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Abstract

We consider a variant of the Cops and Robber game, in which the robber has

unbounded speed, i.e., can take any path from her vertex in her turn, but she is not

allowed to pass through a vertex occupied by a cop. Let c∞(G) denote the number

of cops needed to capture the robber in a graph G in this variant, and let tw(G)

denote the treewidth of G. We show that if G is planar then c∞(G) = Θ(tw(G)), and

there is a constant-factor approximation algorithm for computing c∞(G). We also

determine, up to constant factors, the value of c∞(G) of the Erdős-Rényi random

graph G = G(n, p) for all admissible values of p, and show that when the average

degree is ω(1), c∞(G) is typically asymptotic to the domination number.

Keywords: Cops and Robber game, Fast robber, Planar graphs, Treewidth,

Random graphs, Domination number

1 Introduction

The game of Cops and Robber is a perfect information game, played in a graph G. The

players are a set of cops and a robber. Initially, the cops are placed at vertices of their

choice in G (where more than one cop can be placed at a vertex). Then the robber, being

fully aware of the cops’ placement, positions herself at one of the vertices of G. Then

the cops and the robber move in alternate rounds, with the cops moving first; however,
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players are permitted to remain stationary in their turn if they wish. The players use the

edges of G to move from vertex to vertex. The cops win, and the game ends, if eventually

a cop moves to the vertex currently occupied by the robber; otherwise, that is, if the

robber can elude the cops forever, the robber wins.

This game was defined (for one cop) by Winkler and Nowakowski [28] and Quilliot [32],

and has been studied extensively, see Hahn [22] or Bonato and Nowakowski [8]. The best

known open question in this area is Meyniel’s conjecture, published by Frankl [19], which

states that for every connected graph on n vertices, O(
√
n) cops are sufficient to capture

the robber. One intriguing fact about the Cops and Robber game is that although many

scholars have studied the game it is not yet well understood. In particular, although the

upper bound O(
√
n) was conjectured already in 1987, no upper bound better than n1−o(1)

has been proved since then (see [20, 24, 33]).

One might try to change the rules of the game slightly in order to get a more ap-

proachable problem, and/or to understand what property of the original game causes the

difficulty. Thus various variations of the game have been studied [7, 11, 20, 23, 2]. The

approach chosen by Fomin, Golovach, Kratochv́ıl, Nisse, and Suchan [18] is to allow the

robber move faster than the cops. Inspired by their work, in this paper we let the robber

take any path from her current position in her turn, but she is not allowed to pass through

a vertex occupied by a cop. The parameter of interest is the cop number of G, which

is defined as the minimum number of cops needed to ensure that the cops can win. We

denote the cop number of G by c∞(G), in which the ∞ at the subscript indicates that

the robber has unbounded speed.

This variant was first studied by Fomin, Golovach, Kratochv́ıl [17]. They proved that

computing c∞(G) is an NP-hard problem, even if G is a split graph. (A split graph is a

graph whose vertex set can be partitioned into a clique and an independent set.) Next

Gavenčiak [21] gave a polynomial time algorithm for interval graphs. This variant was

further studied by Frieze, Krivelevich and Loh [20], where the authors’ approach is based

on expansion. In [20], it is shown that for each n, there exists a connected graph on n

vertices with cop number Θ(n). See the thesis of the second author [27] for more results

on this variant, in particular about graphs with cop number one, interval graphs, chordal

graphs, expander graphs and Cartesian products of graphs.

We study this game on planar graphs and random graphs. Let tw(G) denote the

treewidth of the graph G (see the next section for the formal definition). For planar

graphs, we prove the following.
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Theorem 1. Let G be a connected planar graph on n vertices. Then we have c∞(G) =

Θ(tw(G)) = O(
√
n), and there is a constant-factor approximation algorithm for computing

c∞(G).

In fact, we show that the conclusion of Theorem 1 is true for graphs G that do not

have a fixed apex graph as a minor. (An apex graph is a graph H that has a vertex v such

that H− v is planar.) Note that the m×m grid has cop number Ω(m) (see Theorem 3.3)

so the bound c∞(G) = O(
√
n) in Theorem 1 is tight.

We denote the Erdős-Rényi random graph with parameters n and p by G(n, p). All

asymptotics throughout are as n→∞. We say that an event in a probability space holds

asymptotically almost surely (a.a.s.) if the probability that it holds approaches 1 as n

goes to infinity. The second author [26] showed that if np ≥ 4.2 log n, then there are

positive constants β1, β2 such that a.a.s.,

β1/p ≤ c∞ (G(n, p)) ≤ β2 log(np)/p .

