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Abstract

Berman and Schnitger [10] gave a randomized reduction from approximating MAX-
SNP problems [24] within constant factors arbitrarily close to 1 to approximating clique
within a factor of nε (for some ε). This reduction was further studied by Blum [11],
who gave it the name randomized graph products. We show that this reduction can be
made deterministic (derandomized), using random walks on expander graphs [1]. The
main technical contribution of this paper is in lower bounding the probability that all
steps of a random walk stay within a specified set of vertices of a graph. (Previous work
was mainly concerned with upper bounding this probability.) This lower bound extends
also to the case that different sets of vertices are specified for different time steps of the
walk.

1 Introduction

We present lower bounds on the probability that all steps of a random walk stay within a
specified set of vertices of a graph. We then apply these lower bounds to amplify unapprox-
imability results about certain NP-hard optimization problems. Our work was motivated
by the problem of approximating the size of the maximum clique in graphs. This motivat-
ing problem, which serves also as an example of how our lower bounds can be applied, is
described in section 1.1.
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The constructions of this paper can also be used in order to amplify other unapprox-
imability results. In Section 3 we use them in showing that it is NP-hard to approximate
the size of the maximum independent set within a factor of ∆ε, in graphs of degree at most
∆. In [4], and in the final version of [5], they are used in showing that it is NP-hard to
approximate to within a factor of nε the maximum number of simultaneously satisfiable
equations in a system of n linear equations over the rationals, and that it is NP-hard to
approximate to within a factor of qε the maximum number of simultaneously satisfiable
equations in a system of linear equations over GF (q).

1.1 The motivating example

The problem of computing the size of the maximum clique in a graph was one of the first
problems shown to be NP-complete [19].

Definition 1 Let G be a graph on n vertices. A clique is a set of vertices, any two of which
are connected by an edge. The size of the maximum clique in G is denoted by ω(G).

It is of interest to see how well ω(G) can be approximated in polynomial time.

Definition 2 Let g(n) and f(n) be functions. We say that g(n) approximates f(n) (from
below) within a factor of c(n) > 1 if, for every n, f(n)/c(n) ≤ g(n) ≤ f(n).

Definition 3 Algorithm A approximates clique within a factor of c(n) if, for every graph
G on n vertices, A(G) approximates ω(G) within a factor of c(n).

Recently, using the theory of interactive proofs, it has been established that approximat-
ing ω(G) within a factor of nε (for some ε) is NP-complete [13, 7, 6]. It is of great interest
to find a “graph theoretic” proof that clique is hard to approximate, without the use of
interactive proofs. We make a modest step in this direction, by showing that (a small) part
of the interactive proofs machinary can be replaced by a graph theoretic tool. Our proof is
based on an approach of Berman and Schnitger [10], and essentially is a derandomization
of a randomized reduction that they construct.

The basic graph theoretic tool that we use is that of graph products.

Definition 4 Let G = (V,E) be a graph. For a positive integer k, the k-fold graph product
of G with itself, denoted by Gk = (V k, Ek), is the graph on V k = V × V × . . . × V such
that (u1u2 . . . uk, w1w2 . . . wk) ∈ Ek if and only if the set {u1, u2 . . . , uk, w1, w2, . . . , wk} is a
clique in G (note that the ui and wj do not have to be distinct).
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If G has n vertices, then Gk has nk vertices. Recall that ω(G) denotes the size of the
maximum clique in G. It is easy to verify that ω(Gk) = (ω(G))k.

Graph products are used in order to “amplify gaps” in hardness results for approximation
algorithms ([15], and see also [20]). If no polynomial time algorithm approximates clique
within a factor of c1 (for some arbitrary c1 > 1), then for any c2 (c2 > c1), no polynomial
time algorithm approximates clique within a factor of c2. (The gap is amplified from c1

to any arbitrary constant c2.) The proof goes as follows: Assume that polynomial time
algorithm B approximates clique within a factor of c2. Derive a contradiction by designing a
polynomial time algorithm A that approximates clique within a factor of c1. Let k = d log c2

log c1
e.

