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Abstract

Given a set of nonnegative integers T , and a function S which assigns a set of
integers S(v) to each vertex v of a graph G, an S-list T -coloring c of G is a vertex-
coloring (with positive integers) of G such that c(v) ∈ S(v) whenever v ∈ V (G)
and |c(u)− c(w)| 6∈ T whenever (u,w) ∈ E(G). For a fixed T , the T -choice number
T -ch(G) of a graph G is the smallest number k such that G has an S-list T -coloring
for every collection of sets S(v) of size k each. Exact values and bounds on the
Tr,s-choice numbers where Tr,s = {0, s, 2s, . . . , rs} are presented for even cycles,
notably that Tr,s-ch(C2n) = 2r + 2 if n ≥ r + 1. More bounds are obtained by
applying algebraic and probabilistic techniques, such as that T -ch(C2n) ≤ 2|T | if
0 ∈ T , and c1r log n ≤ Tr,s-ch(Kn,n) ≤ c2r log n for some absolute positive constants
c1, c2.

1 Introduction

Restricted vertex-colorings of graphs arose in connection with the frequency
assignment problem. Hale [4] formulated several frequency assignment prob-
lems in graph-theoretic terms. Suppose that n transmitters are stationed at
various locations, and we wish to assign to every transmitter a frequency over
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which it will operate. If nearby transmitters must be assigned different frequen-
cies so as not to interfere, we can formulate this problem as a vertex-coloring
problem of a graph as follows. Every transmitter is represented by a vertex,
and frequencies are referred to as colors. Any pair of vertices representing close
transmitters are connected by an edge.

An additional restriction stems from considering the interference that occurs
in practice between adjacent transmitters: not only will they interfere when
operating on exactly the same frequency, but also when the difference between
their frequencies equals certain values. T -colorings of graphs deal with such a
restriction, and have been surveyed by Roberts [7]. Given a set of nonnegative
integers T , a T -coloring of a graph G is a vertex-coloring (with positive inte-
gers) of G such that the difference between any two colors assigned to adjacent
vertices does not belong to T .

Another restriction is imposed when we consider the specifications of the trans-
mitters: each transmitter may have a limited pool of frequencies on which it
can operate. List-colorings of graphs deal with this restriction, and were orig-
inated independently by Vizing [10] and by Erdős, Rubin, Taylor [3]. Given
a set of allowed colors S(v) for each vertex v of a graph G, a list-coloring
of G is a proper vertex-coloring of G such that the color assigned to each
vertex v belongs to S(v). Given a function f : V → N , a graph G is f -
choosable if a list-coloring of G exists for every collection of sets S(v) such
that |S(v)| = f(v) for every vertex v of G. A graph G is k-choosable if it
is f -choosable for the constant function f(v) = k. The choice-number ch(G)
of G is the minimal number k such that G is k-choosable. See Alon [1] for a
survey on list-colorings and choosability.

Combining both restrictions, list-T -colorings of graphs were formulated and
studied extensively by Tesman [8,9]. It is worth noting that list-T -coloring
is an instance of the Constraint Satisfaction problem; see Mackworth [5,6].
Given a set T and a function f as above, a graph G is T -f -choosable if a list-
T -coloring of G exists for every collection of sets S(v) such that |S(v)| = f(v)
for every vertex v of G. A graph G is T -k-choosable if it is T -f -choosable for
the constant function f(v) = k. The T -choice-number T -ch(G) of G is the
minimal number k such that G is T -k-choosable.

Attention has been given mainly to the T -choice-numbers of special classes of
graphs and sets T of specific form. Let Tr,s denote the set {0, s, 2s, . . . , rs}
where r is a nonnegative integer and s is a positive integer, and let Tr = Tr,1.
From now on we always assume that 0 ∈ T , unless otherwise specified. The
main results concerning T -ch(G) are [8,9]:

(1) T -ch(G) ≥ ch(G) (≥ χ(G)) for every set T and graph G.
(2) T -ch(G) ≤ |T | ·∆(G) + 1 for every set T and graph G of maximal degree
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∆(G). This can be realized by coloring the vertices one by one, choosing
each time a vertex having the minimal (or maximal) available color.

(3) T -ch(G) ≤ (2|T | − 1)(χ(G)− 1) + 1 for every set T and chordal graph G.
This can be obtained by coloring the vertices one by one according to a
perfect elimination ordering, using any available color each time.