Let γ(G) denote the domination number of the graph G (the formal definition appears

in the next section). We prove the following theorem, tightening the result above and

extending it to all admissible values of p.

Theorem 2. (a) If 27 ≤ np = O(1), then there exist positive constants η1, η2 such that

a.a.s.

η1log(np)/p ≤ c∞(G) ≤ γ(G) ≤ η2log(np)/p .

(b) If np = ω(1) and p = 1− Ω(1), then a.a.s.

c∞(G) = (1 + o(1))
log(np)

− log(1− p)
.

(c) If np = ω(1), then a.a.s.

c∞(G) = (1 + o(1))γ(G) .

Note that if np < 27 then a.a.s. the graph has Ω(n) isolated vertices, and hence in

this case c∞(G) = Θ(n). Therefore, the above theorem and the fact that the proof of its

last part presented in Section 4 shows that for all Ω(1) ≤ p ≤ 1, c∞(G) = γ(G) a.a.s.

determines the typical asymptotic behavior of c∞(G(n, p)) for all admissible value of p.

The lollipop graph Ln is obtained from a complete graph on n vertices and a path on

n+ 1 vertices by identifying some vertex of the complete graph with an end vertex of the
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path. Notice that c∞(H) ≤ γ(H) is true for any graph H, since if the cops start from a

dominating set, they will capture the robber in the first round. Also, it is not hard to see

that c∞(H) ≤ tw(H) + 1 is true for any graph H (see Theorem 3.3). These upper bounds

are far from being tight for general graphs, as Ln has cop number one but domination

number and treewidth Θ(n). Theorems 1 and 2 state that the two crude upper bounds

are actually tight up to constant factors for two important classes of graphs.

2 Preliminaries

Let G be the graph in which the game is played. In this paper G is always finite, and n

always denotes the number of vertices of G. We will assume that G is simple, because

deleting multiple edges or loops does not affect the set of possible moves of the players.

Note that the cop number of a disconnected graph equals the sum of the cop numbers

of its connected components, and hence it suffices to understand the behavior of this

parameter for connected graphs. As we are only interested in studying the cop number

(and not the number of rounds in the game) we may assume without loss of generality

that the cops choose vertices of our choice in the beginning, since they can move to the

vertices of their choice later.

For a subset A of vertices, the neighbourhood of A, denoted by N(A), is the set of

vertices in V (G) \ A that have a neighbour in A, and the closed neighbourhood of A,

written N(A), is the union A ∪ N(A). If A = {v} then we may write N(v) and N(v)

instead of N(A) and N(A), respectively. A dominating set is a subset A of vertices with

V (G) = N(A), and the domination number of G, written γ(G), is the minimum size of

a dominating set of G. The subgraph induced by A is written G[A], and the subgraph

induced by V (G) \ A is written G − A. All logarithms are in the natural base. Write

∆ = ∆(G) for the maximum degree in G.

A tree decomposition of a graph G is a pair (T,W ), where T is a tree and W = (Wt :

t ∈ V (T )) is a family of subsets of V (G) such that

(i)
⋃
t∈V (T )Wt = V (G),

(ii) every edge of G has both endpoints in some Wt, and

(iii) For every v ∈ V (G), the set {t : v ∈ Wt} induces a subtree of T .
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The width of (T,W ) is

max{|Wt| − 1 : t ∈ V (T )},

and the treewidth of G, written tw(G), is the minimum width of a tree decomposition of

G.

We will use the following facts about tree decompositions, whose proofs can be found

in Section 12.3 of [15].

Proposition 2.1. Let (T,W ) be a tree decomposition of a graph G.

(a) Let A be the vertex set of a clique in G. Then there is a t ∈ V (T ) with A ⊆ Wt.

(b) Let t1t2 be an edge of T , and let T1 and T2 be the components of T − t1t2, with

t1 ∈ T1 and t2 ∈ T2. Define X = Wt1 ∩Wt2, U1 = ∪t∈T1Wt and U2 = ∪t∈T2Wt. Then

X is a cut-set in G, and there is no edge between U1 \X and U2 \X.

We will use the following large deviations inequalities (see, e.g., Appendix A of [4]).