Then A outputs (B(Gk))1/k.
Can the graph product argument be pushed to derive even stronger consequences? Close

inspection of the graph product argument reveals two limitations that it has:

1. If k above is nonconstant, then the number of vertices in Gk is superpolynomial.

2. For a given value of k, the number of vertices in Gk is N = nk, and the ratio of
approximation that is reached is (c1)k. Thus even if k is nonconstant, the largest
ratio of approximation that we can exclude never reaches N ε.

A way of overcoming both limitations was suggested by Berman and Schnitger [10]. The
following is implicit in [10], and appears explicitly in [11] under the name of randomized
graph products.

Let 0 < a < b < 1 be two constants, let Ga be a family of graphs that satisfy ω(G) < an,
let Gb be a family of graphs that satisfy ω(G) > bn, and let G = Ga

⋃
Gb.

Assumption 1 There exist constants 0 < a < b < 1 such that it is NP-hard to decide for
G ∈ G whether G ∈ Ga or G ∈ Gb.

Under Assumption 1 (which is a theorem by now [6]), we want to prove that it is NP-
hard to approximate clique within nε, for some ε that depends on a and b. We sketch the
randomized reduction of [10, 11].

On input G ∈ G, we want to determine whether G ∈ Ga or G ∈ Gb. Let k = Θ(log n).
Consider Gk. It has nk vertices. If G ∈ Ga then ω(Gk) < (an)k. If G ∈ Gb then ω(Gk) >
(bn)k. Sample at random N = Ω((1/a)k) vertices from Gk (note that N is polynomial in n),
and construct the vertex induced subgraph, which we denote by RGk (R for randomized).

If the sampling procedure is truly random, then for each clique of size c in Gk, the
expected number of sample points that belong to the clique is (c/nk)(1/a)k. We make the
simplifying assumption that this is indeed the case, and that it holds simultaneously for all
cliques in Gk (the largest clique is likely to be slightly larger, but this doesn’t significantly
affect the argument). Thus if G ∈ Ga, then ω(RGk) ' ((an)k/nk)(1/a)k = 1, and if G ∈ Gb,
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then ω(RGk) ' ((bn)k/nk)(1/a)k = (b/a)k. Thus it suffices to approximate clique to within
a factor of (b/a)k in order to distinguish between graphs in Ga and graphs in Gb. Recall
that the total number of vertices in RGk is N ' (1/a)k. Thus relative to N , the required
ratio of approximation is N ε, for ε ' 1− log b

log a .
The above gap amplification procedure is randomized. The purpose of this paper is

to provide a deterministic gap amplification technique that has the same effect as the
randomized graph products. Since our technique is a derandomization of the Berman and
Schnitger technique, we call it derandomized graph products.

Remark: The concept of randomized graph products and its relation to clique approx-
imation follows from the work of Berman and Schnitger [10], and is presented in [11]. At
that time, Assumption 1 above was not known to hold. Instead, Berman and Schnitger
considered MAX-SNP, a class of approximation problems defined in [24]. It is a simple
matter to show that the problem presented in Assumption 1 is MAX-SNP-hard. That is, if
for any 0 < a < b < 1 a polynomial time algorithm could distinguish between the classes Ga
and Gb, then every problem in MAX-SNP would be approximable within factors arbitrarily
close to 1. Berman and Schnitger concluded that it is MAX-SNP-hard under randomized
reductions to approximate clique within a factor of nε.

To understand the part of the interactive proofs machinary that can be replaced by
graph products, consider the state of affairs concerning clique approximation (following the
paper [6]).

1. It is NP-hard to approximate MAX-SNP-hard problems within a factor of 1 + δ (for
some δ > 0 that depends on the nature of the particular MAX-SNP-hard problem).
Hence Assumption 1 above holds.

2. Using error reduction techniques for interactive proof systems (specifically suggested
in [25]), one can show that approximating clique within a factor of nε is NP-hard.

3. By Assumption 1 and using randomized graph products, one can show that if clique
can be approximated within a factor of nε (for some small enough ε), then any NP-
statement can be decided in random polynomial time.