(4) Tr,s-ch(Kn) = (r + 1)(n− 1) + 1 for every r ≥ 0, s > 0, n > 0.
(5) Tr-ch(C2n+1) = 2r + 3 for every r ≥ 0, n > 0.
(6) Tr-ch(Bn) = b(2r + 2)(n− 1)/nc+ 1 for every tree Bn on n ≥ 1 vertices

and r ≥ 0.

In this paper we continue this study, and present more general results as well.
In section 2 we observe that Tr-ch(G) = Tr,s-ch(G), and present a lower bound
for Tr,s that is tight for odd cycles and cliques. In section 3 we present exact
values and bounds on the Tr-choice-numbers of cycles. Additional bounds of
T -ch(G) that are connected with ch(G) are presented in section 4, by using
algebraic techniques. Further results concerning T -ch(G) using probabilistic
methods are presented in section 5.

2 Tr,s-choice numbers

We begin this section by proving the following simple equality:

Theorem 1 Tr-ch(G) = Tr,s-ch(G) for every r ≥ 0 and s > 0.

PROOF. Fix G, r and s.

Part 1: Tr-ch(G) ≤ Tr,s-ch(G).

Let k = Tr-ch(G)−1. By the definition of Tr-ch(G), there exists an assignment
S of a set Sv of k colors to each vertex v of G, that does not admit an S-
list-Tr-coloring. In every vertex-coloring c of G such that c(v) ∈ Sv for every
vertex v, there exists an edge (u,w) of G such that |c(u) − c(w)| ∈ Tr. Let
S ′v be the set obtained from Sv by replacing every color i by the color is.
Clearly, |S ′v| = |Sv| = k. In any vertex-coloring c′ of G such that c′(v) ∈ S ′v
for every vertex v, there exists an edge (u,w) of G such that |c′(u)− c′(w)| =
s · |c(u)− c(w)| ∈ Tr,s. This shows that Tr,s-ch(G) > k.

Part 2: Tr-ch(G) ≥ Tr,s-ch(G).

Let k = Tr,s-ch(G)−1, and let S be an assignment of a set Sv of k colors to each
vertex v of G, that does not admit an S-list-Tr,s-coloring. Denote by M the
maximal color of S plus one: M = max{c : c ∈ Sv, v ∈ V }+1. Let S ′v be the set
obtained from Sv by replacing every color i by the color i′ = b i

s
c+M(i mod s).
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It is clear that |S ′v| = |Sv| = k. Note that if i− j = as for some integer a, then
i′ − j′ = a. In any vertex-coloring c′ of G such that c′(v) ∈ S ′v, there exists an
edge (u,w) of G such that |c′(u) − c′(w)| = |c(u) − c(w)|/s ∈ Tr. This shows
that Tr-ch(G) > k.

This result can be generalized to the following color sets. Let T ar,s = {as, (a+
1)s, . . . , (a+ r)s}, where a and r are nonnegative integers and s is a positive
integer.

Proposition 2 T ar,1-ch(G) = T ar,s-ch(G) for every graph G and r ≥ 0.

We end this section by presenting a simple bound on Tr-ch(G), which is based
upon ch(G).

Theorem 3 Tr-ch(G) > (r + 1)(ch(G)− 1) for every graph G and r ≥ 0.

PROOF. Let k = ch(G) − 1. By the definition of ch(G), there exists an
assignment S of a set Sv of k colors to each vertex v of G, that does not
admit an S-list coloring. In every vertex-coloring c of G such that c(v) ∈ Sv
for every vertex v, there exists an edge (u,w) of G such that c(u) = c(w).
Let S ′v be the set obtained from Sv by replacing every color i by the set Ai
of r + 1 colors: Ai = {i(r + 1), i(r + 1) + 1, . . . , i(r + 1) + r}. Notice that
different colors i 6= j are replaced by disjoint sets Ai ∩Aj = ∅, hence for each
vertex v, |S ′v| = (r + 1)k. In any vertex-coloring c′ of G such that c′(v) ∈ S ′v
for every vertex v, there exists an edge (u,w) of G such that c′(u) and c′(w)
both belong to the same set Ai, implying that |c′(u)− c′(w)| ∈ Tr. This shows
that Tr-ch(G) > (r + 1)k.