Proposition 2.2. Let X = X1 + X2 + · · · + Xm, where the Xi are independent random

variables taking values in {0, 1}. We have the following inequalities.

(a)

P[X ≤ E[X]− t],P[X ≥ E[X] + t] ≤ exp(−2t2/m) ∀ 0 ≤ t.

(b)

P[X ≤ (1− ε)E[X]] ≤ exp(−ε2E[X]/2) ∀ 0 ≤ ε.

3 Planar Graphs

In one of the first papers on the original Cops and Robber game, Aigner and Fromme [1]

proved that three cops can capture the robber in any planar graph. In this section, we

prove Theorem 1 that deals with the case of a fast robber in a planar graph.

Here is a high-level sketch of the proof. First, by relating our Cops and Robber game

with the so-called Helicopter Cops and Robber game of Seymour and Thomas [34], we

show that for any graph G,

tw(G) + 1

∆(G) + 1
≤ c∞(G) ≤ tw(G) + 1.
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Next, since the cop number cannot increase by contracting the edges, we may use a

theorem from the bidimensionality theory of Demaine and Hajiaghayi [13] to infer that

c∞(G) = Ω(tw(G)).

The Helicopter Cops and Robber game has two versions, and the one we define here

is called jump-searching.

Definition (Helicopter Cops and Robber game (the jump-searching version)). For X ⊆
V (G), an X-flap is the vertex set of a connected component of G − X. Two subsets

X, Y ⊆ V (G) touch if N(X) ∩ Y 6= ∅. A position is a pair (X,R), where X ⊆ V (G)

and R is an X-flap. (In the game X is the set of vertices currently occupied by the cops

and R tells us where the robber is — since she can run arbitrarily fast, all that matters

is which component of G −X contains her.) At the start, the cops choose a subset X0,

and the robber chooses an X0-flap R0. Note that if there are k cops in the game, then

|X0| ≤ k. At the start of round i, we have some position (Xi−1, Ri−1). The cops choose

a new set Xi ⊆ V (G) with |Xi| ≤ k (and no other restriction), and announce it. Then

the robber, knowing Xi, chooses an Xi-flap Ri which touches Ri−1. If this is not possible

then the cops have won. Otherwise, i.e. if the robber never runs out of valid moves, the

robber wins.

The following lemma establishes a link between the two games.

Lemma 3.1. Let G be a graph. If k cops can capture a robber with unbounded speed in the

Cops and Robber game in G, then k(∆ + 1) cops can capture the robber in the Helicopter

Cops and Robber game in G.

Proof. We consider two games played in two copies of G: the first one, which we call the

real game, is a game of Helicopter Cops and Robber with k(∆ + 1) cops; and the second

one, the virtual game, is the usual Cops and Robber game with k cops and a robber with

unbounded speed. Given a winning strategy for the cops in the virtual game, we need to

give a capturing strategy for the cops in the real game. We translate the moves of the

cops from the virtual game to the real game, and translate the moves of the robber from

the real game to the virtual game, in such a way that all the translated moves are valid,

and if the robber is captured in the virtual game, then she is captured in the real game as

well. Hence, as the cops have a winning strategy in the virtual game, they have a winning

strategy in the real game, too.

In the virtual game, initially the cops choose a subset C0 of vertices. Then the real cops

choose X0 = N(C0). Recall that |C0| ≤ k, so |X0| ≤ k(∆ + 1). The real robber chooses
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R0, which is an X0-flap, and the virtual robber chooses an arbitrary vertex r0 ∈ R0. In

general, at the end of round i− 1 we have Xi−1 = N(Ci−1) and ri−1 ∈ Ri−1.

Suppose the virtual robber is not captured in round i. In round i, first the virtual

cops move to a new set Ci. Each cop either stays still or moves to a neighbour, thus

Ci ⊆ N(Ci−1) = Xi−1 and since Ri−1 was an Xi−1-flap, Ci ∩ Ri−1 = ∅. The real cops

choose Xi = N(Ci) and announce it. The real robber, knowing Xi, chooses an Xi-flap Ri

that touches Ri−1. If she cannot find a valid move then she is captured and the lemma is

proved. Otherwise, note that by definition Ci ∩ Ri = ∅. Let ri be an arbitrary vertex of

Ri. The virtual robber moves from ri−1 to ri. Since Ri−1 and Ri touch, and both of them

are connected, Ri−1 ∪Ri is connected. Moreover, Ci does not intersect Ri−1 ∪Ri, so this

is a valid move in the virtual game.

