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Abstract

Extremal Combinatorics is an area in Discrete Mathematics that has developed spectacularly
during the last decades. This paper contains a collection of problems and results in the area,
including solutions or partial solutions to open problems suggested by various researchers in
Extremal Graph Theory, Extremal Finite Set Theory and Combinatorial Geometry. This is not
meant to be a comprehensive survey of the area, it is merely a collection of various extremal
problems, which are hopefully interesting. The choice of the problems is inevitably somewhat
biased, and as the title of the paper suggests I hope to write a related paper in the future. Each
section of this paper is essentially self contained, and can be read separately.

1 Introduction

Extremal Combinatorics deals with the problem of determining or estimating the maximum or min-
imum possible cardinality of a collection of finite objects that satisfies certain requirements. Such
problems are often related to other areas including Computer Science, Information Theory, Number
Theory and Geometry. This branch of Combinatorics has developed spectacularly over the last few
decades, see, e.g., [10], [31], and their many references.

This paper contains a collection of problems and results in the area, including solutions or partial
solutions to open problems suggested by various researchers in Extremal Graph Theory, Extremal
Finite Set Theory and Combinatorial Geometry. This is not meant to be a comprehensive survey of
the area, but rather a collection of several extremal problems, which are hopefully interesting. The
techniques used include combinatorial, probabilistic and algebraic tools. Each section of this paper
is essentially self contained, and can be read separately.

2 Multiple intersection of set systems

Let F be a finite family of sets. For each k ≥ 1, define Fk = {F1 ∩ . . . ∩ Fk : Fi ∈ F}. Thus Fk
is the set of all intersections of k (not necessarily distinct) members of F . Motivated by a question
studied in [26], Gyárfás and Ruszinkó [27] raised the problem of estimating the maximum possible
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cardinality of F3, given the cardinality of F2. They noticed that there are examples of families F for
which |F3| ≥ Ω(|F2|3/2), and observed that |F3| ≤ O(|F2|2). Indeed, if F is the family of all subsets
of cardinality n− 1 of an n element set, then |F2| = n+

(n
2

)
and |F3| = n+

(n
2

)
+
(n

3

)
= Ω(|F2|3/2).

The upper bound |F3| ≤ O(|F2|2) follows from the fact that every member of F3 is the intersection
of a member of F2 with one of F1 ( ⊂ F2).

It turns out that a tight upper bound for |F3| in terms of |F2| can be derived from the Kruskal-
Katona Theorem, using a simple shifting technique. Moreover, the same technique applies for bound-
ing |Fr| as a function of |Fk| for all r > k.

Theorem 2.1 Let F be a finite collection of sets, and suppose r > k ≥ 1 are integers. Then, for
every real x ≥ r, if

|Fk| <
k∑
i=1

(
x

i

)
. (1)

then

|Fr| <
r∑
i=1

(
x

i

)
. (2)

This is tight for every integral value of x in the sense that for every integral x there are examples in
which equality holds in both inequalities above.

As mentioned above, the proof relies on the Kruskal-Katona Theorem [34], [32]. For convenience, we
use here the version of Lovász ([35], Problem 13.31), which simplifies the formulae. It is, however,
worth noting that by using the precise statement of the theorem one can slightly improve the assertion
above for non-integral values of x.

Theorem 2.2 [The Kruskal-Katona Theorem, [34], [32], [35]] Let r be an integer, and let H be an
r-uniform hypergraph with no multiple edges which contains at least

(x
r

)
edges, where x ≥ r is real.

Then for every j, 1 ≤ j ≤ r, there are at least
(x
j

)
j-tuples contained in edges of H.

Proof of Theorem 2.1: Let F = {F1, F2, . . . , Fn} be an arbitrary enumeration of the sets in F .
Order all nonempty subsets of F lexicographically as follows. For two subsets G = {Fi1 , Fi2 , . . . , Fis}
and T = {Fj1 , Fj2 , . . . , Fjt} of F , where i1 < i2 . . . < is and j1 < j2 < . . . < jt, G precedes T in the
order if s < t, or if s = t and im < jm where m is the smallest index such that im and jm differ.

As F ∩ F = F for all F ∈ F , we can express each member of Fj as an intersection of at most j
distinct members of F . For each positive integer j ≤ r, let H(j) be the hypergraph whose vertices
are the members of F and whose edges are all sets G defined as follows: for each A ∈ Fj , express A
as an intersection of the sets in G, where G is the lexicographically first subset of F the intersection
of whose members is A. Note that the cardinality of each such G is at most j, and that all singletons
{Fi} are edges of H(j). Obviously, the number of edges of H(j) is precisely |Fj |. The crucial point is
that if G is an edge of H(r), T is a subset of G, and |T | = j, then T is an edge of H(j), as well as an
edge of each H(i) for i ≥ j. Indeed, if T is not an edge of H(i) for some i ≥ j, then there is a subset
T ′ ⊂ F which is lexicographically smaller than T , with the same intersection. Thus |T ′| ≤ |T | = j
and hence G′ = (G − T ) ∪ T ′ is lexicographically smaller than G, and its members have the same
intersection, contradicting the fact that G is an edge of H(r).
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Suppose, now, that (1) holds. We claim that in this case for every i, k ≤ i ≤ r the number of
edges of cardinality i in H(r) is smaller than