3 The Tr-choice numbers of cycles

Tesman [8,9] proved that the Tr-choice number of any odd cycle equals 2r+3.
As mentioned by Roberts [7], the Tr-choice numbers of even cycles have not yet
been found. We prove lower and upper bounds for these numbers Tr-ch(C2n)
which are tight for long even cycles (n ≥ r + 1), the lower bound being tight
for C4 as well.

Throughout this section we let Si ⊂ Z be the set of colors assigned to vertex
i, and we denote by mi and Mi the minimal and maximal colors of Si. The
set {i, . . . , j} is denoted by [i, j] (if i > j then [i, j] = ∅).
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3.1 The Tr-choice numbers of C2n

We begin with a simple constructive proof that Tr-ch(C2n) ≤ 2r + 2. Denote
the vertices of C2n by 1, 2, . . . , 2n and suppose |Si| ≥ 2r+ 2 for each i, so that
Mi −mi > 2r. We need the following lemma.

Lemma 4 Either

Mi −mj > r and Mj −mi > r (1)

or else

|mi −mj|, |Mi −Mj| > r and either Mi −mj > r or Mj −mi > r . (2)

PROOF. If Mi − mj 6> r then mi + 2r < Mi ≤ mj + r < Mj − r and so
Mj −mi > mj −mi > r and Mj −Mi > r. If Mj −mi 6> r then the situation
is symmetric.

An edge (i, j) is said to be of type X if (1) holds and of type Z if (2) holds and
(1) doesn’t. We now state formally the result we are about to prove.

Theorem 5 Tr-ch(C2n) ≤ 2r+ 2, and if |Si| ≥ 2r+ 2 for every vertex i then
there exists a proper vertex coloring of C2n using the minimal or maximal color
of each set.

PROOF. Let G = (V,E) be a simple graph having 4n colored vertices, ob-
tained from C2n by splitting each vertex i into two vertices, coloring one mi

and the other Mi. Abusing the notation, we shall refer to the vertices of G by
mi and Mi for simplicity. The edges of G are defined as follows: for each edge
(i, j) of C2n, choose either (Mi,mj), (mi,Mj) or (mi,mj), (Mi,Mj) to be edges
in E, according to whether the edge (i, j) is of type X or type Z, respectively.
Our goal is to show that G contains a 2n-cycle — such a cycle represents a
proper vertex coloring of C2n. It is evident that G is either a 4n-cycle or the
edge sum of two vertex-disjoint 2n-cycles. In the former case, since C2n is an
even cycle, C2n contains an edge (i, j) of type Z. Adding the edge (Mi,mj) or
(mi,Mj) to E (according to whether Mi−mj > r or Mj −mi > r) will create
a 2n-cycle in G, completing the proof.

A lower bound for Tr-ch(C2n) can be obtained by considering a spanning tree
B2n of C2n and using a result proved by Tesman [8]:

Theorem 6 (Tesman [8, Thm 4.2]) Tr-ch(Bn) = b(2r+ 2)(n− 1)/nc+ 1.
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Therefore Tr-ch(B2n) = 2r + 2 if and only if n ≥ r + 1. Combining this with
Theorem 5 proves the following.

Theorem 7 If n ≥ r + 1 then Tr-ch(C2n) = Tr-ch(B2n) = 2r + 2.

Next, we wish to compute the Tr-choice-number of C4. ¿From Theorem 5 it is
clear that Tr-ch(C4) ≤ 2r + 2. A lower bound can be obtained by considering
a spanning tree B4 of C4 and applying Theorem 6: Tr-ch(C4) ≥ Tr-ch(B4) =
b3

2
(r+1)c+1. It turns out that the precise value of Tr-ch(C4) is b12

7
(r+1)c+1.

Theorem 8 Tr-ch(C4) = b12
7

(r + 1)c+ 1 for every r ≥ 0.

Proof (sketch) Our proof that b12
7

(r+ 1)c+ 1 is an upper bound is a rather
lengthy case-by-case analysis, and is therefore omitted. Following is a proof
showing that this value is a lower bound.

Denote the vertices of C4 by (1, 2, 3, 4). Set s = b12
7

(r + 1)c. Following is an
example of four color sets S1, S2, S3, S4 of size s each which do not admit a
proper coloring of C4. First, if r = 0 then s = 1 and S1 = S2 = S3 = S4 = {1}
will do. Assuming r > 0 we define the following color sets:

S1 = [1, s]

S2 = [s− r, 2s− r − 1]

S3 = [2s− 2r − 1, 3s− 2r − 2]

S4 = [3s− 5r − 4, r + 1] ∪ [3s− 3r − 2, 3r + 3] .