Now, suppose the virtual robber is captured in round i. We claim that if this happens

then the real robber has already been captured in one of the previous rounds. If this is

not the case, then in round i, the virtual cops move to a new set Ci such that ri−1 ∈ Ci.
Each cop either stays still or moves to a neighbour, thus Ci ⊆ N(Ci−1) = Xi−1 and since

Ri−1 was an Xi−1-flap, Ci ∩Ri−1 = ∅. But ri−1 ∈ Ci because the virtual robber has been

captured in round i, and ri−1 ∈ Ri−1, thus ri−1 ∈ Ci ∩ Ri−1, which is a contradiction.

This shows that the real robber will be captured even before the virtual robber, and the

proof is complete. �

Seymour and Thomas [34] proved the following theorem.

Theorem 3.2 ([34]). The minimum number of cops needed to capture a robber in Heli-

copter Cops and Robber game is equal to the treewidth of the graph plus one.

Using this we have the following.

Theorem 3.3. For every graph G we have

tw(G) + 1

∆(G) + 1
≤ c∞(G) ≤ tw(G) + 1 .

Proof. The lower bound follows from Lemma 3.1 and Theorem 3.2. To prove the upper

bound, consider a tree decomposition (T,W ) of G having minimum width. Assume that

there are tw(G) + 1 cops in the game, so for every t ∈ V (T ), there are at least |Wt|
cops in the game. The cops start at Wt1 for some arbitrary t1 ∈ V (T ). Assume that the

robber starts at r0, and let t be such that r0 ∈ Wt. Let t2 be the neighbour of t1 in the

unique (t1, t)-path in T . Let T1 and T2 be the components of T − t1t2, with t1 ∈ T1 and
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t2 ∈ T2. Define X = Wt1 ∩Wt2 , U1 = ∪t∈T1Wt, and U2 = ∪t∈T2Wt. So the cops are all in

U1 and the robber is at a vertex in U2 \X. Note that the number of cops is at least |Wt2 |.
Now the cops move in order to occupy Wt2 , in such a way that the cops in X stay still.

After some rounds, the cops will be located at Wt2 , and during those rounds the robber

could not escape from U2 \ X, because by part (b) of Proposition 2.1, there is no edge

between U1 \X and U2 \X. When the cops have covered Wt2 , the total space available

to the robber has been decreased. Continuing similarly the cops will eventually capture

the robber. �

Remark. The complete graph on n vertices shows that the lower bound is tight. The

upper bound is also tight: start with m ≥ 4 vertices, and add m disjoint paths of length

3 between any two of them. This graph has treewidth m − 1 and cop number m. The

details can be found in Theorem 4.5 of [27].

Recall that an apex graph is a graph H that has a vertex v such that H − v is planar.

The following theorem was proved in a weaker form by Demaine, Fomin, Hajiaghayi, and

Thilikos [12], and then in its current form by Demaine and Hajiaghayi [14].

Theorem 3.4 ([12, 14]). Let H be a fixed apex graph. There is a constant CH such that

the following holds. Let g : N→ N be a strictly increasing function, and P (G) be a graph

parameter with the following two properties.

1. If G is the r×r grid augmented with additional edges such that each vertex is incident

to CH edges connected to non-boundary vertices of the grid, then P (G) ≥ g(r).

2. P (G) does not increase by contracting an edge of G.

Then, for any graph G that does not contain H as a minor, the treewidth of G is

O (g−1(P (G))).

Now, we prove Theorem 1.

Proof of Theorem 1. We show that the parameter c∞(G) satisfies the two properties given

in Theorem 3.4, with g(r) = (r+1)/(5+CH). First, an augmented r×r grid has treewidth

r and maximum degree at most 4 + CH , so by Theorem 3.3 its cop number is at least

