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Abstract

Perfect information coin-flipping and leader-election games arise naturally in the study of

fault tolerant distributed computing and have been considered in many different scenarios.

Answering a question of Ben-Or and Linial we prove that for every c < 1 there are such games

on n players in which no coalition of cn players can influence the outcome with probability

greater than some universal constant times c. (Note that we actually prove this statement only

for all c < 1/3, but since our universal constant is bigger than 3 the above is trivial for c ≥ 1/3.)

We show that a random protocol of a certain length has this property and give an explicit

construction as well.
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1 Introduction

A fundamental problem of fault tolerant distributed computing is that of n processors wishing to

agree on a random value. The problem becomes non-trivial when some of the processors are faulty.

The problem has been considered in many different scenarios, depending on the assumptions made

on the type of communication between the processors, the kind and number of faults, and the

power of the adversary. See the surveys of Chor and Dwork [9] and Ben-or, Linial and Saks [6]. In

the present paper we consider it in the natural model formulated by Ben-Or and Linial [5] (whose

formal description is given in the next subsection): the processors have complete information, (i.e.

the communication type is a public broadcast channel), the processors take turns broadcasting

some random values and the outcome is a function of all the bits that were sent. The adversary is

assumed to be computationally unlimited. The problem is to design protocols where the influence

on the outcome of any set of faulty processors not exceeding a certain size is bounded.

A closely related problem is that of leader election: the processors take turns broadcasting

messages. At the end of the protocol, as a function of the bits transmitted, one processor is

considered the leader. The problem is to design protocols that have the property that for any

coalition of faulty processors whose size does not exceed a certain threshold, the probability that a

member of the coalition be elected is bounded.

Unlike the Byzantine case, where the exact thresholds for achieving an agreement were known

[9, 10], for the perfect information scenario a gap existed: it was known that n
2 cheaters (out of n

players) can completely control the protocol, yet the best known protocol [12, 1] (improving the

one in [5]) has the property that only sets of cheaters of size less than n
3 logn have influence bounded

away from 1.

In this paper we resolve this problem and show that there are protocols where even a linear

number of cheaters have only bounded influence. We first show in Section 2, via a probabilistic

construction , the existence of an election protocol that can tolerate up to 1
3n cheaters (i.e. the

elected leader will not be faulty with some non-zero probability). Then, in section 3, we show an

explicit construction that works for a smaller (yet linear in n) threshold. This easily gives coin
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flipping protocols with a similar behavior.

Our proofs combine probabilistic arguments with an iterative procedure based on the pseudo-

random properties of projective and affine planes. The analysis requires a study of a game which

we call faulty baton passing that is performed in each iteration of the procedure.

1.1 Preliminaries, background and results

A perfect-information coin-flipping game of n players is a rooted tree T whose leaves are labeled

by 0 or 1 and whose internal vertices are labeled by the names of the players. In addition, each

internal vertex v is associated with a probability distribution Dv on its children. Starting from the

root, the player whose name labels the current vertex v chooses one of its children according to

the distribution Dv, and the game proceeds to the chosen child. When a leaf is reached the game

ends and its value is the label of the leaf. Note that the same player may have to make more than

one choice in a game. It is sometimes assumed that the tree T is binary and that the probability

distribution associated with each internal vertex is the uniform distribution on its two children.

This makes no essential difference, and hence we use here the more general definition.

Let N denote the set of players. We say that a player I ∈ N plays fairly if he makes his choice

randomly (according to the corresponding probability distribution) whenever it is his turn to make

a choice in the course of the game.

Let pT1 be the probability of reaching a leaf labeled 1 if all players play fairly. T is a fair game

if p1(T ) = 1/2. For a subset S of the set of players N , let pT1 (S) denote the probability of reaching

a 1-leaf when the coalition S plays the optimal strategy trying to maximize the probability of

reaching a 1-value. Here we assume that all the other players play fairly and that each player in S

knows exactly which other players are in S. The influence IT1 (S) of S towards 1 in the game T is

defined by IT1 (S) = pT1 (S)− pT1 . The influence IT0 (S) of S towards 0 in T is defined similarly and

the (total) influence I(S) = IT (S) is defined by I(s) = IT1 (S) + IT0 (S). Therefore, I(S) measures

the capability of S to control the game, and a game is robust if I(S) is small for every relatively

small S. In [5] it is proved that for every perfect-information coin-flipping game T of a set N of

n players, where pT1 is bounded away from 0 and 1, and for every k ≤ n there is a subset S ⊂ N
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of cardinality k whose influence I(S) is at least Ω(k/n). In the same paper the authors construct

a fair game of n players in which the influence of each set of k players, where k ≤ O(nlog32) is at

most O(k/n). Improving the estimates of Saks in [12], Ajtai and Linial [1] showed that there is a

fair game on n players in which the influence of each set of k ≤ n
3 logn is at most O(k/n). These

results lead to the following problem, raised in [5], and referred to as the most outstanding problem

in this area in some of the more recent papers on the subject.