It is evident that |S1| = |S2| = |S3| = s. Since 3r + 3 ≥ 3s− 3r− 2 > r + 1 ≥
3s− 5r − 4 (for r > 0) we have |S4| = 12(r + 1)− 6s which is at least s (if it
is more than s, choose any subset of S4 of size s instead of S4).

To see why C4 cannot be colored using S1, . . . , S4, suppose that it can, with
each vertex i being given a color si ∈ Si. Then, s1 < s2 < s3 and therefore
s3 ≥ s2 + r + 1 ≥ s1 + 2r + 2. Since mi ≤ si ≤Mi for each i, it follows that

(r + 1)− r = 1 ≤ s1 ≤ (3s− 2r − 2)− (2r + 2) = (3s− 5r − 4) + r

and

(3r + 3)− r = 1 + (2r + 2) ≤ s3 ≤ 3s− 2r − 2 = (3s− 3r − 2) + r .

The former implies s4 6∈ [3s − 5r − 4, r + 1] and the latter implies s4 6∈
[3s− 3r − 2, 3r + 3], a contradiction.
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We can extend the lower bound of Theorem 8 to any cycle Cn.

Theorem 9 Tr-ch(Cn) ≥ b2n−2
2n−1

· 2(r + 1)c+ 1 for any r ≥ 0 and n ≥ 4.

PROOF. Denote the vertices of Cn by (1, . . . ,n). Set s = b2n−2
2n−1

· 2(r + 1)c.
Following is an example of n color sets S1, . . . , Sn of size s each which do not
admit a proper coloring of Cn. First, if r = 0 then s = 1 and Si = {1} for
every vertex i will do. Assume r > 0. For vertices 1 ≤ i ≤ n− 1 define

mi = 1 + (i− 1)(s− r − 1)

Mi = s+ (i− 1)(s− r − 1)

Si = [mi,Mi]

and for vertex n define

mn = s+ (n− 2)(s− 2r − 2)− r
M ′

n = 1 + r

m′n = s+ (n− 2)(s− r − 1)− r
Mn = 1 + (n− 2)(r + 1) + r

Sn = [mn,M
′
n] ∪ [m′n,Mn] .

It is evident that |S1| = · · · = |Sn−1| = s. Since Mn ≥ m′n > M ′
n ≥ mn (for

r > 0 and n ≥ 4) we have |Sn| = 2(n− 1)(2(r + 1)− s) which is at least s (if
it is more than s, choose any subset of Sn of size s instead of Sn).

To see why Cn cannot be colored using S1, . . . , Sn, suppose that it can, with
each vertex i being given a color si ∈ Si. Then, for 1 ≤ i ≤ n− 2, si+1 − si ≥
r + 1, so that sn−1 − s1 ≥ (n − 2)(r + 1). Since mi ≤ si ≤ Mi for each i, it
follows that

M ′
n − r = m1 ≤ s1 ≤Mn−1 − (n− 2)(r + 1) = mn + r

and

Mn − r = m1 + (n− 2)(r + 1) ≤ sn−1 ≤Mn−1 = m′n + r .

The former implies sn 6∈ [mn,M
′
n] and the latter implies sn 6∈ [m′n,Mn], a

contradiction.

We have obtained a lower bound for even cycles that is tight for the shortest
even cycle C4. Fix r, and set n = r + 1. Observe that this bound attains the
value b4r+2

4r+3
(2r + 2)c + 1 = b4r+4

4r+3
(2r + 1)c + 1 = 2r + 2 which by Theorem 7
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is the exact value of Tr-ch(C2r+2). We conjecture that this bound is tight for
all even cycles.

Conjecture 10 Tr-ch(C2n) = b4n−2
4n−1

· 2(r + 1)c+ 1 for all r ≥ 0 and n ≥ 2.

3.2 The Tr-choice number of C2n+1

Tesman [9] proved that Tr-ch(C2n+1) = 2r + 3. Here we give a simple and
constructive proof, restricting ourselves as much as possible to the extreme
colors of each set.