(r + 1)/(5 + CH). Second, we need to show that the cop number does not increase by

contracting an edge. It is easy to see that contracting an edge does not help the robber,

since she has unbounded speed, and it does not hurt the cops. Therefore, contracting an

edge does not increase the cop number.
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Let H be the complete graph on 5 vertices. Since G is planar, it does not contain H

as a minor. Therefore, by Theorem 3.4, we have tw(G) = O(c∞(G)). By Theorem 3.3,

c∞(G) ≤ tw(G) + 1, so we have c∞(G) = Θ(tw(G)). Moreover, it is known (see, e.g., [3])

that any G that does not have H as a minor has tw(G) = O(
√
n). Finally, Feige,

Hajiaghayi, and Lee [16] have developed an O(1)-approximation algorithm for finding the

treewidth of a graph that does not contain H as a minor. �

4 Random Graphs

The original Cops and Robber game for Erdős-Rényi random graphs has been studied

by several authors [6, 9, 25, 30]. In particular, Pra lat and Wormald [31] proved that

Meyniel’s conjecture holds for random graphs. In this section, we prove Theorem 2 that

determines the typical asymptotic behavior of c∞(G) for the Erdős-Rényi random graph.

Here is a high-level sketch of the proof. To give an upper bound for the cop number, we

simply bound the domination number. For the lower bound, we give an escaping strategy

for the robber. We first find a number s such that a.a.s. there is an edge between any

two disjoint subsets of vertices of size s. It follows that any subset A of vertices of size

3s induces a connected component of size s. Call this component a continent of A. Now,

if the number of cops is small enough such that when they are in a subset S of vertices,

N(S) leaves out at least 3s vertices, then the robber always moves to a continent R of

V (G) \N(S). Assume that the cops move to a new subset S ′ in their turn, so N(S ′) also

leaves out at least 3s vertices, hence there is a continent R′ ⊆ V (G) \N(S ′). Now, since

R and R′ have size at least s, if they do not intersect, there is an edge between them. In

either case the robber can move to R′, and thus she will never be captured.

Let G = G(n, p) and d = d(n) := np. As mentioned after the statement of Theorem

2, the fact that for, say, d < 27, c∞(G) = Θ(n) a.a.s. is very simple, and hence we may

and will assume that d is bigger. In particular, assume that d > exp(1), and that n is

sufficiently large.

Lemma 4.1. A.a.s. for any two disjoint subsets A1, A2 ⊆ V (G) of size at least en log d/d,

there exists an edge between A1 and A2.

Proof. By the union bound, the probability that there exist disjointA1, A2 of size en log d/d
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with no edge between them is at most(
n

en log d
d

)2

(1− p)(
en log d

d )
2

≤
(

ed

e log d

) 2en log d
d

e−
pe2n2 log2 d

d2

= exp

(
2en log d(log d− log log d)− e2n log2 d

d

)
= o(1). �

The following lemma can be easily proved (see, e.g., Lemma 7.3 in [27]).

Lemma 4.2. Let a1, a2, . . . , am be positive integers such that each of them is at most t/2,

and their sum is t. Then one can choose a subset of {a1, . . . , am} whose sum is between

t/3 and t/2 (inclusive).

The following corollary follows from Lemmas 4.1 and 4.2.

Corollary 4.3. A.a.s. for any A ⊆ V (G) of size at least 3en log d/d, there exists a

connected component of G[A] of size at least en log d/d.

We are now ready to prove our main lower bound for the cop number.

Theorem 4.4. Assume that p = o(1). Let α ∈ (0, 1) be such that for sufficiently large n,

d−α − (3e+ α)
log d

d
> 0,

and

−2

(
d−α − (3e+ α)

log d

d

)2

+ α
log d

d
(1 + log d− logα− log log d) < 0.

Then a.a.s.

c∞(G) > αn log d/d.

Remark. For any d with d > 3e log d such an α exists. The largest d for which such an α

does not exist is around 26.82.

Proof.

Claim. A.a.s. for any subset X ⊆ V (G) of size αn log d/d, we have

|V (G) \N(X)| > (3e+ α)n log d/d.
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Proof of Claim. Let X be a set of size αn log d/d. Let α′ > α be small enough so that it

also satisfies

d−α
′ − (3e+ α)

log d

d
> 0, (1)

and

−2

(
d−α

′ − (3e+ α)
log d

d

)2

+ α
log d

d
(1 + log d− logα− log log d) < 0, (2)

and set y = α′ log d. Then for any vertex v ∈ V (G), since p = o(1), for n large enough,

P[v /∈ N(X)] ≥ (1− p)|X| ≥ exp(−pα′/α)|X| = e−y.

Thus

E[|V (G) \N(X)|] ≥ ne−y = nd−α
′
.