(x
i

)
. Indeed, otherwise, by the last paragraph and by

Theorem 2.2 it would follow that the number of edges of H(k) of cardinality j, for every 1 ≤ j ≤ k,
is at least

(x
j

)
, contradicting (1). As, by the last paragraph, every edge of cardinality at most k of

H(r) is also an edge of H(k) , this implies (2).
The set F of all subsets of cardinality n− 1 of a set of cardinality n shows that equality can hold

in (1) and (2) for all integral values of x ( = n). This completes the proof of the theorem. 2

Remark: The proof above works not only for subset intersection, but for any commutative, asso-
ciative semi-group of idempotents. Let G be a (finite or infinite) semi-group, with a commutative,
associative binary operation satisfying g · g = g for all g ∈ G. For a finite subset A of G and for each
k ≥ 1, define Ak = {g1 · g2 . . . · gk : gi ∈ A}. In this notation, the proof above, with essentially no
difference, gives the following.

Theorem 2.3 Let G and A be as above and suppose r > k ≥ 1 are integers. Then, for every real
x ≥ r, if

|Ak| <
k∑
i=1

(
x

i

)
then

|Ar| <
r∑
i=1

(
x

i

)
.

When G is the set of all subsets of some ground set, and the semi-group operation is set intersection,
the above reduces to Theorem 2.1. Another (equivalent) example is obtained by letting the operation
be union rather than intersection. The requirement that all elements are idempotents is not essential,
and a similar result can be proved without this assumption.

3 Nearly spanning regular subgraphs of regular graphs

All graphs considered in this section are finite and simple. It is known (see [5]) that for every integer
k there is some r0 = r0(k) so that every r-regular graph with r > r0 contains a nonempty k-regular
subgraph. By the Petersen Theorem (see, e.g., [36], p. 218), if r > k, and r, k are both even, then
every r-regular graph contains a spanning k-regular subgraph, but in any other case, the existence of
a spanning k-regular subgraph is not ensured. Still, it seems plausible that if r is sufficiently large,
there is always a nearly spanning k-regular subgraph.

The following conjecture was raised in discussions with Dhruv Mubayi [37].

Conjecture 3.1 For every integer k ≥ 1 and every real ε > 0, there is an r0 = r0(k, ε) such that for
r > r0, every r-regular graph on n vertices contains a k-regular subgraph on at least (1− ε)n vertices.

The above is certainly true (and easy) for k = 1. Indeed, by Vizing’s Theorem [41], the edges of any
r-regular graph on n vertices can be partitioned into at most r+ 1 matchings, and hence the largest
of those is a 1-regular subgraph that covers at least r

r+1n vertices. Here we show that the assertion
of the conjecture holds for k = 2 as well.
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Theorem 3.2 For every real ε > 0 there is an r0 = r0(ε) such that for r > r0, every r-regular graph
on n vertices contains a 2-regular subgraph on at least (1− ε)n vertices.

The proof is short, and relies on the validity of two well known conjectures for permanents; the
Minc conjecture, proved by Brégman, and the van der Waerden conjecture, proved by Falikman and
Egorichev.

The Minc conjecture states that the permanent of any n by n matrix A with (0, 1) entries satisfies

Per(A) ≤
n∏
i=1

(ri!)1/ri ,

where ri is the sum of the entries of the i-th row of A. This was proved by Brégman [16] (c.f. also
[9] for another proof, based on a method of Schrijver).

The van der Waerden conjecture, proved by Falikman [22] and Egorichev [21], asserts that the
permanent of every nonnegative n by n matrix in which each row and column sum is r is at least
(r/n)nn! ( > (r/e)n). Schrijver [38] proved that if, in addition, each entry is an integer, then the
permanent is at least ((r − 1)r−1/rr−2)n.

Armed with these powerful tools, we can now prove Theorem 3.2.
Proof of Theorem 3.2: Let G = (V,E) be an r-regular graph on n vertices. We claim that if(

n

s

)
(
r

2
)s(r!)(n−2s)/r < [

(r − 1)r−1

rr−2
]n, (3)

then there is a 2-regular subgraph of G on more than n− 2s vertices.
To prove this claim, consider the adjacency matrix A of the graph G. This is the (0, 1)-matrix

A = (A(u, v))u,v∈V in which A(u, v) = 1 iff uv ∈ E. As the sum of each row and each column of A
is r, it follows, by Schrijver’s result stated above, that the permanent of A is at least the right hand
side of (3). This permanent can be interpreted combinatorially. Let F denote the set of all spanning
subgraphs of G in which every connected component is either a single edge, or a cycle. For each
F ∈ F , define a weight w(F ) = 2c, where c is the number of connected components of F which are
not single edges. It is not difficult to see that Per(A) =

∑
F∈F w(F ). Call a member of F small if at

least s of its components are single edges. We next bound the contribution of all small members of
F to Per(A). There are at most

(n
s

)
(r/2)s ways to choose s single edges in G (as we can first choose

a vertex of each edge, then choose a neighbor of each such vertex, and finally observe that in this
way each collection of s edges has been counted 2s times). The total contribution of all the members
of F that contain a fixed set of s edges as connected components is the permanent of an (n − 2s)
by (n − 2s) submatrix of A (which is the adjacency matrix of the induced subgraph of G obtained
by deleting the 2s vertices covered by the single edges). By the Minc Conjecture stated above each
such permanent does not exceed (r!)(n−2s)/r. Therefore, the total contribution of all small members
of F to Per(A) is at most the left hand side of (3). As the permanent itself is at least the right hand
side, it follows that if (3) holds then there is at least one member of F which is not small, and hence
contains a 2-regular subgraph on more than n− 2s vertices.