Proposition 11 Tr-ch(C2n+1) ≤ 2r + 3, and there exists a proper vertex col-
oring of C2n+1 using the minimal or maximal color of each set, with at most
one exception.

PROOF. The proof uses a construction similar to the one described in the
proof of Theorem 5. Indeed the only case that requires special attention is
when all the edges of C2n+1 are of type X. In this case G is a (4n + 2)-cycle,
and an intermediate color is needed on one vertex. For each i, let si denote
the (r+ 1)th element of Si, so that mi + r < si < Mi− r. Since 2n+ 1 is odd,
there exist three consecutive vertices i, j, k of C2n+1 such that si ≤ sj ≤ sk.
Add a new vertex to G and color it sj. Adding the edges (mi, sj) and (sj,Mk)
to G will create a cycle of length 2n+1 in G, which clearly represents a proper
coloring of C2n+1.

Theorem 3 shows that this bound is tight.

4 Choosability and T -Choosability

In order to describe a result of Alon and Tarsi [2] concerning f -choosability of
graphs, we need the following definitions. A subdigraph H of a digraph D is
called Eulerian if the in-degree d−H(v) of every vertex v of H in H is equal to
its out-degree d+

H(v). H is even if it has an even number of edges, otherwise,
it is odd . Let EE(D) and EO(D) denote the number of even and odd Eulerian
subgraphs of a digraph D, respectively.

Theorem 12 (Alon and Tarsi [2, Thm 1.1]) If the graph G has an ori-
entation D such that EE(D) 6= EO(D) then G is f -choosable, where f(v) =
d+
D(v) + 1 is the out-degree of the vertex v in D plus one.
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This result can be extended to T -choosability as follows. Let Gm denote the
graph obtained by replacing each edge of G by m parallel edges.

Theorem 13 If G2t−1 has an orientation D such that EE(D) 6= EO(D), then
G is T -f -choosable for every set T of size t containing zero, where f(v) =
d+
D(v) + 1 is the out-degree of vertex v in D plus one.

PROOF. With every (multi-)graph G on V = {1, . . . , n} we associate the
polynomial

fG(x1, . . . , xn) =
∏

1≤i<j≤n
(xi − xj)eij

where eij ∈ Z≥0 is the number of edges joining i and j. Notice that a vertex-
coloring c of G is proper if and only if fG(c(1), . . . , c(n)) 6= 0. Expand fG
into a linear combination of monomials. Let D be any orientation of G, and
di = d+

D(vi). Alon and Tarsi [Corollary 2.3] showed that the coefficient of the
monomial

∏n
i=1 x

di
i in fG is equal to ±(EE(D) − EO(D)). They then showed

that if this coefficient is nonzero, G is (d+
D + 1)-choosable. We will follow these

two steps, relating to T -colorings.

Step 1:

Let T = {0, a1, . . . , at−1}. We associate with any (simple) graph G on V =
{1, . . . , n} the polynomial

fTG(x1, . . . , xn) =
∏

1≤i<j≤n
(xi − xj)eij

t−1∏
k=1

[(xi − xj − ak)(xi − xj + ak)]
eij

where eij ∈ {0, 1} is the number of edges joining i and j in G. Notice that a
vertex-coloring c of G is a proper T -coloring if and only if fTG(c(1), . . . , c(n)) 6=
0. Expand fTG into a linear combination of monomials.

A monomial
∏n
i=1 x

ci
i of fTG has degree

∑n
i=1 ci. Let coef(m, f) denote the coef-

ficient of monomial m in polynomial f . It is easy to see that if m is a monomial
of fTG of maximum degree, then coef(m, fTG) = coef(m, fG2t−1), where

fG2t−1(x1, . . . , xn) =
∏

1≤i<j≤n
(xi − xj)(2t−1)eij .

Let D be an orientation of G2t−1 such that EE(D) 6= EO(D). Denote di =
d+
D(i) and M =

∏n
i=1 x

di
i . Since M is a monomial of maximum degee in fTG ,

coef(M, fTG) = coef(M, fG2t−1), but coef(M, fG2t−1) = ±(EE(D)− EO(D)) by
Alon and Tarsi [2, Cor 2.3]. Hence coef(M, fTG) 6= 0.
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Step 2:

It remains to show that if coef(M, fTG) is nonzero, G is T -(d+
D + 1)-choosable.