Note that by (1),

nd−α
′
>

(3e+ α)n log d

d
,

so by Proposition 2.2(a),

P[|V (G) \N(X)| ≤ (3e+ α)n log d/d] ≤ exp

[
−2

(
nd−α

′ − (3e+ α)n log d

d

)2

/n

]

= exp

[
−2

(
d−α

′ − (3e+ α) log d

d

)2

n

]
.

The total number of such sets X is(
n

αn log d
d

)
≤
(

ed

α log d

)αn log d
d

= exp

(
αn log d

d
(1 + log d− logα− log log d)

)
,

By (2) we have

exp

[
αn log d

d
(1 + log d− logα− log log d)− 2

(
d−α

′ − (3e+ α) log d

d

)2

n

]
= o(1),

so by the union bound, a.a.s. for every X of size αn log d/d we have

|V (G) \N(X)| > (3e+ α)n log d/d.

Assuming that there are αn log d/d cops in the game, we give an escaping strategy for

the robber. For a subset S ⊆ V (G), denote by G/S the subgraph obtained by deleting

the vertices N(S). The following conditions are satisfied a.a.s.
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1. For any subset S ⊆ V (G) of size at most αn log d/d, G/S has at least 3en log d/d

vertices. This is true with probability 1− o(1) by the claim.

2. For any subset S ⊆ V (G) of size at most αn log d/d, the largest connected compo-

nent of G/S has at least en log d/d vertices. This is true with probability 1 − o(1)

by Corollary 4.3 and the previous condition.

3. For any two disjoint subsets A1, A2 ⊆ V (G) of size at least e log(np)/p, there is an

edge between A1 and A2. This is true with probability 1− o(1) by Lemma 4.1.

The robber plays in such a way that whenever the cops are in a subset S, she is in a

component of G/S with at least en log d/d vertices. This insures that she will never be

captured. She can clearly position herself as required in the beginning. Assume that at

the end of round i, the cops are in Si, the robber is in some vertex in Ci, where Ci is

a component of G/Si with at least en log d/d vertices. In round i + 1, the cops move to

Si+1. Note that Si+1 and Ci are disjoint. Let Ci+1 be a component of G/Si+1 with at least

en log d/d vertices. Either Ci and Ci+1 have a vertex in common, or they are disjoint. In

the latter case, since both have size at least en log d/d, there is an edge between them. In

either case the robber moves to a vertex in Ci+1, and this completes the proof. �

Now we turn to proving upper bounds for γ(G), which results in upper bounds for

c∞(G).

Lemma 4.5. Let d0 be a positive integer and let H be a graph on n vertices, which has

at most a vertices of degree less than d0 − 1. Then we have

γ(H) ≤ 1 + log d0
d0

n+ a.

Proof. Let q = log d0/d0, and let A be the set of vertices of H with degree less than

d0 − 1. Form a random subset X ⊆ V (H) by choosing each vertex independently with

probability q. Let

YX = V (H) \ (N(X) ∪ A),

and note that X ∪ YX ∪ A is a dominating set for H.

For every vertex v, the probability that v ∈ YX is at most (1− q)d0 ≤ e−qd0 , since for

this to happen v must have degree at least d0 − 1, and none of v and its neighbors must

have been chosen. We conclude that

E[|X ∪ YX ∪ A|] ≤ E[|X|] + E[|YX |] + E[|A|] ≤ nq + ne−qd0 + a ≤ 1 + log d0
d0

n+ a.

12



Hence there is a choice of X for which

|X ∪ YX ∪ A| ≤
1 + log d0

d0
n+ a. �

By bounding the number of vertices having small degree, we get the following.

Theorem 4.6. Let δ ∈ (0, 1) be fixed.

(a) If d = ω(1), then a.a.s.

γ(G) ≤ 1 + log d

(1− δ)p
+ dn exp(−δ2d/2).

(b) If d = O(1), then a.a.s.

γ(G) ≤ 1 + log d

(1− δ)p
+ (1 + o(1))n exp(−δ2d/8).

Proof. Let d0 = (1− δ)d. Say vertex v is terrible if its degree is less than d0−1. We show

that if d = ω(1), then the number of terrible vertices is a.a.s. at most dn exp(−δ2d/2), and

if d = O(1) then the number of terrible vertices is a.a.s. at most (1 + o(1))n exp(−δ2d/8).

Then we are done by Lemma 4.5 since

1 + log d0
d0

n =
1 + log((1− δ)d)

(1− δ)d
n ≤ 1 + log d

(1− δ)p
.