The assertion of Theorem 3.2 follows from the above claim by a simple computation. The
right hand side of (3) exceeds (r/e)n (which lower bounds the permanent by the van der Waerden
conjecture). By Stirling’s formula and some standard estimates, if s = εn and r is large, then the
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left hand side is at most
2H(ε)n(

r

2
)εn(

r

e
)n−2εn2(2πr)

n
2r ,

where H(x) = −x log2 x− (1−x) log2(1−x) is the binary entropy function. As H(ε) ≤ ε log2(1/ε) +
O(ε) it follows that if

O(ε) +
log2(2πr)

2r
< ε log2(εr)

then (3) holds. Therefore, if we choose, say, r such that ε = log r
r log log r , then (3) holds, ensuring a

2-regular subgraph of G on at least (1− 2ε)n vertices. This completes the proof. 2

The method above can be used to prove some stronger variants of Theorem 3.2. In particular, it
can be used to prove the following.

Theorem 3.3 For every integer g ≥ 3 and every real ε > 0 there is an r0 = r0(g, ε) such that for
r > r0, every r-regular graph on n vertices contains a 2-regular subgraph H on at least (1 − ε)n
vertices such that the number of vertices in each connected component of H exceeds g.

The proof is similar to the one above; one simply has to bound the maximum possible contribution
of members of F that contain more than s vertices on cycles of length at most g to Per(A). We
omit the (simple) details. Jacques Verstraete [40] raised the following conjecture.

Conjecture 3.4 For every fixed graph H and every real ε > 0, there is an r0 = r0(H, ε) such that
for r > r0, every r-regular graph on n vertices contains a subgraph on at least (1− ε)n vertices which
is a collection of pairwise vertex disjoint graphs each of which is a topological copy of H.

This holds for acyclic graphs H (where one can even omit the word “topological”), as shown in [33],
and by Theorem 3.3 above it holds for any fixed cycle H. The result can also be extended to deal
with any unicyclic graph H, but the case of more complicated graphs H remains open.

4 Monotone paths in bounded degree graphs

Let G = (V,E) be a simple, finite graph with |E| = m edges, and let f : E 7→ {1, 2 . . . ,m} be a
bijective numbering of its edges. A monotone path of length k in (G, f) is a simple path with k
edges and increasing f -values. Let α(G) denote the minimum, over all bijective functions f , of the
maximum length of a monotone path. The problem of estimating α(Kn) for the complete graph Kn

on n vertices was raised by Chvátal and Komlós [18], and the best known bounds for it are

1
2

(
√

4n− 3− 1) ≤ α(Kn) ≤ (
1
2

+ o(1))n.

The lower bound is due to Graham and Kleitman [24], and the upper bound was proved by Calder-
bank, Chung and Sturtevant [17].

Yuster [44] has studied the problem of the maximum possible value of α(G), where G ranges
over all graphs with maximum degree d. Denote this maximum by αd. It is observed in [44] that
αd ≤ d + 1. This follows from Vizing’s Theorem [41]. Given a graph G with maximum degree d,
partition its edges into d+ 1 matchings M1, . . . ,Md+1, and let f map all edges of M1 to the smallest
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numbers 1, 2, . . . , |M1|, then all edges of M2 to the next block of M2 numbers, etc. Obviously, no
monotone path in G can contain more than one edge from a single Mi, showing that α(G) ≤ d+ 1.
Trivially, α1 = 1 and α2 = 3, as shown by any odd cycle of length at least 5. Yuster proved in [44]
that for any ε > 0 there is some d0 = d0(ε) such that αd ≥ (1− ε)d for all d > d0. It seems plausible
to conjecture that αd = d + 1 for every d > 1. Here is a very short proof that αd ≥ d (and is thus
either d or d+ 1 for all d > 1.)

Proposition 4.1 For every graph G on n vertices with maximum degree d, with more than n(d−1)/2
edges, and with girth bigger than d, α(G) ≥ d. Therefore, αd ≥ d.

Proof: We prove, by induction on m, that for every graph G = (V,E) with n vertices v1, v2, . . . vn
and m edges, and for every bijection f : E 7→ {1, 2 . . . ,m}, there is a collection F = {P1, . . . , Pn} of
n monotone paths (each of which may have repeated vertices, but no repeated edges) in G, where
Pr ends in the vertex vr for all r, and the total length of all paths Pi is 2m. This is trivially true
for m = 0 (as we simply take the trivial paths of length 0 at each vertex). Assuming it holds for
m− 1, we prove it for m. Let G = (V,E) have m edges and let f : E 7→ {1, 2, . . . ,m} be a bijection.
Suppose f(vi, vj) = m, and let G′ be the graph obtained from g by omitting the edge vivj . By
applying the induction hypothesis to G′ and the restriction of f to the set of its edges, we conclude
that there is a collection F = {P1, . . . Pn} of monotone paths in G′, where Pr ends in vr, and the
sum of lengths of all paths is 2m− 2. We can now extend Pi and Pj by appending the edge vivj at
the end of each of them, thus obtaining the required collection of monotone paths in G.