Problem ( [5], see also [1] ) Are there fair perfect-information coin-flipping games of n players in

which for every k ≤ n the influence of every set of k players is at most O(k/n)? In particular, are

there such games in which there is no set of size o(n) whose influence is 1− o(1)?

In the present paper we show that the answer to both questions is ”yes”. We first present a

probabilistic proof of existence of such games. Afterwards we describe, for every positive c < 1,

an explicit construction of perfect-information coin-flipping fair games of n players in which there

is no set of cn players whose influence exceeds O(c). (Note that the construction works only for

all positive real c < C, where C is some absolute positive constant, but since the multiplicative

constant in the expression O(c) can be adjusted, this implies the result for all c < 1).

Our results are better formulated in terms of leader-election games. A leader-election game

of n players is a rooted tree T whose vertices are labeled by the names of the players, and each

internal vertex v is associated with a probability distribution Dv on its children. Starting from the

root, the player whose name labels the current vertex v chooses one of its children according to the

distribution Dv, and the game proceeds to the chosen child. When a leaf is reached the game ends

and the chosen leader is the label of this leaf.

For a subset S of players, let pT (S) denote the probability that a leader from S is chosen, when

the coalition S plays the optimal strategy trying to maximize the probability of such a choice, (and

when all other players play fairly). For a constant δ > 0 and for t ≤ n let us call, following [12], a

leader-election game T δ-robust against t-cheaters if pT (S) ≤ δ for any subset S of at most t players.

Let t(n, δ) denote the maximum t such that there exists a leader-election game of n players which

is δ-robust against t cheaters. From any leader-election game T one can construct its associated

coin-flipping fair game C(T ) obtained by letting the chosen leader flip a coin and decide the value
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of the game. Thus formally, C(T ) is the game obtained from the tree T by adding to each leaf v

of T two children labeled 0 and 1, and by associating v with the uniform distribution on these two

children. It is obvious that for a subset S of players, the influence of S towards 0 or towards 1

in C(T ) is precisely pT (S)/2. Therefore, the existence of robust leader-election games implies the

existence of robust coin-flipping games. This leads naturally to the problem of estimating t(n, δ).

In [12] Saks constructed a leader election game which is δ-robust against c(δ)n/ log n cheaters,

for any 0 < δ < 1, where c(δ) is a positive constant depending only on δ. This shows that

t(n, δ) > c(δ)n/ log n. Answering a question raised in [12] we show that in fact t(n, δ) > Ω(δn) for

all 0 < δ < 1. Moreover, for any ε < 1/3 there is a δ < 1 such that t(n, δ) > εn. As noted in [12]

there is a simple argument that shows that t(n, δ) < n/2 for all δ < 1. It would be interesting to

close the gap between the two constants 1/2 and 1/3 here.

Our best lower bounds (in terms of the constants) for t(n, δ) are obtained by probabilistic

arguments, described in the next section. However, we also give an explicit construction of leader-

election games of n players which are δ-robust against Ω(δn)-cheaters.

2 The existence of robust games

Let T be a full binary rooted tree of depth d. Put N = {1, . . . , n}, and let us label each internal

vertex v of T , randomly and independently, by a number in N chosen according to a uniform

distribution on N . Observe that T is a leader-election game of n players. Our first result in this

section is the following theorem, which demonstrates the existence of very robust leader-election

games.

Theorem 2.1 Let T be the leader-election game chosen randomly as above. Then, the probability

that there is a set S ⊂ N of cardinality εn, where ε < 1/3, such that pT (S) is at least

ε+
ε3/2√

2(1−
√

1/2 + 3ε/2)
+ γ

does not exceed (
n

εn

)
ε(1/2 + 3ε/2)d

γ2
.
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In particular, there is an n-player leader-election game T of depth O(n) in which for any set of

εn ≤ 1
4n players pT (S) ≤ ε+ 12ε3/2.

Note that even if all players in an n-players leader-election game play fairly, then for every ε

(which is an integral multiple of 1/n) there is a set S of εn players such that the leader is chosen

among the members of S with probability of at least ε. This shows that the last estimate for pT (S)

in the theorem above is sharp, up to the additive lower order term 12ε3/2.

The theorem is proved by deriving estimates on the expectation and variance of the value of

pT (S) in a randomly chosen leader election game. Then, using Chebyschev’s Inequality it is shown

that with the required probability there is no set S where pT (S) is larger than the bound in the

theorem. A similar strategy is used in the proof of the main result of [4].

First we establish the following two lemmata:

Lemma 2.2 Let Y, Z be two independent random variables with equal expectations E(Y ) = E(Z) =

E and equal variances V ar(Y ) = V ar(Z) = σ2. Let ε ≤ 1 be a positive constant and let X be the

random variable defined as Y+Z
2 with probability 1− ε and Max{Y, Z} with probability ε. Then:

E(X) = E +
ε

2
E(|Y − Z|) ≤ E +

εσ√
2

(1)

V ar(X) ≤ σ2(
1
2

+
3ε
2

). (2)

Proof Observe that Max(Y, Z) = Y+Z
2 + |Y−Z|

2 . By Jensen’s Inequality

E(|Y − Z|) ≤
√
E((Y − Z)2) =

√
V ar(Y − Z) =

√
V ar(Y ) + V ar(Z) =

√
2σ.