Assuming the contrary, there exists for each vertex i of G a set Si of di + 1
colors, such that

fTG(x1, . . . , xn) = 0 for every n-tuple (x1, . . . , xn) ∈ S1 × S2 × . . .× Sn .

For each i, 1 ≤ i ≤ n, let Qi(xi) be the polynomial

Qi(xi) =
∏
s∈Si

(xi − s) = xdi+1
i −

di∑
j=0

qijx
j
i .

Observe that

if xi ∈ Si then Qi(xi) = 0, i.e., xdi+1
i =

di∑
j=0

qijx
j
i . (3)

Let f̂TG be the polynomial obtained from fTG by replacing, repeatedly, each
occurrence of xfii , (1 ≤ i ≤ n), where fi > di, by a linear combination of
smaller powers of xi, using the relations (3). f̂TG is of degree at most di in xi for
each i. Moreover, f̂TG(x1, . . . , xn) = fTG(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈
S1 × S2 × . . .× Sn and hence, by Lemma 2.1 of [2], f̂TG ≡ 0. Since the degree
of each xi in M is di, the relations (3) will not affect it. Moreover, since
M is of maximum degree in fTG and each application of relations (3) strictly
reduces degree, the process of replacing fTG by f̂TG will not create any new
scalar multiples of M . Thus, coef(M, f̂TG) = coef(M, fTG) 6= 0. This contradicts
the fact that f̂TG ≡ 0, and completes the proof.

Applying Theorem 13 to even cycles, let D be a cyclic orientation of G2t−1 =
(C2n)2t−1 (all parallel edges are directed the same). Then all Eulerian sub-
graphs are even and hence EE(D) 6= EO(D). Since d+

D(v) = 2t − 1 for every
vertex v, we have obtained the following.

Corollary 14 T -ch(C2n) ≤ 2|T | whenever 0 ∈ T and n ≥ 2.

Hence, for T = {0, a1, . . . , at−1}, a proper T -coloring of C2n exists using any
collection of color sets Sv of size 2t each. But it may happen that no such
coloring exists using only the minimal or maximal color of each set Sv, as
demonstrated by taking n = 2; t = 2; T = {0, 3}; Sv = {1, 2, 3, 4} for all v.
Therefore Theorem 5 does not hold for general T , whereas Corollary 14 holds
for general T but its proof is non-constructive.

Now we extend Theorem 13 to a wide class of graphs, and prove the following.
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Theorem 15 Let p = 2t − 1 be prime. If a graph G has an orientation D
such that EE(D) 6≡ EO(D) (mod p), then G is T -f -choosable for every set T
of size t containing zero, where f(v) = (2t− 1)d+

D(v) + 1.

PROOF. Let Dp be the orientation of Gp obtained by directing every edge
of Gp according to the direction of the corresponding edge in D. We will show
that EE(Dp) ≡ EE(D) (mod p) and EO(Dp) ≡ EO(D) (mod p).

In order to calculate EE(Dp) and EO(Dp), we use the following observations.
Denote by Φp the circulations of (0,1) flows in the network Dp, where every arc
has capacity 1. For a flow F p in Φp, let |F p| denote the total number of arcs of
Dp whose flow in F p equals 1. Clearly there is a one-to-one correspondence be-
tween Eulerian subdigraphs of Dp and circulations Φp. A flow F p corresponds
to an even or odd Eulerian subdigraph of Dp, according to whether |F p| is
even or odd, respectively. Let Φp

E and Φp
O denote the flows F p of Φp such that

|F p| is even or odd, respectively.

Denote by Φ the circulations of integer flows in the network D, where every
arc of D has capacity p. For a flow F in Φ, let fij = fij(F ) denote the flow
of F along arc (i, j) of D. There is a natural mapping R : Φp → Φ as follows.
For a given flow F p in Φp, R(F p) is the flow obtained by setting the flow along
every arc (i, j) of D to fij, where fij equals the number of arcs of flow 1 in

F p from i to j. Notice that for every flow F in Φ, R−1(F ) contains
∏

(i,j)

(
p
fij

)
different flows of Φp. Note also that if F p ∈ R−1(F ), then |F p| =

∑
(i,j) fij.

Let ΦE and ΦO denote the flows F in Φ such that
∑

(i,j) fij is even or odd,
respectively. Summing up, we have obtained the following equations:

EE(Dp) = |Φp
E| =

∑
F∈ΦE

∏
(i,j)

(
p

fij

)

EO(Dp) = |Φp
O| =

∑
F∈ΦO

∏
(i,j)

(
p

fij

)
.