In particular if G has more than n(d− 1)/2 edges, then at least one of the paths in the collection
F is of length at least d. As the girth exceeds d, the first d edges of this path form a simple path of
length d, showing that α(G) ≥ d. Note that if G is of class 1 (that is, its chromatic index is d), then
in fact α(G) = d. Note also that as there are d-regular graphs of girth that exceeds d, this implies
that αd ≥ d. 2

5 Independent transversals

For any integer r ≥ 2 , let d(r) denote the supremum of all reals d so that if all degrees in an
r-partite graph with vertex classes Vi of size n each are smaller than dn, then there is an independent
transversal, that is, an independent set containing one point from each Vi. These numbers have been
studied in [12], [13], [29], [43], [28], and their precise determination appears to be a difficult problem
even for small fixed values of r. In this section we prove that the precise value of d(r) for every r
which is a power of 2 is r

2(r−1) . This follows almost immediately from a recent result of Haxell [28].
We also obtain bounds for d(r) for some other values of r, and in particular, disprove a conjecture
of Jin [29]. Yet, we are unable to determine the precise value of d(r) even for a single value of r > 5
which is not a power of 2.

Note, first, that trivially, d(2) = 1. Graver (c.f., [12]) proved that d(3) = 1, and Bollobás, Erdős
and Szemerédi [13] proved that d(4) ≤ 8/9 and that

2
r
≤ d(r) ≤ 1

2
+

1
r − 2

for all r ≥ 2.
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The fact that all numbers d(r) are bounded away from 0 was first proved in [3] (see also [9],
Chapter 5 for a proof that d(r) ≥ 1

2e for every r), and an example in [4] shows that d(4) ≤ 2/3. In
[43] Yuster proved that in fact d(4) = 2/3 and that for every r ≥ 3,

Max{ 1
2e
,

1
2dlog(r/3)e ,

1
3 · 2dlog re−3

} ≤ d(r) ≤ 2blog rc−1

2blog rc − 1
,

where here and throughout the section all logarithms are in base 2. The upper bound in the above
inequality and the equality d(4) = 2/3 was, in fact, proved earlier by Jin [29], who also proved that
d(5) = 2/3 and conjectured that for every r,

d(r) =
2blog rc−1

2blog rc − 1
. (4)

Haxell [28] proved that d(r) ≥ 1/2 for all r. This proves a conjecture raised in [13], (see also [10],
page 363.) The same method actually implies that d(r) ≥ r

2(r−1) for all r ≥ 2. The short proof is
based on the following result of Aharoni and Haxell [1].

Theorem 5.1 ([1]) Let G = (V,E) be a graph, and let V = V1 ∪ V2 ∪ . . . ∪ Vr be a partition of its
vertex set. Suppose that for every set S ⊂ {1, 2 . . . , r}, the set VS = ∪i∈SVi is not dominated by any
subset of VS of cardinality smaller than 2|S|− 1. Then G has an independent set containing a vertex
from each Vi.

This easily implies the following.

Proposition 5.2 Let G be an r-partite graph with vertex classes Vi of size n each, in which all degrees
are smaller than r

2(r−1)n. Then there is an independent transversal in G. Therefore, d(r) ≥ r
2(r−1) .

Proof If S is a subset of {1, 2 . . . , r}, then every subset of cardinality at most 2|S|−2 of VS = ∪i∈SVi
dominates less than (2|S| − 2) r

2(r−1)n ≤ |S|n = |VS | vertices of VS , and the result thus follows from
Theorem 5.1. 2

Note that this, together with the upper bound of [29] mentioned above, implies that

d(r) =
r

2(r − 1)
for every r which is a power of 2.

This formula, however, does not hold for r = 3, 5, as d(3) = 1 and d(5) = 2/3. We next describe
some constructions that yield improved upper bounds for d(r) for many values of r.

To simplify the presentation, we assume from now on, whenever this is needed, that the number
of vertices in each vertex class in the graphs constructed here are divisible by any required number.
It is easy to check that this may be assumed without loss of generality.

Proposition 5.3 For every two integers r, s ≥ 2,

d(rs) ≤ rd(r)d(s)
rd(s) + d(r)

.
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Proof: Formally, we should start by replacing d(r) by d′(r), where d′(r) > d(r) is close to d(r),
do the same for d(s), and end the argument by letting d′(r) approach d(r) and d′(s) approach d(s).
Since this does not cause any real difficulty, we omit this somewhat tedious, formal description in
what follows.