Hence,

E(X) = (1− ε)E + ε(E +
1
2
E(|Y − Z|)) = E +

ε

2
E(|Y − Z|) ≤ E +

ε

2

√
2σ.

Thus (1) holds.

To prove (2) observe, first, that by the Cauchy-Schwartz Inequality, for every two random

variables T, F ,

(E(TF )− E(T )E(F ))2 = (E((T − E(T ))(F − E(F ))))2 ≤ V ar(T )V ar(F ).
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(This is simply the well known fact that the absolute value of the correlation factor of two random

variables is at most 1). Taking T = Y + Z, F = |Y − Z| we get

|E((Y + Z)|Y − Z|)− E(Y + Z)E(|Y − Z|)| ≤
√
V ar(Y + Z)V ar(|Y − Z|) ≤ 2σ2. (3)

By the definition of X:

E(X2) = (1− ε)E(Y 2) + E(Z2) + 2E(Y Z)
4

+ (4)

ε
E(Y 2) + E(Z2) + 2E(Y Z)

4
+ 2

ε

4
E((Y + Z)|Y − Z|) +

ε

4
E(|Y − Z|2)

=
E(Y 2) + E(Z2) + 2E2

4
+
ε

2
E((Y + Z)|Y − Z|) +

ε

4
E(|Y − Z|2).

Also, by (1):

E(X)2 = E2+εE E(|Y −Z|)+
ε2

4
(E(|Y −Z|))2 = E2+

ε

2
E(Y +Z)E(|Y −Z|)+

ε2

4
(E(|Y −Z|))2. (5)

Subtracting (5) from (4) we obtain

V ar(X) = E(X2)− (E(X))2

=
E(Y 2) + E(Z2)− 2E2

4
+
ε

2
(E((Y + Z)|Y − Z|)− E(Y + Z)E(|Y − Z|))

+
ε

4
E(|Y − Z|2)− ε2

4
(E(|Y − Z|))2.

In view of (3), the last quantity is at most

V ar(Y ) + V ar(Z)
4

+
ε

2
2σ2 +

ε

4
E(|Y − Z|2)

=
σ2

2
+ εσ2 +

ε

4
2σ2 = σ2(

1
2

+
3
2
ε),

completing the proof of (2). 2

In order to state the next lemma we need some more notation. Let T be, as before, a full binary

rooted tree of depth d, whose vertices are labeled randomly and independently by the elements of

N = {1, . . . , n}. Let a < 1 be a positive number and let us choose, for every leaf v of T randomly

and independently, a weight w(v), where w(v) = 1 with probability a and w(v) = 0 with probability
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1 − a. Let S ⊂ N be a fixed subset of cardinality |S| = εn. Define a weight function wa,S on the

vertices of T as follows. If v is a leaf of T then wa,S(v) = w(v). If u is an internal vertex of T and

v1, v2 are its two children then:

wa,S(u) = Max{wa,S(v1), wa,S(v2)} if u is labeled by an element of S, and

wa,S(u) = wa,S(v1)+wa,S(v2)
2 otherwise.

Obviously, for fixed S, a and for every fixed vertex v of T , wa,S(v) is a random variable whose

value depends on the random choices of the labels of the internal vertices of T and on the random

choices of the weights w(v) of the leaves of T .

Lemma 2.3 Let v be a vertex of T whose distance from the leaves is h. Then the expectation and

the variance of the random variable wa,S(v) satisfy:

E(wa,S(v)) ≤ a+ ε

√
a√
2

h−1∑
i=0

(
1
2

+
3ε
2

)i/2 ≤ a+ ε

√
a√

2(1−
√

1/2 + 3ε/2)

V ar(wa,S(v)) ≤ a(
1
2

+
3ε
2

)h.

Proof We apply induction on h. For h = 0 the expectation and the variance of wa,S(v) are a

and a(1 − a), respectively, and hence both inequalities hold. Assuming the result holds for all

h′ < h let u be a vertex of distance h from the leaves, h > 1. Let v1 and v2 be the two children

of u. Since the label of u is in S with probability ε, and since wa,S(v1) and wa,S(v2) are two

identically distributed independent random variables, we can apply Lemma 2.2 with X = wa,S(u),

Y = wa,S(v1), Z = wa,S(v2). By the induction hypothesis this gives

E(wa,S(u)) ≤ E(wa,S(v1)) +
ε√
2

√
V ar(wa,S(v1)

≤ a+ ε

√
a√
2

h−2∑
i=0

(
1
2

+
3ε
2

)i/2 +
ε√
2

√
a(

1
2

+
3ε
2

)(h−1)/2

= a+ ε

√
a√
2

h−1∑
i=0

(
1
2

+
3ε
2

)i/2.