Derandomized graph products have no effect on Item 1 above, whose proof still requires
a reduction from interactive proofs (though we hope that this situation will change in the
future). However, we replace Item 2 (which is based on interactive proofs) by a graph
theoretic tool (derandomized graph products) that is the deterministic analog of Item 3.
(See remark at the end of Section 2 for a quantatative comparison between the estimates
provided by randomized and derandomized graph products.)
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1.2 Derandomization

The tool we use in order to derandomize the randomized graph products is that of random
walks on constant degree expander graphs. This tool was first developed by [1]. Let U
be a universe of n items from which we want to sample k items. Arrange the n items
as the vertices of a special type of constant degree graph (expander) H. The graph H is
constructed in such a way that random walks on H have “nice” properties. In order to
sample k points, start at a random vertex of H, and take a random walk of k − 1 steps.
The k vertices that are visited comprise the sample.

In terms of random bits used, a truly random sample of k points requires k log n random
bits, whereas the random walk based sample requires only log n+O(k) random bits. Thus
if k = O(log n), there are only polynomially many possible sets that arise in the process
of random walk based sampling, and one may enumerate all possible sample sets in deter-
ministic polynomial time. Each such sample set becomes a vertex in a new graph DGk,
and two vertices of this graph are connected by an edge if the 2k vertices from which they
are composed form a clique in G. The main question is how well does random walk based
sampling model truly random sampling. The answer depends on the property that one
wants to consider.

For our goal of derandomizing graph products, we need to consider two properties. The
first is to upper bound the probability that all k pseudorandom sample points fall within a
prespecified set. This property is important for ensuring that if G ∈ Ga (that is, G has no
large clique), then DGk does not have a large clique. A sufficiently strong upper bound for
our purpose was already proved in [1]. The second property that we need is to lower bound
the probability that all k pseudorandom sample points do fall inside a prespecified set. This
property insures that if G ∈ Gb (G has a large clique), then DGk has a large clique. To
the best of our knowledge, this question was not explicitly addressed before. It has been
proved that the fraction of pseudorandom sample points that fall within a set is expected
to be roughly proportional to its size [12, 17], but even for fairly large sets, this does not
exclude the possibility that for every k size pseudo random sample, at least one point lies
outside the set.

The main new technical lemma that we need is to lower bound the probability that a
random walk (on a special type of expander graph) stays inside a prespecified set of nodes.
This is not difficult to show, using the results of [3] and [18]. It turns out that the proof
of this property does not rely at all on the expansion property of the graph, but rather on
how “different” it is from a bipartite graph. Observe that for bipartite graphs, there is a
set that contains at least half the vertices, such that any walk of length 1 has at least one of
the two vertices that it visits outside the prespecified set. Thus it is apparent that having
H significantly different from bipartite is a necessary condition for the above property to
hold. Similarly, it is essential that H does not have “large” independent sets. A typical
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measure for these properties is the value of the smallest (most negative) eigenvalue of the
adjacency matrix of H (see for example Corollary 2 in [18]), and indeed our lower bound is
expressed in terms of this eigenvalue.

1.3 A stronger lemma

For the purpose of derandomized graph products, it suffices to consider a fixed set of size
bn, and lower bound the probability that a random walk stays inside the set. However, in
other contexts, it may be desirable to consider a sequence of k different sets, each of size bn,
and to lower bound the probability that a random walk has its ith step in the ith set, for
all i ≤ k simultaneously. The related question of upper bounding this probability is central
to randomness-efficient error-reduction procedures for interactive proofs [8]. In anticipation
of future applications, we provide a lower bound for this case. This lower bound uses in an
essential way the expansion properties of the underlying graph H, and its proof is different
from that of the lower bound discussed above.

2 Derandomized graph products

Our graph H is based on an explicit construction of a constant degree expander graph. It
is simplest to assume that H is a non-bipartite d-regular Ramanujan graph as in [21], [22],
where d > 16

(b−a)2 . (If n is such that no respective H graph exists, then G can be slightly
modified by adding dummy vertices until a desirable value of n is reached.)

We construct the graph DGk (D stands for “derandomized”) in the following way. We
consider all possible random walks of length k − 1 on H, where k = Θ(log n) will be
determined later. When at vertex v, the walk moves along one of the edges incident with
v to the vertex at the other end of the edge. Note that there are ndk−1 such walks. Each
walk corresponds to a single vertex of DGk. Two vertices of DGk are connected by an edge
if the 2k vertices (not all of which have to be distinct) from which they are composed form
a clique in G.