Let x and y be two integers such that d(r)x = d(s)y. Let H1 be an r-partite graph with x
vertices in each vertex class and with maximum degree d(r)x, which does not contain an independent
transversal. Similarly, let H2 be an s-partite graph with y vertices in each vertex class, with maximum
degree d(s)y, containing no independent transversal. Take s pairwise disjoint copies of H1, and
let Ai1, . . . , Air denote the vertex classes of copy number i, (1 ≤ i ≤ s). Let B1, . . . , Bs be the
vertex classes of a copy of H2, and suppose each Bi is a disjoint union of r sets of equal size
Bi = Bi1 ∪ Bi2 ∪ . . . ∪ Bir. Let G be the rs-partite graph whose vertex classes are Aij ∪ Bij . It is
not difficult to check that G contains no independent transversal. The maximum degree of a vertex
of G is d(r)x = d(s)y, and the number of vertices in each of its vertex classes is x+ y/r. Therefore,

d(rs) ≤ d(r)x
x+ y/r

=
d(r)

1 + d(r)/(rd(s))
=

rd(r)d(s)
rd(s) + d(r)

,

as needed. 2

Note that the above proposition implies that if d(r) ≤ r
2(r−1) and d(s) ≤ s

2(s−1) , then d(rs) ≤
rs

2(rs−1) . In particular, as d(2) = 1, we conclude that (as we have already noted above) for every
r = 2k, d(r) ≤ r

2(r−1) (and hence equality holds for each such r).
There are several additional constructions that provide upper bounds for the numbers d(r). We

illustrate these with one example, which is a special case of a more general construction. This
disproves the conjecture of Jin mentioned in (4).

Proposition 5.4 The number d(14) satisfies

d(14) ≤ 12
2 · 11

.

Proof: Let A1, . . . , A4, B1, . . . , B4, C1, . . . , C4, D1, . . . , D4, X and Y be pairwise disjoint sets, where
each of the 16 sets Ai, Bi, Ci, Di is of size x, and each of the two sets X and Y is of size 2x/3. Let
A4 = A41 ∪A42 ∪A43 ∪A44 be a partition of A4 into four pairwise disjoint sets of equal cardinality,
and let D4 = D41 ∪ . . . ∪D44 be a similar partition for D4. Let X = X1 ∪X2 ∪X3 be a partition of
X into three disjoint sets of equal cardinality and let Y = Y1 ∪ Y2 ∪ Y3 be a similar partition of Y .

Let G be the 14-partite graph on the classes of vertices A1∪X1, A2∪X2, A3∪X3, B1∪A41, B2∪
A42, . . . , B4 ∪A44, C1 ∪D41, C2 ∪D42, . . . , C4 ∪D44, D1 ∪ Y1, D2 ∪ Y2, D3 ∪ Y3.

The edges are defined as follows. Let H be a 4-partite graph with vertex classes of size x each,
maximum degree 2x/3 and no independent transversal. (Although d(4) is defined as a supremum,
it is easy to check that there is indeed such a graph for every x divisible by 3-see [4].) Then the
induced subgraph of G on the sets Ai is a copy of H (where the sets Ai are the vertex classes), and
each of the induced subgraphs of G on the sets Bi, the sets Ci and the sets Di is also a copy of H.
In addition, every vertex of X is connected to every vertex of Y and there are no additional edges.

Note that the maximum degree in G is at most 2x/3. In addition, each of its vertex classes
contains either x + 2x/9 = 11x/9 vertices or x + x/4 > 11x/9 vertices. Moreover, G contains no
independent transversal. Indeed, assume there is such a transversal. Then it cannot contain a vertex
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in X and a vertex in Y . Assume, without loss of generality, it contains no vertex of X. Then it must
contain a vertex in each of the three sets A1, A2, A3 and hence it cannot contain a vertex of A4. But
then it must contain a vertex in each of the four sets Bi, which is impossible.

Therefore,

d(14) ≤ 2x/3
11x/9

=
12

2 · 11
,

as claimed. 2

The above proposition can be extended to obtain improved bounds for d(r) for various values
of r. Even without this extension, we can combine it with the first proposition to obtain improved
bounds for d(14 · 2k) for every k. Yet, as mentioned above, we are unable to determine the precise
value of d(r) even for a single value of r > 3 which is not a power of 2.

6 Binary prefix graphs

Let F = (V (F ), E(F )) denote the (infinite) graph whose set of vertices is the set of all infinite
sequences over {0, 1}, where two sequences are joined by an edge if and only if their longest common
initial segment has an even length. Answering a question of Geschke, Goldstern and Kojman [23],
we prove the following.

Theorem 6.1 Every induced finite subgraph of F on n vertices has either a clique or an independent
set of size at least

√
n.

Theorem 6.2 For any finite graph H, there is a finite graph G so that for every injective function
f from V (G) to V (F ) there is an induced copy of H in G which is mapped by the function f to either
a clique or an independent set of F .

Geschke, Goldstern and Kojman can apply these properties to produce two nontrivial continuous
graphs on the Cantor set, with different co-chromatic numbers. Here continuous means that the edge
and non-edge relations are continuous, nontrivial means that no open set is a clique or an independent
set, and the co-chromatic number is the least possible number of cliques and independent sets whose
union covers all vertices of the graph.
Proof of Theorem 6.1: Let T = (V (T ), E(T )) be a finite induced subgraph of F on n vertices.
Then there is a finite k so that each vertex of T is a vector in {0, 1}k, and two vectors are adjacent
iff their longest common initial segment has an even length. Let w(T ) denote the maximum size of
a clique of T , and let α(T ) denote the maximum size of an independent set of T . To complete the
proof, we show that

w(T ) · α(T ) ≥ |V (T )|. (5)

We present two (related) proofs. The first requires some nontrivial facts about perfect graphs and
the second is self contained. Recall that a graph is perfect iff the chromatic number χ(S) of every
induced subgraph S of it is equal to its maximum clique w(S). We prove, by induction on k, that
T is perfect. This is trivial for k = 1. Assuming the result holds for k − 1, we prove it for k. Let
V (T ) be a collection of vectors in {0, 1}k. Split these vectors into two sets, according to the first
coordinate, that is, define V0 = {v ∈ V (T ) : v1 = 0} and V1 = {v ∈ V (T ) : v1 = 1}. Let T0 be the