Similarly, by Lemma 2.2 and by the induction hypothesis,

V ar(wa,S(u)) ≤ V ar(wa,S(v1))(
1
2

+
3ε
2

)
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≤ a(
1
2

+
3ε
2

)h−1(
1
2

+
3ε
2

) = a(
1
2

+
3ε
2

)h.

This completes the proof. 2

Returning, now, to our randomly-chosen leader-election game given by the randomly labeled

tree T of depth d, let us fix a set S with S = εn, where ε < 1/3 and let us estimate the probability

that for this specific set S, the inequality

pT (S) > ε+
ε3/2√

2(1−
√

1/2 + 3ε/2)
+ γ

holds. For every vertex v, let Tv denote the subtree of T rooted at v. If the leader election game

is played on Tv then the probability that a leader from S is chosen, when the coalition S plays the

optimal strategy trying to maximize the probability of such a choice, is pTv(S). Obviously, if v is a

leaf of T , then pTv(S) is 1 if the label of v is in S and is 0 otherwise. More interesting is the case

that v is an internal vertex of T and u and w are its two children. It is not too difficult to check

that in this case:

pTv(S) = Max{pTu(S), pTw(S)} if v is labeled by an element of S, and

pTv(S) = pTu (S)+pTw (S)
2 otherwise.

Therefore, the random variables pTv(s) are defined exactly as the random variables wa,S(v)

discussed in Lemma 2.3, where here a = ε. It follows that the expectations and variances of these

random variables satisfy the bounds appearing in this lemma (with a = ε). In particular, when we

let v be the root of T we conclude that the expectation and the variance of pTv(S) = pT (S) satisfy

E(pT (S)) ≤ ε+ ε

√
ε√
2

d−1∑
i=0

(
1
2

+
3ε
2

)i/2

≤ ε+
ε3/2√

2(1−
√

1/2 + 3ε/2)
,

and

V ar(pT (S)) ≤ ε(1
2

+
3ε
2

)d.

Combining this with Chebyschev’s Inequality we obtain:

8



Lemma 2.4 let S be a fixed set of εn < 1
3n players and let T be the leader-election game chosen

randomly as above. Then, for every positive γ, the probability that

pT (S) ≥ ε+
ε3/2√

2(1−
√

1/2 + 3ε/2)
+ γ

does not exceed
ε(1/2 + 3ε/2)d

γ2
.

2

Proof of Theorem 2.1 By Lemma 2.4, for every fixed subset of players S of cardinality |S| =

εn < 1
3n, the probability that pT (S) exceeds

ε+
ε3/2√

2(1−
√

1/2 + 3ε/2)
+ γ

does not exceed
ε(1/2 + 3ε/2)d

γ2
.

Since the number of choices for S is
( n
εn

)
, the desired result follows. 2

Theorem 2.1 shows that for every ε that satisfies

ε+
ε3/2√

2(1−
√

1/2 + 3ε/2)
< 1

there is a δ < 1 such that t(n, δ) ≥ εn; i.e., there are leader-election games on n players which are

δ-robust against εn-cheaters. This does not suffice to prove the existence of such a δ for ε which is,

e.g., at least 1/4. Still, one can modify the proof to show that such a δ exists for every ε < 1/3.

To do so, we first need one of the simple properties of the baton-passing game. The baton-passing

game, first analyzed in [12], is a leader election game where a leader is chosen by passing a baton

among the players. Initially the baton is held by an arbitrary player, and each player that receives

the baton picks (randomly) a player that has not been selected so far and passes the baton to him.

The leader is the last person to hold the baton. As was already mentioned, in any leader-election

game T of n players there is a coalition S of at most dn/2e players such that pT (S) = 1, i.e., S

can guarantee a leader from the coalition. The baton-passing game shows that this is sharp. This
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is because if there are n players, and S is a set of less than half of them, then there is a positive

(though exponentially small) probability that whenever a player not in S has to pass the baton

and there are still yet unselected players from S he chooses a player from S. If this happens, the

chosen leader will not be in S. We have thus proved the following simple lemma.

Lemma 2.5 For every integer m there is a leader election game G of m players such that pG(S) < 1

for each set S of less than m/2 players. 2

Corollary 2.6 For every ε < 1/3 there is a δ < 1 such that for every n there is an n-players

leader-election game which is δ-robust against εn-cheaters.

Proof Given ε < 1/3 let us choose small positive constants a = a(ε) and γ = γ(ε) such that

a+ ε

√
a√

2(1−
√

1/2 + 3ε/2)
+ γ < 1/2.

Next choose a sufficiently large integer h so that(
n

εn

)
a(1/2 + 3ε/2)h

γ2
< 1.

Finally choose a sufficiently large m = m(ε, a) so that

∑
i≥m/2

(
m

i

)
εi(1− ε)m−i ≤ a.

Let T be a full binary rooted tree of depth h, and let us choose, for each internal vertex of T ,

randomly and independently, a label in the set of players N = {1, . . . , n}. For each leaf v of T

we choose, randomly and independently (with repetitions) a (multi)-set Mv of m members of N .