Recall that ω(G) denotes the size of the maximum clique in G. We want to bound
ω(DGk), the size of the maximum clique in the derandomized graph product of G. We will
prove both an upper bound and a lower bound on ω(DGk). These bounds are expressed
in terms of the parameters ω(G), k, and d. Additional parameters of importance are the
eigenvalues λ0 ≥ λ1 ≥ . . . ≥ λn−1 of the matrix A, where A is the transition matrix of
the random walk on the graph H. (Entry Aij specifies the probability of having the walk
at vertex i move to vertex j. The matrix A is symmetric and has only real eigenvalues.)
Observe that λ0 = 1, and denote max(λ1, |λn−1|) by λ. For nonbipartite Ramanujan graphs,
λ ≤ 2

√
d− 1/d (and this is known to be asymptotically the smallest possible value of λ for

large n and small d, see [2]).
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Theorem 1 For any graph G and any odd k, the size of the maximum clique in the de-
randomized graph product DGk is related to the size of the maximum clique in G in the
following way:

ω(G)dk−1(
ω(G)
n

+ λn−1(1− ω(G)
n

))k−1 ≤ ω(DGk) ≤ ω(G)dk−1(
ω(G)
n

+ λ1(1− ω(G)
n

))k−1.

In order to prove the theorem we need two lemmas. The first one is Lemma 3 of [18]
which we state without proof.

Lemma 1 ([18]) Let H be a d-regular graph on n vertices, and let A and 1 = λ0 ≥ · · · ≥
λn−1 be as above. For a set of vertices W of H, let µ = |W |/n denote the density of W , and
let γ denote the largest eigenvalue of 1

dM , where M is the adjacency matrix of the induced
subgraph of H on W . Then

γ ≤ µ+ λ1(1− µ).

The second lemma is similar to Lemma 2.3 of [3], and its proof presented below follows
the one in [3].

Lemma 2 Let H, d, n,A, λ0, · · · , λn−1,W and µ be as in the previous lemma, and let dW
be the average degree of the induced subgraph of H on W . Then

dW
d
≥ µ+ λn−1(1− µ).

Proof. Let v0, v1, · · · , vn−1 be an orthonormal set of eigenvectors of A, where vi is
an eigenvector corresponding to the eigenvalue λi. Thus v0 is the constant vector each
coordinate of which is 1/

√
n. Let u be the characteristic vector of W , and put w = |W |.

Clearly if u =
∑n−1
i=0 civi then c0 is the scalar product of u and v0 and hence c2

0 = w2/n. It
follows that utdAu (which is the sum of degrees in the induced subgraph of H on W ) is

d
n−1∑
i=0

c2
iλi = (w2/n)d+ d

n−1∑
i=1

c2
iλi ≥ (w2/n)d+ d(w − w2/n)λn−1.

(Here we used the fact that the square of the L2-norm of u is w and hence so is the sum of
the c2

i ). Since µ = w/n this gives that for the average degree dW

wdW ≥ wµd+ dw(1− µ)λn−1,

implying the required bound dW /d ≥ µ+ (1− µ)λn−1. 2

We can now prove the key proposition needed to prove Theorem 1. (Our contribution to
the proof of the proposition is confined to the proof of the lower bound. The upper bound
is Corollary 1 in [18], and we give its proof only for the sake of completeness.)
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Proposition 2 Let H, d, n,A, λ0, · · · , λn−1 be as above, let W be a set of w vertices in H
and put µ = w/n. Let P = P (W,k) be the total number of walks of k vertices that stay in
W . Assume (for the lower bound only) that k is odd and that µ+ λn−1(1− µ) ≥ 0. Then

wdk−1(µ+ λn−1(1− µ))k−1 ≤ P ≤ wdk−1(µ+ λ1(1− µ))k−1.