9



induced subgraph of T on V0, and let T1 be the induced subgraph on V1. For each v ∈ V (T ), let v′

denote the vector of length k − 1 obtained by omitting the first coordinate of v. By the induction
hypothesis, the graph on the vectors {v′ : v ∈ V0} in which any two vectors are adjacent iff their
longest common initial segment has an even length is perfect. But this is clearly the complement
of T0. By the perfect graph theorem of Lovász (c.f., e.g., [35], Exercise 13.57), a graph is perfect iff
its complement is perfect. This implies that T0 is perfect. By the same reasoning, T1 is perfect as
well. Note that T is obtained from the vertex disjoint union of T0 and T1 by connecting each vertex
of T0 to each vertex of T1. It is known (see [35], Exercise 9.35) that if we substitute a perfect graph
for each point of a perfect graph we get a perfect graph. As T is obtained from a single edge by
substituting T0 and T1 for its vertices, we conclude that T is perfect.

Since T is perfect, χ(T ) = w(T ), implying that the vertices of T can be covered by w(T )
independent sets. This implies (5) and completes the (first) proof.

A more direct proof proceeds by showing directly that (5) holds, by induction on k. For k = 1
this is trivial. Assuming it holds for k − 1, let V (T ) be a collection of vectors in {0, 1}k, and define
V0, V1, T0 and T1 as before. By the induction hypothesis, and since the condition (5) is the same for
a graph and its complement, it follows that w(T0)α(T0) ≥ |V (T0| and w(T1)α(T1) ≥ |V (T1|.

In addition, α(T ) = max{α(T0), α(T1)} and w(T ) = w(T0) + w(T1), implying that

w(T )α(T ) = (w(T0) + w(T1))max{α(T0), α(T1)}

≥ w(T0)α(T0) + w(T1)α(T1) ≥ |V (T0)|+ |V (T1)| = |V (T )|.

This completes the (second) proof. 2

To prove Theorem 6.2 we prove the following.

Lemma 6.3 For every integer m there is an integer n = n(m) such that for every finite graph H

on m vertices, there is a finite graph G on n vertices such that every induced subgraph of G on at
least

√
n vertices contains an induced copy of H.

Proof: The proof is based on some simple properties of random graphs. We make no attempt to
optimize the dependence of n on m, and prove the lemma with n = 22m2

, where we also assume (as
we obviously may) that m is sufficiently large. A more complicated proof, based on the technique in
[8], can be used to prove the lemma with much smaller n = n(m). Throughout the proof we omit
all floor and ceiling signs whenever these are not crucial, to simplify the presentation.

Let G = (V,E) be the random graph on the set V = {1, 2, . . . , n} of n labelled vertices obtained
by picking each pair of distinct vertices i, j in V , randomly and independently, to form an edge with
probability 1/2. There is an extensive amount of literature on the properties of random graphs, see,
e.g., [11] or [9]. The argument here is elementary, and uses mainly some simple computation.

Put k =
√
n and let K be a fixed set of k vertices of G. We claim that the probability that the

induced subgraph of G on K contains no induced copy of H is at most

(1− 2−(m2 ))k
2/m3 ≤ exp{− k2

m32(m2 )
}. (6)

It is worth noting that it is not difficult to improve this estimate significantly, but for our purpose
here the above estimate suffices.
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To prove (6) note, first, that there is a collection F of at least k2/m3 subsets of K, each of
cardinality m, so that the members of F are nearly disjoint, that is, no two of them share more
than one common vertex. (Here, too, the estimate can be improved to (1 + o(1))

(k
2

)
/
(m

2

)
, using,

say, Wilson’s Theorem [42], but the above estimate suffices for our purpose.) To get the required
collection F note that it is equivalent to a collection of k2/m3 pairwise edge disjoint cliques of size
m in a clique of size k. To get such a collection simply omit m-cliques one by one, as long as this is
possible, where with each chosen clique we omit all its edges. By Turán’s Theorem (c.f., e.g., [9], pp.
91-92), as long as there are at least (1− 1

m)
(k

2

)
edges, the remaining graph still contains an m-clique,

and thus our greedy procedure will not terminate before producing at least(k
2

)
m
(m

2

) ≥ k2

m3

pairwise edge-disjoint cliques, giving the required collection F .
Once we have the collection F , note that for each F ∈ F , the probability that the induced

subgraph of G on F is isomorphic to H is at least 2−(m2 ), and the events corresponding to distinct
members F are mutually independent (as the sets F are nearly disjoint). Therefore, the probability
that none of these induced subgraphs is a copy of H is at most the quantity in (6).

As there are
(n
k

)
subsets of cardinality k of V , it follows that if(

n

k

)
exp{− k2

m32(m2 )
} < 1,

then with positive probability every subset of k vertices of G contains an induced copy of H. An
easy computation shows that for k =

√
n and n = 22m2

the above inequality holds, implying the
assertion of the lemma. 2

Proof of Theorem 6.2: Given H, let G be as in Lemma 6.3. By Theorem 6.1, for every injective
function f from V (G) to V (F ) there is a set of at least

√
n vertices of G mapped by f to a clique

or to an independent set, and by Lemma 6.3 this set contains an induced copy of H, completing the
proof. 2

7 Induced acyclic subgraphs in sparse bipartite graphs

All graphs considered in this section are finite and simple. M. Albertson and R. Haas [2] raised the
following conjecture.