Consider the following leader election game represented by T . Starting at the root, the player whose

name labels the current vertex chooses randomly one of its two children and the game proceeds to

the chosen child. When a leaf v is reached, a leader is chosen by playing the baton-passing game

among the players in Mv. Observe that by Lemma 2.5 for every coalition S of εn players, if, during

the game, the set Mv corresponding to the chosen leaf contains less than m/2 members of S, then

the probability that the leader will be chosen from S is bounded away from 1 (i.e., is less than 1 by

a constant depending on m, which depends only on ε (and a = a(ε)) and is independent of the total
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number of players n.) Thus, to complete the proof, it suffices to bound away from 1 the probability

that the coalition S will succeed in reaching a leaf whose set contains more than m/2 members

of S. However, by the inequalities used in defining the quantities m, a γ and h, and by applying

Lemma 2.3 and repeating the arguments used in the proofs of Lemma 2.4 and Theorem 2.1 we

conclude that there is a tree T such that for every set S of cardinality εn the above probability is

at most 1/2. This completes the proof. 2

Remark The constant 1/3 can be probably increased a bit by a more careful analysis in the proof

of Lemma 2.2. This would not suffice, however, to close the gap between this increased constant

and 1/2. We suspect that for every ε < 1/2 there is a δ < 1 such that for every n there are leader

election games of n players which are δ-robust against εn players. This remains open.

As mentioned in the introduction, robust leader election games supply robust coin-flipping

games by allowing the leader choose the random bit. Therefore, as a simple consequence of Theorem

2.1 and Corollary 2.6 we obtain.

Theorem 2.7 (i) There are fair n-players coin flipping games of depth O(n) such that the influence

of every set of εn ≤ 1
4n players towards 0 or towards 1 is at most 1

2ε+ 6ε3/2.

(ii) For every ε < 1/3 there are fair n-players coin flipping games such that the influence of every

set of εn players towards 0 or towards 1 is bounded away from 1/2.

This theorem solves the problem mentioned in the introduction. Its proof, as well as that

of Theorem 2.1 is probabilistic, and hence supplies no explicit construction of the corresponding

robust games. In the next section we describe explicit constructions of leader-election games and

coin-flipping games which are immune against linear-sized coalitions.

3 Explicit construction

In this section we show how to explicitly construct coin-flipping games where the influence of any

set which is smaller than some linear threshold is bounded away from 1. We use the idea put

forth by Bracha [7] in the Byzantine context of forming virtual players from committees of actual

players. Say that a committee is good if it has a certain ratio of good players to bad players. The
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advantage of an assignment to committees is that the ratio of good committees to bad committees

can be much better than the ratio of good players to bad players.

Recall that baton passing is the game analyzed by Saks [12] and Ajtai and Linial [1] where a

leader is chosen by passing a baton among the players. Initially the baton is held by some arbitrary

player and each player that receives the baton picks a player that has not been selected so far and

gives him the baton.

In our scheme, the committees formed play baton passing. When a committee gets the baton

it elects a leader (recursively) and decides on the next committee to get the baton. The leader of

the last committee to hold the baton is the global leader.

The advantage our game has over baton passing is that the bad players do not know in advance

which committees will elect good leaders and which bad leaders. Thus, though the percentage of

bad leaders is high, a bad leader does not necessarily choose a committee which elects a good leader

(which is the optimal strategy in baton passing)

The committees are assigned using an affine plane: each player corresponds to a point in the

plane and a committee is a line.

In the next subsection we analyze the variant of the baton passing game which is relevant to

our scheme: a good player might turn bad when he receives the baton. (This corresponds to the

case that a good committee elects a bad leader.) In subsection 3.2 we discuss the properties of

the assignment to committees by affine planes. Finally in subsection 3.3 we analyze the resulting

construction.

3.1 Faulty baton passing

In this subsection we analyze the baton passing game when even the good players have a certain

probability ε of becoming faulty. We call this variant the faulty baton passing game. The game

itself is identical to the usual baton passing, and only the behavior of the good players differs.

In the regular baton passing game the best strategy for the bad participants is to select a

good player to receive the baton. By the moment reflection argument of [1] (or by induction as in

[12]) this is the best strategy in the faulty baton passing game as well. Thus we can assume that
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whenever a bad participant has the baton he selects a good participant to receive it and a good

participant that becomes faulty also selects a good participant to receive the baton.

We would like to find bounds on the function f(s, t) = fε(s, t) defined as follows. f(s, t) is

the probability of the baton to end at a bad player (and not at a good one that becomes faulty),

starting from a good player when there are s (as yet unselected) good players, t (as yet unselected)

bad players and a good player has probability ε of becoming faulty when he gets the baton. (It is

important that it not be known in advance whether a good player would become faulty when he

will receive the baton.)

We assume 0 ≤ ε < 1
4 .

Clearly, f(0, t) = 1 ∀t ≥ 1 and f(s, 0) = 0 ∀s ≥ 0.