(a) For every vertex v, deg(v) is a binomial random variable with parameters n− 1 and

p, so by Proposition 2.2(b),

P[deg(v) ≤ d0 − 1] ≤ P[deg(v) ≤ (1− δ)E[deg(v)]] ≤ exp(−δ2(n− 1)p/2).

Thus the expected number of terrible vertices is at most n exp(−δ2(n−1)p/2). Since

d = ω(1), by the Markov inequality the number of terrible vertices is a.a.s. at most

dn exp(−δ2d/2).

(b) First, assume that
√
n is an integer and let k =

√
n. Partition V (G) arbitrarily into

k parts B1, . . . , Bk of size k. For a vertex v in part Bi, say v is bad if

|N(v) ∩ (V (G) \Bi)| < (1− δ)np− 1.

Clearly, any terrible vertex is bad. Observe that for any s vertices v1, . . . , vs in

the same part, the events {vj is bad : 1 ≤ j ≤ s} are mutually independent. Fix
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an ε ∈ (0, 1) and we will show that a.a.s. the number of bad vertices is at most

(1 + ε)n exp(−δ2np/8).

Say a part is bad if it has more than (1 + ε)k exp(−δ2np/8) bad vertices. Consider

a part Bi = {v1, v2, . . . , vk} and let Xj be the indicator variable for vj being bad.

Thus X := X1 + X2 + · · · + Xk is the number of bad vertices of Bi. For each j,

notice that E[|N(vj) ∩ (V (G) \Bi)|] = (n− k)p so by Proposition 2.2(b)

E[Xj] = P[|N(vj) ∩ (V (G) \Bi)| < (1− δ)np− 1]

≤ P
[
|N(vj) ∩ (V (G) \Bi)| ≤

(
1− δ√

2

)
(n− k)p

]
≤ exp(−δ2(n− k)p/4).

Hence

E[X] = E[X1 +X2 + · · ·+Xk] ≤ k exp(−δ2(n− k)p/4).

Let µ := k exp(−δ2(n− k)p/4). The probability that Bi is bad is at most

P[X > (1 + ε)k exp(−δ2np/8)] ≤ P[X > (1 + ε)µ] ≤ exp(−2(εµ)2/k),

where we have used Proposition 2.2(a) and the fact that the Xi’s are mutually

independent.

So by the union bound, the probability that there exists a bad part is at most

k exp(−2(εµ)2/k) = k exp
[
−2ε2k exp(−δ2(n− k)p/2)

]
,

which is o(1) as np = O(1) and k = ω(1). Consequently, a.a.s. there is no bad part,

and the total number of bad vertices is at most (1 + ε)n exp(−δ2np/8).

Now, assume that
√
n is not an integer, and write V (G) = V0 ∪ A, where |V0| is a

square number, and |A| = O(
√
n). Partitioning V0 and doing the same analysis as

above shows that there are at most (1 + o(1))n exp(−δ2np/8) terrible vertices in V0.

Thus G has at most (1 + o(1))n exp(−δ2np/8) + |A| = (1 + o(1))n exp(−δ2np/8)

terrible vertices, and the proof is complete. �

Finally, we prove Theorem 2.

Proof of Theorem 2. (a) Since 3e log(27) < 27, there exists α > 0 satisfying the condi-

tions of Theorem 4.4. Setting η1 = α proves the lower bound.
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For the upper bound, let δ =
√

8/27 and let η2 be the constant satisfying

1 + log 27

1− δ
+ 2× 27× exp(−δ2 × 27/8) = η2 log 27.

It can be verified, by differentiating both sides with respect to x, that for all x ≥ 27

we have
1 + log x

1− δ
+ 2x exp(−δ2x/8) ≤ η2 log x.

Thus, by Theorem 4.6(b), a.a.s.

γ(G) ≤ 1 + log d

(1− δ)p
+ (1 + o(1))n exp(−δ2d/8) ≤ η2n log d/d .

(b) When p = Ω(1), the bound follows from part (c) of Theorem 4.6 in [26]. When

p = o(1), note that p = (1 + o(1))(− log(1− p)). Fix ε > 0, and we will show that

(1− ε) log d

p
≤ c∞(G) ≤ γ(G) ≤ (1 + ε)

log d

p
.