Proof. Define L = 1
dM where M is the adjacency matrix of the induced subgraph of H

on W . Let γ1 ≥ γ2 . . . ≥ γw be the eigenvalues of L and let u1, . . . , uw be the corresponding
eigenvectors. Let p(W,k) = P (W,k)/ndk−1 denote the probability that a random walk of
length k − 1 (i.e., a walk of k vertices) stays in W . Let u be the all 1 vector of length w
and observe that p(W,k) = 1

nu
tLk−1u. Therefore, if u =

∑w
i=1 ciui then

p(W,k) =
1
n

w∑
i=1

c2
i γ
k−1
i . (1)

Since
∑w
i=1 c

2
i = w (as this is the square of the L2-norm of u), and, by Lemma 1 and

the Perron-Frobenius Theorem (cf., e.g., [23]), each γi is in absolute value at most γ1 ≤
µ + λ1(1 − µ), the required upper bound follows from (1) (for any k). To get the lower
bound, observe that

n

w
p(W,k) =

1
w

w∑
i=1

c2
i γ
k−1
i .

Now consider the function f(x) = xk−1, where k is odd. This is a convex function (its second
derivative is nonnegative), and hence for any nonnegative α1, ..., αm with

∑m
i=1 αi = 1, and

for any x1, ..., xm, Jensen’s inequality implies that
∑m
i=1 αif(xi) ≥ f(

∑m
i=1 αixi). Observing

that 1
w

∑w
i=1 c

2
i = 1 we obtain

1
w

w∑
i=1

c2
i γ
k−1
i ≥ (

1
w

w∑
i=1

c2
i γi)

k−1

Observe that 1
w

∑
c2
i γi is n

wp(W, 2) which is simply, as can be easily checked, dW /d,
where dW denotes the average degree in the induced subgraph of H on W . Recall that by
Lemma 2, dW /d ≥ µ+ λn−1(1− µ) and hence,

(
1
w

w∑
i=1

c2
i γi)

k−1 ≥ (µ+ λn−1(1− µ))k−1,

giving the required lower bound. 2

Proof of Theorem 1. Let W be a fixed clique in G, and let µ = |W |/n denote its density.
The vertices of DGk are constructed by taking random walks of length k on H. We want to
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count how many random walks fall entirely within the vertex set W . A lower and an upper
estimate for this number follows from Proposition 2. Since a set of walks forms a clique in
DGk if and only if they all stay in the same clique of G the assertion of the theorem follows.
2

For our application (seperating between Ga and Gb), it suffices to assume that λ < b−a
2 .

This governs the choice of d in the Ramanujan graph H.
The number of vertices in DGk is N = ndk−1. If G ∈ Ga, then ω(DGk) ≤ (an)dk−1(a+

λ)k−1. If G ∈ Gb, then ω(DGk) ≥ (bn)dk−1(b − λ)k−1. By making k sufficiently large (but
still logarithmic in n), it follows that clique cannot be approximated to within N ε, for ε
close to log b−λ

a+λ/ log d.

Remarks:

1. Qualitatively, derandomized graph products achieve the same effect as randomized
graph products do. Quantatively, there is a difference. The value of ε achieved by the
randomized version is better than the value achieved by the derandomized version.

As a typical example, assume that a << 1 and b = 2a. Then randomized graph
products give a value of ε ' 1 − log 2a/ log a = 1/ log(1/a). For derandomized
graph products based on Ramanujan graphs, recall that d ' 4/λ2, and hence ε '
log b−λ

a+λ/2 log(2/λ). For, say, λ ' a/ log(1/a), this gives ε ' 1/2 log(1/a).

2. Our proof goes through even if H is nonsimple (it has self loops and parallel edges).
This gives greater flexibility in the design of H. In particular, one may start with a
constant degree bipartite expander, such as the one constructed in [14], add self loops
to each vertex (to destroy bipartiteness and make |λn−1| bounded away from λ0), and
take the product of the resulting graph with itself sufficiently many times (until a
desired value of λ0/λ is reached).

3. Note that the lower bound in Theorem 1 depends on λn−1, and not on λ1. Thus
if all eigenvalues of H are nonnegative (this can be obtained, for example, by con-
sidering the square H ′2 of a given expander H ′), then the lower bound is at least
ω(G)dk−1(ω(G)

n )k−1. This results in a slightly larger value of ε.

