD is (ǫ, k)-wise independent, then

ǫ̃ ≤ ǫ+ǫ′2 . The second is that ifD is not (ǫ′, k)-wise independent, then ˜ǫ > ǫ+ǫ
′

2 .
We introduce the following notation. ForC ⊂ [n], |C| = k,−→v ∈ {0, 1}k, let p̃C,−→v = Prx←D̃

[
x|C = −→v

]
−2−k.

The important property of ˜pC,−→v is thatǫ̃ = maxC,−→v
∣∣∣p̃C,−→v

∣∣∣.
We prove that, with high probability, maxC,−→v

∣∣∣p̃C,−→v
∣∣∣ is tightly concentrated around its true value. Fix any

C,−→v as above. Then we have that ˜pC,−→v =
∑|Q|

i=1
Xi
|Q| − 2−k, whereXi is an indicator variable equal to 1 iff
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qi |C = −→v . Note thatE [Xi] = Prx←D

[
x|C = −→v

]
. By the Chernoff bound, forσ = ǫ

′−ǫ
2 , we have that

PrQ
[
|p̃C,−→v − (Prx←D

[
x|C = −→v

]
− 2−k)| ≥ σ

]
= PrQ

[
|p̃C,−→v − (E [Xi ] − 2−k)| ≥ σ

]

= PrQ
[∣∣∣∣
∑|Q|

i=1
Xi
|Q| − E [Xi]

∣∣∣∣ ≥ σ
]

≤ exp
[
−Ω((ǫ′ − ǫ)2 · |Q|)

]

Thus, setting|Q| = O
(

k logn
(ǫ′−ǫ)2

)
, with probability at least 1− n−Ω(k), we have that

∣∣∣p̃C,−→v − (E [Xi ] − 2−k)
∣∣∣ ≤

σ.
Now, to show the first property, just note that|Prx←D

[
x|C = −→v

]
− 2−k| ≤ ǫ when D is (ǫ, k)-wise

independent. Thus,|p̃C,−→v | ≤ ǫ + σ = ǫ+ǫ′

2 . By a union bound, with at least a constant probability,

maxC,−→v |pC,−→v | ≤ ǫ+ǫ
′

2 .
For the second property, we show that ˜ǫ > ǫ+ǫ

′

2 if D is not (ǫ′, k)-wise independent. LetC,−→v be such

that |Prx←D

[
x|C = −→v

]
− 2−k| > ǫ′. Then, by the above deviation bound, with high probability,|p̃C,−→v −

(Prx←D

[
x|C = −→v

]
− 2−k)| ≤ ǫ′−ǫ2 . Finally, we deduce that

∣∣∣p̃C,−→v
∣∣∣ > ǫ′ − σ = ǫ+ǫ′2 with high probability. �

B.3 Sample complexity lower bound: proof of Theorem 4.2

In this section we study the lower bound on sample complexityfor the problem T(ǫ, k)- to
within distanceδ.

We first study the minimum support of a distributionD which is (ǫ, k)-wise independent. We show that

the minimum support of such a distribution isΩ
(

k
ǫ2 log 1

ǫ

logn
)
. We then apply this argument to distributions

that are (ǫ + δ, k)-wise independent. Specifically, since a distributionD such that∆(D,D(ǫ,k)) ≤ δ is also
(ǫ + δ, k)-wise independent (by Lemma 4.6), the minimum support sizeargument implies thatD has support
size at least

|Supp(D)| > Ω


k

(ǫ + δ)2 log 1
ǫ+δ

logn

 .

For obtaining the lower bound on sample complexity, we consider two distributions that are impossible

to distinguish unless we haveΩ
(√

k
(ǫ+δ)2 log 1

ǫ+δ

logn
)

samples. The first one is the uniform distributionUn

over {0, 1}n. Obviously,Un is (ǫ, k)-wise independent. The second distributionD∗ is constructed via the
following random processF: defineD∗ to be uniform over the setS of c k

(ǫ+δ)2 log 1
ǫ+δ

logn elements chosen

from Un (with replacement) for some constantc > 0. Since any distributionD∗ generated viaF has small
support size, by the above bound on the support size, we have that ∆(D∗,D(ǫ,k)) > δ. However, using

the birthday paradox, unlessΩ
(√

k
(ǫ+δ)2 log 1

ǫ+δ

logn
)

samples are drawn, both distributionsUn and anD∗

generated viaF look the same, and cannot be distinguished by any algorithm.The actual proof follows. The
proof uses the following theorem that appears in [1].