Conjecture 7.1 Every planar, bipartite graph on n vertices contains an induced acyclic subgraph
on at least 5n/8 vertices.

Motivated by this conjecture, we consider induced acyclic subgraphs in sparse bipartite graphs. The
main result here is that every bipartite graph on n vertices with average degree at most d ( ≥ 1)
contains an induced acyclic subgraph on at least (1/2 + e−bd

2
)n vertices, for some absolute constant

b > 0. On the other hand, there exist bipartite graphs on n vertices and average degree at most
d ( ≥ 1) that contain no induced acyclic subgraphs on at least (1/2+e−b

′√d)n vertices. In particular,

11



as the average degree of any planar bipartite graph is at most 4, there is an absolute positive constant
δ such that every planar, bipartite graph on n vertices contains an induced acyclic subgraph on at
least (1/2+δ)n vertices. This provides some (weak but nontrivial) result on the question of Albertson
and Haas mentioned above. Of course, there may well be some better ways (which we failed to find)
to apply the planarity in order to try and prove Conjecture 7.1, but we believe that the results on
sparse bipartite graphs are of independent interest.

For a graph G = (V,E), let a(G) denote the maximum number of vertices in an induced acyclic
subgraph of it. In [6] the authors determine precisely, for every n and m, the minimum possible
value of a(G) where G ranges over all graphs on n vertices and m edges. In particular, it follows
that if G has n vertices and its average degree is at most d ≥ 2, then a(G) ≥ 2n

d+1 . This is tight for
all integers n, d where d ≥ 2 and d+ 1 divides n, as shown by a disjoint union of cliques of size d+ 1.

If the graph G = (V,E) with |V | = n and |E| ≤ 1
2dn is bipartite, then one can obtain a better

lower bound for a(G), since, trivially, a(G) ≥ n/2. In this section we show that this trivial estimate
can be slightly improved as a function of the average degree.

Theorem 7.2 There exists an absolute positive constant b such that for every bipartite graph G =
(V,E) with n vertices and average degree at most d ( ≥ 1),

a(G) ≥ (
1
2

+ e−bd
2
)n.

The exponential dependence on d cannot be replaced by a polynomial one, as shown in the
following result.

Theorem 7.3 There exists an absolute constant b′ > 0 such that for every d ≥ 1 and all sufficiently
large n there exists a bipartite graph with n vertices and average degree at most d such that

a(G) ≤ (
1
2

+
1

eb′
√
d
)n.

The proofs of both theorems are probabilistic and are presented in the following two subsections.
The final short subsection contains some related remarks.

7.1 Large acyclic subgraphs

In this subsection we prove Theorem 7.2. We make no attempt to optimize the various constants in
our estimates. Throughout the section, let G = (V,E) be a bipartite graph with classes of vertices
A and B, where |A| = p, |B| = q. Without loss of generality assume that p ≥ q, let n = p+ q be the
total number of vertices of G, and suppose that G contains at most dp edges (this certainly holds if
the average degree of G is at most d.) Let deg(v) denote the degree of the vertex v of G.

Lemma 7.4 There exists an integer x ≤ e4d2
such that

|{a ∈ A : deg(a) ≥ x}| < p

4dx
.
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Proof: Otherwise

dp ≥ |E| =
∑
x≥1

|{a ∈ A : deg(a) ≥ x}| ≥
be4d2c∑
x=1

p

4dx
> dp,

contradiction. 2

Lemma 7.5 The size of the maximum induced acyclic subgraph of G satisfies

a(G) ≥ q

dx
+ p− p

4dx
− p

2dx
= p+

1
4dx

(4q − 3p). (7)

Proof: Let S be a random subset of B obtained by picking each member of B, randomly and
independently, to be a member of S with probability 1

dx , where x satisfies the conclusion of Lemma
7.4. Let T be the set of all vertices in A whose degrees are smaller than x, which have at most one
neighbor in S. Then S ∪ T spans an acyclic subgraph of G. To complete the proof, it suffices to
show that the expected size of S ∪ T is at least the right hand side of (7).
To do so note, first, that the expected size of S is q

dx . The number of vertices in A with degrees at
least x is, by Lemma 7.4 and the choice of x, at most p

4dx . It thus remains to prove the following.
Claim: The expected number of vertices a ∈ A that satisfy deg(a) < x and have at least two
neighbors in S is at most p

2dx .
Proof (of claim): This expectation does not exceed

∑
a∈A,deg(a)<x

(deg(a)
2

)
d2x2

≤ 1
2d2x2

∑
a∈A,deg(a)<x

deg(a)2 ≤ x

2d2x2

∑
a∈A,deg(a)<x

deg(a) ≤ 1
2d2x

dp =
p

2dx
.

This completes the proof of the claim. 2

The assertion of the claim, the paragraph preceding it, and linearity of expectation, complete the
proof of the lemma. 2

We can now prove Theorem 7.2 in the following more precise form (in which the constants 16 and 4
can be improved).