3 Independent sets in graphs of bounded degree

An independent set in a graph G is a set of vertices such that no two vertices in the set
are connected by an edge. Let α(G) denote the size of the maximum independent set in
the graph G. Any independent set in a graph G is a clique in Ḡ, the complement of G. It
follows that the same unapproximability results that hold for ω(G) hold also for α(G).
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An interesting question is how well can α(G) be approximated in graphs of maximum
degree at most ∆. Berman and Furer [9] design a polynomial time algorithm that approx-
imates α(G) to within a ration of ∆/5 + c, where 0 < c < 1 is some universal constant.
Halldorsson and Radhakrishnan [16] analyse the performance of the greedy algorithm on
this problem, and discuss several extensions. As to hardness results for this problem, it
follows from [6] and [24] that even if ∆ = 3, it is NP-hard to approximate α(G) within a
factor of 1 + ε, for some ε > 0. Halldorsson conjectured (private communication) that this
NP-hardness result can be extended to showing that it is NP-hard to approximate α(G)
within a factor of ∆ε, for some ε > 0. We show that derandomized graph products imply
the correctness of this conjecture.

Theorem 3 For some ε > 0 and every ∆ ≥ 3, it is NP-hard to approximate α(G) within
a factor of ∆ε in graphs of maximum degree at most ∆.

Proof. Let 0 < a < b < 1 be two constants, let Ga be a family of graphs that satisfy
α(G) < an, let Gb be a family of graphs that satisfy α(G) > bn, and let G ⊂ Ga

⋃
Gb. By [6]

and [24], there exist constants 0 < a < b < 1 such that it is NP-hard to decide for G ∈ G
whether G ∈ Ga or G ∈ Gb, even if G contains only graphs of maximum degree 3.

When considering derandomized graph products, we now define, for a graph G ∈ G,
the k-fold (modified) derandomized graph product D̃G

k
. This modified graph product is

constructed as described in Section 2, but with the changes required in order to handle
independent sets rather than cliques. That is, D̃G

k
in our use in this section is just the

complement of the k-fold derandomized graph product of the complement of G, that is, the
graph DḠk, using the notation of Section 2. From Theorem 1 we have that

α(G)dk−1(
α(G)
n
− λ)k−1 ≤ α(D̃G

k
) ≤ α(G)dk−1(

α(G)
n

+ λ)k−1.

Assume that d, the degree of the expander graph, is sufficiently large so that 3λ < b−a.
Hence the gap between the cases that G ∈ Ga and G ∈ Gb is amplified from b/a to roughly
( b−λa+λ)k > (1 + λ)k.

We now analyse ∆, the maximum degree in D̃G
k
. Consider any vertex v ∈ D̃Gk. It

is composed of k vertices v1, v2, . . . , vk of G. Consider now any other vertex u ∈ D̃G
k
,

composed of vertices u1, u2, . . . , uk of G. In order to have an edge between v and u in D̃G
k
,

there must be two indices i and j, such that (vi, uj) is an edge in G. There are k2 possible
ways of selecting the indices i and j. Once we select i, this fixes vi, and there remain at
most 3 ways of selecting uj (by the degree bound on G). Thereafter, there remain dk−1

ways of selecting the remaining vertices u`, ` 6= j. Hence the degree of v can be at most
3k2dk−1.
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To express the gap in sizes of the maximum independent set in terms of ∆, let k be an
integer such that 3k2dk−1 ≤ ∆ ≤ 3(k + 1)2dk. Then in graphs of maximum degree ∆, it
is NP-hard to approximate α(G) within a factor of (1 + λ)k. Recall that for Ramanujan
graphs we have d ' 4/λ2, and observe that 3(k+ 1)2 is a low order term relative to dk. By
selecting ε such that (4/λ2)ε ' 1 + λ we obtain that it is NP-hard to approximate α(G)
within a factor of ∆ε. 2

4 Staying inside changing sets

In this section we lower bound the probability that a random walk of length k stays inside
a sequence of k different sets W1,W2, . . . ,Wk, each of size µn. Again we use linear algebra,
but now we need a bound on λ, the second largest eigenvalue in absolute value of the
transition matrix A. Our proof extends the techniques in [1].

We will also need the following notation:

P is the vector space Rn.
X is the subspace of multiples of 1n = (1/n, 1/n, . . . , 1/n).
Y is the subspace orthogonal to X.
For p = (p1, p2, . . . , pn) ∈ P
|p| =

∑n
i=1 |pi|, the L1-norm.