From the bad players strategy,

∀s, t ≥ 1 f(s, t) =
s+ εt

s+ t
· f(s− 1, t) +

t− εt
s+ t

· f(s− 1, t− 1). (6)

Lemma 3.1 For all s, t ≥ 0, 0 ≤ ε < 1
4

f(s, t) ≤ 8 · (t log2(t+ 1))
1

1−4ε

(s+ 1)1−ε (7)

Proof We apply induction on s + t. The assertion holds for (s = 0, t ≥ 1) and for (t = 0, s ≥ 0).

For t = 1 and s ≥ 1 from (6) we have

f(s, 1) =
s+ ε

s+ 1
· f(s− 1, 1) =

s+ ε

s+ 1
· s− 1 + ε

s
· · · 1 + ε

2
· f(0, 1)

≤ e−(1−ε)( 1
s+1

+ 1
s

+...+ 1
2

) ≤ e−(1−ε)
∫ s+2

2
1
x
dx ≤ 21−ε

(s+ 1)1−ε

Assume now that t ≥ 2, s ≥ 1. Then by (6) and the induction hypothesis it suffices to show that

s+ εt

s+ t
· (t ln(t+ 1))

1
1−4ε

s1−ε +
t− εt
s+ t

· ((t− 1) ln t)
1

1−4ε

s1−ε ≤ (t ln(t+ 1))
1

1−4ε

(s+ 1)1−ε

i.e. that

t− εt
(s+ t)s1−ε · ((t− 1) ln t)

1
1−4ε ≤ (t ln(t+ 1))

1
1−4ε

(
1

(s+ 1)1−ε −
s+ εt

(s+ t)s1−ε

)

13



Multiplying by (s+ 1)1−εs1−ε(s+ t) we conclude that it suffices to prove that

(t− εt)(s+ 1)1−ε · ((t− 1) ln t)
1

1−4ε

≤ (t ln(t+ 1))
1

1−4ε (s1−ε(s+ t)− (s+ εt)(s+ 1)1−ε) (8)

Notice that

s1−ε(s+ t)− (s+ εt)(s+ 1)1−ε = s1−ε(s+ t− (1 +
1
s

)1−ε(s+ εt))

≥ s1−ε(s+ t− (1 +
1
s

)(s+ εt)) = s−ε(s(t− 1)− εst− εt).

Since t ≥ 2, the right hand side is at least s−ε(s(t− 1)− 4εs(t− 1)) > 0 and thus, by (8) it suffices

to show
(t− εt)(s+ 1)1−εsε

s(t− 1)− εst− εt
≤
(
t ln(t+ 1)
(t− 1) ln t

) 1
1−4ε

(9)

But the left hand of (9) is at most

(t− εt)(s+ 1)
s(t− 1)− εst− εt

=
st− εst+ t− εt
st− εst− s− εt

= 1 +
s+ t

st− εst− s− εt

= 1 +
s+ t

s(t− 1)− εst− εt
≤ 1 +

s+ t

s(t− 1)− 4εs(t− 1)
= 1 +

s+ t

s(t− 1))(1− 4ε)

≤ 1 +
1

(t− 1)(1− 4ε)
+

2
s(1− 4ε)

(10)

Since ln(1 + 1
t ) ≥

1
2t for all t ≥ 2 we have

t

t− 1
· ln(t+ 1)

ln t
=
(

1 +
1

t− 1

)(
1 +

ln(1 + 1
t )

ln t

)

≥
(

1 +
1

t− 1

)(
1 +

1
2t ln t

)
≥ 1 +

1
t− 1

+
1

2t ln t
(11)

By (9), (10) and (11) it suffices to show that(
1 +

1
t− 1

+
1

2t ln t

) 1
1−4ε

≥ 1 +
1

(t− 1)(1− 4ε)
+

2
s(1− 4ε)

By Bernoulli’s Inequality(
1 +

1
t− 1

+
1

2t ln t

) 1
1−4ε

≥ 1 +
1

(t− 1)(1− 4ε)
+

1
2t ln t(1− 4ε)
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Therefore it suffices to check that

1 +
1

(t− 1)(1− 4ε)
+

1
2t ln t(1− 4ε)

≥ 1 +
1

(t− 1)(1− 4ε)
+

2
s(1− 4ε)

i.e. that

s ≥ 4t ln t. (12)

But for s, t satisfying s ≥ 1 that violate (12) we have

(s+ 1)1−ε ≤ s+ 1 ≤ 2s ≤ 8t ln t ≤ 8(t log2 t)
1

1−4ε

and thus for this case (7) is trivial (as its right hand side is greater than 1), completing the proof.

2

3.2 Amplification via affine planes

In this subsection we describe a pseudo-random property of projective planes which is applied in

[2, 3] and show how affine planes have a similar property. Affine planes better fit our purposes here.

The property we need can be proved by an eigenvalue argument; here we present a more direct

proof, as in [3].