Theorem B.4([1]). Let B be an n by n real matrix with bi,i = 1 for all i and |bi, j | ≤ ǫ for all i , j. If the
rank of B is d, and 1√

n
≤ ǫ ≤ 1

2, then

d > Ω


1

ǫ2 log 1
ǫ

logn

 .

Theorem B.5(minimum support size). Let 1
nk/4 < ǫ <

1
2. The minimum support of a distribution D which is

(ǫ, k)-wise independent isΩ
(

k
ǫ2 log 1

ǫ

logn
)
.
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Proof. Consider a distributionD that is (ǫ, k)-wise independent. Assume thatD is given as a binarys× n
matrix MD wheres is the support size. A restriction ofMD to a subset∅ , I ⊂ [1, · · · , n], |I | ≤ k is denoted
asMD,I and it is ans× |I | matrix that contains the relevant columns ofMD.

For ∅ , I ⊂ [1, · · · , n], |I | ≤ k
2, consider the sum modulo 2 of the columns ofMD,I and obtain a vector

vM,I of length s. The weight ofvM,I is denoted asw(vM,I ) and it refers to the number of 1’s invM,I . The
number of different setsI , ∅ , I ⊂ [1, · · · , n], |I | ≤ k

2 is Θ(nk/2). Consider a matrixC of dimensions by
Θ(nk/2) whose columns are all possible vectorsvM,I . The matrixJ is a matrix of all 1’s. LetC′ = J −C.

From the definition of (ǫ, k)-wise independent distribution we know that for every∅ , I , J ⊂ [1, · · · , n],
|I |, |J| ≤ k

2, I , J

|2w(vM,I ⊕ vM,J) − s

s
| ≤ ǫ.

Consider now a matrixB of dimensionΘ(nk/2) by Θ(nk/2), where its rows and columns are indexed by
different setsI , andBI ,J =

2w(vM,I ⊕vM,J)−s
s . Note thatB = [2(Ct · C + C′t · C′) − sJ]/s. SinceC,C′, J have

rank at mosts, the rank ofB is also at mosts. From the definition of (ǫ, k)-wise independent distribution we
obtain thatBI ,I = 1 and|BI ,J| ≤ ǫ for I , J. Hence by Theorem B.4 we obtain

Rank(B) > Ω


k

ǫ2 log 1
ǫ

logn

 .

However, as mentioned above,s≥ Rank(B). Hence we obtain the claimed lower bound ons:

s> Ω


k

ǫ2 log 1
ǫ

logn

 .

�

Corollary B.6. Let 1
nk/4 < ǫ <

1
2, 0 < δ ≤ 1

2 − ǫ. The minimum support of a distribution D for which

∆(D,D(ǫ,k)) ≤ δ isΩ
(

k logn
(ǫ+δ)2 log 1

ǫ+δ

)
.

Proof. By Lemma 4.6 we get that a distributionD which isδ-far from (ǫ, k)-wise independent distribution
is a (ǫ + δ, k)-wise independent distribution. The corollary follows from the lower bound on the support size
of a (ǫ + δ, k)-wise independent distribution as obtained in Theorem B.5. �

We are now ready to prove Theorem 4.2.

Theorem 4.2(Sample lower bound).For ǫ > n−k/4, 0 < δ < 1/2 − ǫ, any algorithm solvingT(ǫ, k)-

 to within distanceδ requires at least|Q| = Ω
( √

k logn

(ǫ+δ)
√

log 1/(ǫ+δ)

)
samples from the distribution

D.

Proof. We will show that if the algorithm hasO

( √
k logn

(ǫ+δ)
√

log 1/(ǫ+δ)

)
samples, then it can not successfully

distinguish the following two distributions with high probability. For the first distribution, consider the
uniform distributionUn over{0, 1}n. Obviously,Un is (ǫ, k)-wise independent for all 1≤ k ≤ n and 0≤ ǫ ≤
1
2. The second distributionD is constructed via the following random processF: defineD to be uniform

over the setS of c k logn
(ǫ+δ)2 log 1

ǫ+δ

elements chosen fromUn (with replacement) for some sufficiently small

constantc > 0. Since distributionD generated viaF has small support size, by Corollary B.6, we have that
∆(D,D(ǫ,k)) > δ.