‖p‖ =
√∑n

i=1 p
2
i , the L2-norm.

Ni : P → P is the linear transformation

Ni(ej) =
{
ej if j ∈Wi

0 otherwise,

where ej is the basis vector with a 1 in the jth place and 0’s elsewhere.
Thus, if the vector p = (p1, . . . , pn) represents the probabilities of being at the different

vertices, i.e. pi = Pr[particle is at vertex i], then the ith component ofN1p is the probability
of being at vertex i and of being in W1. Thus |N1p|, the sum of the components, is the
probability of being in W1. Extending this, we see that the probability that the ith vertex
of a random walk taking k− 1 steps from a uniform starting vertex always lies in Wi for all
i is |(NkA)(Nk−1A) · · · (N2A)N11n|. Let v1 = N11n and vi = NiAvi−1 for i > 1.

Lemma 3 If µ ≥ 6λ, then |vi+1| > (µ− 2λ)|vi|.
Proof. Let vi = xi+yi, where xi ∈ X, yi ∈ Y . All coordinates of vi are nonnegative (they
represent probabilities), and the sum of coordinates of yi is 0 (by orthogonality to X). It
follows that |vi| = |xi| =

√
n||xi||, and the lemma is equivalent to ||xi+1|| > (µ − 2λ)||xi||.

11



We prove this by induction, including in our inductive statement that ||yi|| ≤ t||xi||. We
will choose t later.

We claim that

||xi+1|| ≥ µ||xi|| − tλ
√
µ(1− µ)||xi|| (2)

||yi+1|| ≤ tλ||xi||+
√
µ(1− µ)||xi|| (3)

To see these, write vi+1 = Ni+1Axi +Ni+1Ayi. Since |Ni+1xi| = µ|xi|,

Ni+1Axi = Ni+1xi = µxi + zi,

where zi ∈ Y and
||zi||2 = ||Ni+1xi||2 − ||µxi||2 = µ(1− µ)||xi||2.

Further note that ||Ayi|| ≤ λ||yi|| and Ayi ∈ Y .
Now we claim that for p = (p1, . . . , pn) ∈ Y , the component π of Ni+1p in X has

magnitude at most
√
µ(1− µ)||p||. To see this, note that π =

∑
j∈Wi+1

pj = −
∑
j 6∈Wi+1

pj
(since p ∈ Y ). Thus for a fixed value of ||p||2 =

∑
j p

2
j , we maximize |π| by setting pj = pk

for j, k either both in Wi+1 or both not in Wi+1. Doing the algebra yields the claim.
Letting wi be the component of Ni+1Ayi in X, we have

xi+1 = µxi + wi,

so
||xi+1|| ≥ µ||xi|| − ||wi|| ≥ µ||xi|| − λ

√
µ(1− µ)||yi||,

giving (2) after using ||yi|| ≤ t||xi||. Also

||yi+1|| ≤ ||Ayi||+ ||zi||,

which yields (3).
Once we have these equations, we choose t so as to satisfy the inductive assumption

||yi|| ≤ t||xi||. Observe that ||y1|| =
√

(1− µ)/µ||x1||, and that for any value of t strictly
larger than

√
(1− µ)/µ, equations (2) and (3) imply that ||yi+1|| ≤ t||xi+1||, if λ is suffi-

ciently small. A simple calculation suffices to verify that if λ ≤ µ/6 then we may choose
t = 2

√
(1− µ)/µ. The lemma then follows from equation (2). Also, if we assume λ ≤ µ2/2,

then by taking t = 1/
√
µ(1− µ) we can conclude that |vi+1| ≥ (µ− λ)|vi|. 2

This yields:

12



Theorem 4 The probability that a random walk for k − 1 steps from a uniformly random
starting vertex stays inside W1,W2, . . . ,Wk (each of density µ ≥ 6λ) is at least µ(µ −
2λ)k−1.

It is worth noting that the same computation also shows that the probability that
a random walk for k − 1 steps from a uniformly random starting vertex stays inside
W1,W2, . . . ,Wk (each of density µ ≥ 6λ) is at most µ(µ + 2λ)k−1. This strengthens the
estimate in [8].
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