Lemma 3.2 [2, 3] Let P = (P,L) be a projective plane of order p with a set P of n = p2 + p+ 1

points and a set L of n lines. If A ⊂ P , |A| = εn, then

∑
`∈L

(|`
⋂
A| − ε(p+ 1))2 = ε(1− ε)p · n

Proof Clearly ∑
`∈L
|`
⋂
A| = (p+ 1)|A| = (p+ 1)εn (13)

Also by double counting the number of ordered triples (`, a, b) where ` ∈ L a, b ∈ A, a 6= b we get

|A|(|A| − 1) = εn(εn− 1) =
∑
`∈L
|`
⋂
A|(|`

⋂
A| − 1) =

∑
`∈L
|`
⋂
A|2 −

∑
`∈L
|`
⋂
A|

Thus ∑
`∈L
|`
⋂
A|2 = εn(εn− 1) + (p+ 1)εn = εn(εn+ p) (14)
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The two equations (13) (14) enable us to compute for each polynomial q(x) of degree at most two

the sum
∑
`∈L

q(|`
⋂
A|). In particular

∑
`∈L

(|`
⋂
A| − ε(p+ 1))2 =

∑
`∈L

(|`
⋂
A|2 − 2ε(p+ 1)|`

⋂
A|+ ε2(p+ 1)2)

= εn(εn+ p)− 2ε(p+ 1)(p+ 1)εn+ nε2(p+ 1)2

= εn(εn+ p− ε(p+ 1)2) = εn(p− εp) = ε(1− ε)pn

completing the proof. 2

Corollary 3.3 Let A = (P̄ , L̄) be an affine plane of order p, obtained by deleting a line from the

projective plane of that order. Put m = p2 = |P̄ | = |L̄| and recall that each ` ∈ L̄ has p points.

Suppose that A ⊂ P̄ , |A| = εm and suppose that δ > 0. Then

|{` ∈ L̄ : |`
⋂
A| ≥ (ε+ δ) · p}| ≤ ε(p2 + p+ 1)

δ2p
≤ ε

δ2
(
√
m+ 2)

Proof Let x =
∣∣{` ∈ L̄ : |`

⋂
A| ≥ (ε+ δ) · p}

∣∣. Embed A in the projective plane of order p, P =

(P,L). Observe that |A|
p2+p+1

= εp2

p2+p+1
and hence |A|

p2+p+1
(p+ 1) = εp2(p+1)

p2+p+1
≤ εp. By Lemma 3.2

∑
`∈L̄

(|`
⋂
A| − |A|

p2 + p+ 1
(p+ 1))2 ≤ εp(p2 + p+ 1)

Each line among the x defined above contributes to the left hand side at least δ2p2. Thus xδ2p2 ≤

εp(p2 + p+ 1) implying the desired result. 2

Remark: For every p = 2k there is an affine plane of order p. Our algorithm uses the planes of

order 22k . Note that the number of points in a plane of order 22k is equal to the number of points

in one line of a plane of order 22k+1
. This is used for recursive application of the algorithm.

Remark The first author has suggested previously using projective planes as a construction meeting

some of the requirements of [7]. (See [9] for details.) As we shall see, unlike the Byzantine case, for

our purposes it is not essential that the size of the committees be small (logarithmic in n).

Remark The construction is an instance of graphs called dispersers that have many other applica-

tions. (See [8] for an extensive survey of constructions and applications.) There are several other

constructions of dispersers that can be used for our purposes.
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3.3 The construction

We are now ready to present the construction in detail. We can assume without loss of generality

that n is of the form 22j : otherwise let n′ = 22dlog logne
and make each of the n participants play

the role of bn′n c or dn′n e in a game of n′ participants. The ratio of bad players has not increased by

more than 1
n .

The scheme is as follows: form committees by treating each player a as a point a ∈ P̄ in the

affine plane A = (P̄ , L̄) of order 22j−1
. Each committee ` corresponds to a line ` ∈ L̄, i.e. a player

a is in committee ` iff a ∈ `.

• Set m← threshold

• If n ≤ m than choose leader by baton passing. Otherwise:

1. Construct committees via affine planes.

2. `← first committee

3. Repeat

(a) Let ` choose a leader recursively.

(b) Let the leader of ` choose a committee `′ as yet unselected.

(c) `← `′

Until there are no unselected committees.

4. The leader of the last chosen committee ` is crowned as the leader of all players.

The value of threshold is a function of ε. We let it be the smallest number of the form 22r ,

where r is an integer, such that 22r ≥ (1
ε )

100. (Note that for this choice (1
ε )

100 ≤ m ≤ (1
ε )

200.)

Observe that the total amount of work done by each player is polynomial in n, since at each

stage of the recursion every two players are together in exactly one committee.

The next theorem implies that no set smaller than some linear threshold can control the lead-

ership.
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Theorem 3.4 There are µ, c > 0 such that ∀0 < ε < µ the protocol specified above with an

appropriately chosen threshold (as a function of ε) is cε robust against εn cheaters.

To prove this theorem we need the following two lemmata:

Lemma 3.5 Suppose that our procedure has the property that with
√
n = 22k participants, for every

set of (ε+ δ)
√
n bad participants, the probability that a bad leader is elected is at most f = f(ε+ δ).