Now consider the distribution of the sample setQ of size c
100

k logn
(ǫ+δ)2 log 1

ǫ+δ

. For both distributionUn and

D (chosen fromF), Q is a set ofl distinct element chosen from{0, 1}n, with probability at least 11/12. This
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means that for any algorithmA, we can show that
∣∣∣PrQ←Un[A(Q) = 1] − PrD←F,Q←D[A(Q) = 1]

∣∣∣ ≤ 1/6. In
other words,A cannot distinghuishUn from D based onl samples only, with success probability of 2/3.
This completes the proof. �

Theorem B.7. Let 1
nk/4 < ǫ < ǫ

′ < 1
2. T(ǫ, k)--(ǫ′ , k)-

requires at leastΩ(
√

k
(ǫ′)2 log 1

ǫ′
logn) samples from the distribution.

Proof. By Lemma 4.6 we get that a distributionD which is not (ǫ′, k)-wise independent is at least (ǫ′−ǫ)-far
from a (ǫ, k)-wise independent distribution and from the lower bound for T(ǫ, k)--(ǫ′ , k)-
we obtain the claimed lower bound. �

B.4 Hardness of hidden clique: finding vs deciding

In the following, we prove that the hardness of finding a hidden clique in a random graph (conjecture 4.3)
implies the hardness of deciding on the presence of a hidden clique in a random graph (conjecture 4.7).

Theorem B.8. For t(n) > Ω(logn), HC-F[t(n)] impliesHC-D[t(n)/3].

Proof. The proof is by contradiction. Suppose, for anyn ≥ n0, we can distinguish in polynomial time
whether a graphG is drawn fromGn,1/2 or Gn,1/2,t/3, with probability at least 1− 1/2n2. Let M be such a
distinguisher.

Then, forn ≥ 3n0, given a graphG fromGn,1/2,t, we can find a clique of sizet in G using the distinguisher
M as follows. Our algorithm is somewhat similar to the algorithm BasicFind used in [15] to find a hidden
clique of sizet = Ω(

√
n).

1. LetC = ∅ (representing the current clique).
2. For each vertexv of the graphG,

3. LetGv = G \ {v} \ Nv be the graph obtained by removingv together withv’s neighbors. Letnv

be the number of vertices inGv.
4. If M(Gv) outputs “Gnv,1/2”, then putv into the setC. Do nothing ifM(Gv) outputs “Gnv,1/2,t/3”.

5. OutputC.

The intuition behind the algorithm is the following. LetK be the planted clique inG. If v is in K, then
after removingv and the neighborhoodNv, we remove the entire cliqueK, and the remaining graphGv is
a random graph fromGnv,1/2. If v < K, then after removingv andNv, we have deleted at most 2t/3 of the
clique with high probability, and thus the graphGv is a random graph with a hidden clique of size at least
t/3, i.e., chosen fromGnv,1/2,t′ for somet′ > t/3.

More formally, consider first any vertexv such thatv < K. Then we can viewGv as being generated via
the following random process. Pick integernv as the number of vertices in the graph obtained by starting
with n vertices, deleting the vertexv, and then deleting each vertex with probability 1/2. Then pick integer
t′ as follows: takenv red vertices andn − 1 − nv blue vertices, then draw randomlyt(n) vertices (without
repetitions); sett′ to be the number of red vertices that were drawn. Finally generateGv via the process
Gnv,1/2,t′ . Note that Pr[nv ≤ 0.4n] ≤ e−Ω(n), and Pr[t′ ≤ t(nv)/3] ≤ Pr[t′ ≤ t(n)/3] ≤ e−Ω(t(n)). Thus,M, run
onGv, will output “Gnv,1/2,t” with probability 1− e−Ω(t(n)) − n−2/2.

Now consider any vertexv ∈ K. Then we can viewGv as being generated as follows. Picknv according
to the following distribution: start withn vertices, delete vertexv andt(n)−1 other vertices (the other vertices
of the cliqueK), and then delete each remaining vertex with probability 1/2; the size of the surviving graph
givesnv. Finally, we generateGv via the processGnv,1/2. Note that Pr[nv ≤ n/3] ≤ e−Ω(n). Thus,M, run on
Gv, will output “Gnv,1/2” with probability 1− e−Ω(n) − n−2/2.

By the union bound over all verticesv, with probability at least 1− 1/n, the algorithmM gives the right
answer for all of then verticesv. Thus, we outputC = K with probability at least 1− 1/n. �
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