Let F be a flow of Φ, and let P (F ) =
∏

(i,j)

(
p
fij

)
. F is called an edge-saturating

flow if P (F ) = 1. Denote by ΦS the set of edge-saturating flows of Φ. There is
a natural bijection between ΦS and the Eulerian subdigraphs of D. A flow F
of Φp which is not edge-saturating contains a flow fij such that 0 < fij < p,
and since p is prime this implies that P (F ) ≡ 0 (mod p). Therefore

EE(Dp) ≡
∑

F∈ΦE∩ΦS

P (F ) = |ΦE ∩ ΦS| = EE(D) (mod p)
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EO(Dp) ≡
∑

F∈ΦO∩ΦS

P (F ) = |ΦO ∩ ΦS| = EO(D) (mod p) .

Since EE(D) 6≡ EO(D) (mod p) we conclude that EE(Dp) 6= EO(Dp). This
enables us to apply Theorem 13, which completes the proof.

If T does not contain zero, we can omit from fTG the corresponding term
(xi−xj)eij . Proceeding as in the proof of Theorem 13, we obtain the following.

Theorem 16 If G2t has an orientation D such that EE(D) 6= EO(D), then
G is T -f -choosable for every set T of size t not containing zero, where f(v) =
d+
D(v) + 1 is the out-degree of vertex v in D plus one.

Note that there is a trivial T -coloring for T not containing zero, namely to
color every vertex using the same color. But this is not necessarily true for list-
T -colorings and T -choosability, since the color sets may be disjoint. Therefore
it may be interesting, at least theoretically, to deal with T -choosability where
T does not contain zero.

The proof of Theorem 13 does not rely upon the values of the elements of T .
Hale [4] and Roberts [7, Section 9] studied cases having different separation
sets T for different edges of a graph G. Here we formulate such a problem for
which we can obtain results using the techniques above.

Definition 17 Let G = (V,E) be a graph. Given a function f : V → N
and a function g : E → N , G is g-f -choosable if for every collection of
sets {S(v) : |S(v)| = f(v)}v∈V and every collection of sets {T (e) : |T (e)| =
g(e), 0 ∈ T (e)}e∈E there exists a vertex-coloring c of G such that c(v) ∈ S(v)
for every vertex v, and |c(u)− c(w)| 6∈ T (e) for every edge e = (u,w).

Denote by G2g−1 the multigraph obtained by replacing each edge e of G by
2g(e) − 1 parallel edges. A slight modification of the proof to Theorem 13
yields the following.

Theorem 18 Let G = (V,E) be a graph, and g : E → N . If G2g−1 has
an orientation D such that EE(D) 6= EO(D), then G is g-f -choosable where
f(v) = d+

D(v) + 1 is the out-degree of vertex v in D plus one.

5 Probabilistic Methods

Bounds on the choice-number of graphs can be obtained by using probabilistic
methods. For example, in [3] (see also [1]) it is shown that the choice-number
of Kn,n is O(log n) by using such a method. The next theorem illustrates how

12



bounds on the T -choice-number of graphs can also be obtained using such
methods.

Theorem 19 Tr-ch(Kn,n) = O(r log n) for r ≥ 1 and n > 1.

PROOF. Let the partite sets of Kn,n be A, B, where |A| = |B| = n. Suppose
we are given a set S(v) of k integers for each v ∈ A ∪ B. Denote by Ai =
{ir, ir+1, . . . , ir+r−1} for i ∈ Z. Let Z = ZA∪ZB be a random partition of
the integers into two disjoint sets, obtained by assigning, for each i randomly
and independently, all the elements of Ai either to ZA or to ZB with equal
probability. For z ∈ Z, let i(z) = bz/rc denote the index i for which z ∈ Ai.
A color s ∈ S(a) where a ∈ A is called good if s ∈ ZA (i.e., Ai(s) ⊂ ZA),
Ai(s)−1 ⊂ ZA and Ai(s)+1 ⊂ ZA. Otherwise s is called bad . A color s ∈ S(b)
where b ∈ B is good if Ai(s)−1, Ai(s), Ai(s)+1 ⊂ ZB, and otherwise it is bad .
Notice that if every color set S(v) contains a good color, a proper Tr-coloring
of G exists using any such good colors. The probability that a fixed color s is
bad, equals 7

8
. Let I(v) denote the set of all indices i such that S(v)∩Ai 6= ∅.