Then for n = 22k+1
participants, for every set of εn bad participants the probability that one of the

bad participants is elected is at most

8(t log2(t+ 1))
1

1−4f

(s+ 1)1−f + f (15)

where s+ t+ 1 = n and t = b ε
δ2 (
√
n+ 2)c.

Proof Call a committee good if it has at most (ε+ δ)
√
n bad participants and bad otherwise. By

Corollary 3.3 there are at most t = ε
δ2 (
√
n+ 2) bad committees.

To compute a lower bound on the probability that the last committee is good we can use the

analysis of Lemma 3.1 of the faulty baton passing game: assume that a bad committee is completely

bad and that a good committee has probability f to elect a bad leader. (i.e. to turn bad). These

assumptions clearly only increase the probability of ending in a bad committee. Thus by Lemma

3.1 the probability of ending in a bad committee is at most

8(t log2(t+ 1))
1

1−4f

(s+ 1)1−f

If we end in a good committee, then by the hypothesis the conditional probability to end in a bad

leader is at most f . Hence the result. 2

Lemma 3.6 There are µ, c > 0 such that ∀0 ≤ ε ≤ µ, ∀0 ≤ k when the protocol is executed with

Mk = m2k players and threshold m chosen as the smallest number of the form 22r which is bigger

than (1
ε )

100, for any set of at most εk ·Mk bad players, pk, the probability that a bad leader is elected,

is at most fk. Here εk = ε+
∑∞
i=k(

1
m0.01 )2i and fk = cε+

∑k
i=1( 1

m0.03 )2i.
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Proof Apply induction on k. In case k = 0 the protocol degenerates to (non faulty) baton

passing with ε0 bad players. ε0 = ε +
∑j
i=0( 1

m0.01 )2i ≤ 3ε. Choose µ to be small enough so that

µ ≤ 1
1800 log(1/µ) . Thus, from the analysis of baton passing in [1], there exists a positive c such that

if 3εm ≤ m
3 logm then the probability of electing a faulty player is at most c · ε = f0. Since µ satisfies

µ ≤ 1
1800 log(1/µ) , the condition above holds, by the choice of m.

Assume that the statement of the lemma holds up to k; we will show that it holds for k + 1.

Given Mk+1 players with at most εk+1 fraction of bad ones, define δ = εk − εk+1 = ( 1
Mk

)0.01. By

the induction hypothesis and the previous lemma the probability of electing a bad leader when

executing the protocol with Mk+1 players of whom at most εk+1 fraction are bad is at most

pk ≤ fk +
8(t log2(t+ 1))

1
1−4fk

(s+ 1)1−fk

where s+ t+ 1 = Mk+1 and t = b εk+1

δ2 (
√
Mk+1 + 2)c, where δ is as above. Therefore

t = bεk+1

δ2
(
√
Mk+1 + 2)c ≤ εk+1(Mk+1)0.01(

√
Mk+1 + 2) ≤ (Mk+1)

2
3 .

Note that fk = cε+
∑k
i=0( 1

m0.03 )2i ≤ 3εc. We choose µ small enough so that 3εc ≤ 3µc < 1
100 . Thus

we get that

pk ≤ fk +
8(t log2(t+ 1))

1
1−4fk

(s+ 1)1−fk
≤ fk +

16((Mk+1)
2
3 logMk+1)

1
1−4fk+1

(Mk+1)1−fk+1

≤ fk +
16((Mk+1)

2
3 logMk+1)

100
96

(Mk+1)0.99
≤ fk + (

1
Mk+1

)0.03 = fk+1

2

Theorem 3.4 now follows, since by the last lemma, pj , the probability that a bad leader is elected

when the protocol is executed with n = m2j players, εj = ε +
∑∞
i=j(

1
m0.01 )2i fraction of whom are

bad, is at most fj ≤ 3cε. Thus this probability is certainly at most 3cε if the fraction of bad players

is only ε. 2

Observe that by adjusting the constant c in this theorem so that it would be bigger than 1/µ

we can allow ε to be any positive real smaller than 1. We thus have:

Corollary 3.7 There is a positive constant c such that for every 0 < ε < 1 our protocol with an

appropriately chosen threshold (as a function of ε) is cε robust against εn cheaters. 2
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Remark: We chose to end the recursion by the baton passing game. Alternatively, we could have

ended when the size of the committee is small enough, say log log log n: for each possible protocol

for that size of the type considered in Section 2 and of depth, say, 100 log log logn an equal number

of committees can be allocated that will elect its leader accordingly. By the analysis of Section 2

most protocols are good, and thus most good committees will elect a good leader.

Remark: As already mentioned we suspect that for every ε < 1/2 there is a δ < 1 such that for

every n there are coin flipping and leader election games which are δ− robust against εn cheaters.

(The results of Section 2 show that for every ε < 1/3 there is such a δ.) It is obvious that the

validity of the above statement for leader election games implies its validity for coin flipping games.

The converse is not obvious but is true. Combining our technique with some of the ideas of [13]

concerning slightly random sources we can prove the equivalence of these two statements. The

details will appear somewhere else.
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