First, since d = ω(1), α = 1− ε satisfies the conditions of Theorem 4.4, thus by that

theorem, a.a.s.

c∞(G) ≥ (1− ε)n log d/d = (1− ε) log d

p
.

For the upper bound, pick a δ ∈ (0, 1/2) small enough so that (1 − δ)(1 + ε/2) ≥ 1.

By Theorem 4.6(a), a.a.s. we have

γ(G) ≤ 1 + log d

(1− δ)p
+ dn exp(−δ2d/2)

=
1

p

[
1

1− δ
+

log d

1− δ
+ d2 exp

(
−δ2d/2

)]
≤ 1

p

[
2 +

(
1 +

ε

2

)
log d+ o(1)

]
< (1 + ε) log d/p.

(c) When p = o(1), the proof of part (b) does the job. Now, assume that p = Ω(1). Note

that for this value of p, G is a.a.s. (
√
n)-connected, and a.a.s. γ(G) <

√
n. Indeed,

a.a.s. any two vertices of G have Ω(n) common neighbors, and hence even after

deleting
√
n vertices the remaining graph still has diameter 2 (in fact, it is known

that a.a.s. the connectivity of G is equal to its minimum degree-see, e.g., [5] Chapter

VII.2, but we only need here the much weaker bound stated above). Conditioned on
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these two events, we show that c∞(G) ≥ γ(G). Indeed, if there are less than γ(G)

cops in the game, then there exists a non-dominated vertex in every round, and since

G is γ(G)-connected, there exists an unblocked path from the robber’s vertex to that

vertex; so the robber can move there, and will never be captured. �

5 Concluding Remarks

Note that each cop has two functions: attacking and blocking. Consider a version in

which each cop can just attack, or in other words, the robber can jump over the cops.

Let cA(G) denote the cop number of G in this version. Now, consider another version in

which each cop can just block, and say the robber is captured if she is in a vertex v such

that the cops occupy N(v). Let cB(G) denote the cop number of G in the second version.

Then it is clear that c∞(G) ≤ cA(G) = γ(G), and that c∞(G) ≤ cB(G) ≤ tw(G) + 1.

Therefore, in this notation Theorem 1 asserts that if G is planar, then c∞(G) =

Θ(cB(G)). In other words, blocking is the crucial function in planar graphs. On the other

hand, Theorem 2 asserts that if G is random with average degree ω(1), then c∞(G) ∼
cA(G), i.e., in a random graph, the attacking function is the crucial one. This shows an

interesting contrast between planar graphs and random graphs in the context of pursuit-

evasion games.

In the proof of Theorem 1, we showed that the cop number is a bidimensional param-

eter, and used this to conclude that it is of the same order as the treewidth (in planar

graphs). In almost all bidimensional parameters studied before [13], the parameter of

interest is of quadratic order in the treewidth (a typical example is the domination num-

ber). So, this paper might be the first place where this theory is used to give a nontrivial

result for a parameter which is linear in the treewidth.

We conclude with some open questions and directions for further research.

As mentioned in the introduction, treewidth and domination number are two easy

upper bounds for the cop number, and Theorems 1 and 2 imply that they are tight up to

constant factors for two well studied graph classes. It would be interesting to find other

natural graph classes for which these bounds are tight.

Let H be a fixed apex graph. It follows from the proof of Theorem 1 that if G does not

have H as a minor, then c∞(G) = Θ(tw(G)). It is natural to ask whether the conclusion

is true when H is a general graph. Also, one can ask what is the largest constant κ such
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that any planar G has κ tw(G) ≤ c∞(G).

It would be interesting to determine the cop number of the m-dimensional hypercube

graph Hm. Note that since Hm has maximum degree m, treewidth Θ (2m/
√
m) (see [10]),

and domination number Θ (2m/m) (see [29], or note that this follows easily from the

existence of Hamming codes), there exist positive constants ζ1, ζ2 such that

ζ12
m

m
√
m
≤ c∞(Hm) ≤ ζ22

m

m
.

Fomin et al. [17] proved that computing c∞(G) is NP-hard, but it is actually not

known if this problem is in NP. To show that this problem is in NP, one needs to prove

that there is always an efficient way to describe the cops’ strategy. This has been done

for the Helicopter Cops and Robber game [34]. As another algorithmic question, it would

be interesting to extend the constant-factor approximation algorithm of Theorem 1 for

computing the cop number of planar graphs to other graph classes, and/or to prove

hardness of approximation results for general graphs.
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