Clearly, |I(v)| ≥ k/r for every vertex v. Let v be any vertex, and s1, s2 be
two colors of S(v). If i(s1) = i(s2) then s1 and s2 are either both good or
both bad. More specifically, the two events {s1 is bad} and {s2 is bad} are
independent iff |i(s1) − i(s2)| ≥ 3. In order to eliminate this dependency, let
I ′(v) be a subset of I(v) for every vertex v, such that |I ′(v)| ≥ 1

3
|I(v)| ≥ k

3r

and |i − j| ≥ 3 for every pair of indices i, j ∈ I ′(v), i 6= j. For each vertex v
and index i ∈ I ′(v), choose a color s(v, i) from S(v)∩Ai. Call a vertex v bad,
if every color s ∈ S(v) is bad. For a fixed vertex v,

P [v is bad] = P [s is bad, ∀s ∈ S(v)] ≤ P [s(v, i) is bad, ∀i ∈ I ′(v)]

=
∏

i∈I′(v)

P [s(v, i) is bad] ≤
(

7

8

) k
3r

.

The expected number of bad vertices is therefore no more than 2n(7
8
)
k
3r . If

k > 3r(log 2n)/(log(8
7
)) = O(r log n), then 2n(7

8
)
k
3r < 1, implying that there

exists a partition Z = ZA ∪ ZB with no bad vertices. Thus Kn,n is Tr-k-
choosable if k = O(r log n), as desired.

Erdős, Rubin and Taylor [3] showed that there exists a positive constant c
such that the choice-number of Kn,n is at least c log n for all n > 1. Applying
Theorem 3 we conclude that Tr-ch(Kn,n) ≥ cr log n for r ≥ 0 and n > 1.
Combined with Theorem 19 we obtain the following.

Theorem 20 There exist two positive constants c1, c2 such that c1r log n ≤
Tr-ch(Kn,n) ≤ c2r log n for all r ≥ 0, n ≥ 2.
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6 Concluding Remarks and Open Problems

(1) The constructive proofs of Theorem 5 and Proposition 11 supply simple
linear-time algorithms for obtaining a Tr-coloring of an even or an odd
cycle, given color sets of appropriate sizes.

(2) Determining the exact Tr-choice-number of even cycles C2n for 3 ≤ n ≤ r
is still open. We have narrowed the gap by presenting a lower bound of
b4n−2

4n−1
· 2(r+ 1)c+ 1, and an upper bound of 2(r+ 1). We believe that the

lower bound is the exact value for all n, r, as mentioned in Conjecture 10.
(3) It seems that in many cases, if D is an orientation of a graph G, t is

sufficiently large and D′ is obtained from D by replacing each directed
edge by 2t−1 parallel copies of it, then D′ has a different number of even
and odd Eulerian subgraphs (i.e., EE(D′) 6= EO(D′)). When this is the
case, it follows that G is T -f -choosable where T is any arbitrary set of t
nonnegative integers including zero, and f(v) = (2t− 1)d+

D(v) + 1.
(4) For arbitrary separation sets T , the size of T may have no influence on

the T -choice-number of a graph G. For example, if the elements of T are
contained in the series {a0 = 0, ai+1 = 3ai + 1 for i ≥ 0}, then one can
prove that T -ch(B) ≤ dB + 2 for any tree B having maximum degree
dB, regardless of the size of T (which may even be infinite). Thus it is
interesting to characterize the important features of separation sets T ,
with respect to T -choice-numbers. As mentioned in section 4, it may be
of interest to consider also separation sets which do not contain zero.

Note added in proof. We have recently found that B.Tesman, in his thesis
[9], proved (independently, and before us) the assertion of theorem 5 and
consequently theorem 7. His proof is similar to the one given here, but we
include our proof since it contains a further restriction to the extreme colors
of each color set, and since [9] is not easily accessible. The lower bound of
Tesman [9, Thm. 3.9]: Tr-ch(C2n) ≥ b4nr+4n−1

2n+1
c + 1 is strengthened by our

lower bound of Tr-ch(C2n) ≥ b4n−2
4n−1

· 2(r + 1)c+ 1 (theorem 9).
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