Proposition 7.6 For every bipartite graph G = (V,E) with n vertices and average degree at most
d ( ≥ 1),

a(G) ≥ (
1
2

+
1

16de4d2 )n.

Proof: If, say, 4q ≤ 7p/2, then, trivially,

a(G) ≥ |A| = p ≥ 16
30
p+

14
30
· 8

7
q = (

1
2

+
1
30

)n,

implying the desired estimate, as
1
30

>
1

16de4d2 .

Otherwise, by Lemma 7.5,

a(G) ≥ p+
1

4dx
(4q − 3p) ≥ p+

p

8dx
≥ p+

p

8de4d2 ≥ (
1
2

+
1

16de4d2 )n.

2
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7.2 Examples with no large acyclic subgraphs

In this subsection we prove Theorem 7.3. For convenience, we omit all floor and ceiling signs whenever
these are not crucial. We need the following somewhat technical lemma.

Lemma 7.7 Let m, i be integers, put c = 64 and suppose 1 ≤ i ≤ 1
2 log2m, and ci <

√
m. Then

there is a bipartite graph H on the classes of vertices X and Y , where |X| = m and |Y | = m
2i−1 , with

at most 4cim edges, such that for every X ′ ⊂ X and Y ′ ⊂ Y satisfying |X ′| = m
2i+1 and |Y ′| = m

2i
,

the subgraph of H induced on X ′∪Y ′ contains at least cim
2i+2 ( > |X ′|+ |Y ′|) edges (and thus contains

a cycle).

Proof: Let H be the random graph obtained by picking each pair xy with x ∈ X, y ∈ Y to be an
edge, randomly and independently, with probability ci2i

m (note that by assumption this number is
at most 1). The expected number of edges of H is ci2i

m |X| · |Y | = 2cim and thus, by the standard
estimates for binomial distributions (c.f., e.g., [9], Appendix A), with probability at least, say, 0.9,
the number of edges of H is at most 4cim.
Fix two subsets X ′ ⊂ X and Y ′ ⊂ Y satisfying |X ′| = m

2i+1 and |Y ′| = m
2i

. The expected number of
edges in the induced subgraph of H on X ′ ∪ Y ′ is

ci2i

m
|X ′| · |Y ′| = cim

2i+1
.

By Theorem A.1.13 in Appendix A of [9], it follows that the probability that there are less than half
of that many edges in this induced subgraph is at most

e
− cim

8·2i+1 = e
− cim

2i+4 .

The number of possible sets X ′ is at most(
m

m/2i+1

)
≤ 2H( 1

2i+1 )m ≤ 2
2i+2

2i+1m,

where here H(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function, and we used the
fact that for every 0 < x ≤ 1/2, H(x) ≤ −2x log2 x.
The number of possible sets Y ′ is clearly at most

2|Y | = 2
m

2i−1 .

It follows that the probability that there are subsets X ′ and Y ′ that violate the conclusion of the
lemma is at most

2
2i+6

2i+1me
− cim

2i+4 = 2
2i+6−8i log2 e

2i+1 m
,

and this quantity is smaller than, say, 0.1.
Therefore, with positive probability H satisfies all the required properties, completing the proof.

2

Using the lemma, we next prove the following statement that implies the assertion of Theorem
7.3.
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Proposition 7.8 For every integer s ≥ 3 and every integer m > m0(s) which is divisible by 2s−2

there is a bipartite graph G with m vertices in each color class and with at most 4cs2m edges which
satisfies

a(G) ≤ m+
m

2s−2
.

Proof: Let A2, A3, . . . , As, B2, B3, . . . , Bs be pairwise disjoint sets, where for each i, 2 ≤ i ≤ s− 1,
|Ai| = |Bi| = m

2i−1 , and where |As| = |Bs| = m
2s−2 . Put A = ∪si=2Ai, B = ∪si=2Bi and note that

|A| = |B| = m. Let H be a bipartite graph on the classes of vertices A and B whose set of edges is
defined as follows.

• For each i, 2 ≤ i ≤ s − 1, let Hi be a copy of the graph H of Lemma 7.7, where the vertices
of A play the role of those in X (in an arbitrary order) and the vertices of Bi plays the role of
those in Y (in an arbitrary order). Let Ei denote the set of all edges of Hi.

• Similarly, for each i as above, let H ′i be a copy of the graph H of Lemma 7.7, obtained by
substituting the vertices of B for those in X and the vertices of Ai for those in Y . Let E′i
denote the set of edges of H ′i.

• Finally, let H ′ be a copy of the graph of Lemma 7.7 with i = 1, where here A and B play the
roles of X and Y , and let E′ denote the set of edges of H ′.

The set of edges E of H is simply the union of all sets above, that is: E = E′ ∪s−1
i=2 (Ei ∪ E′i).

The number of edges of H clearly satisfies

|E| ≤ |E′|+
s−1∑
i=2

(|Ei|+ |E′i|) ≤ 4cm+ 2
s−1∑
i=2

4cim ≤ 4cs2m.

Let S be a set of vertices of H, and suppose the induced subgraph of H on S is acyclic. To
complete the proof we have to show that |S| ≤ m + m

2s−2 . Without loss of generality suppose that
|S ∩ A| ≤ |S ∩ B|. If |S ∩ A| ≤ m

2s−2 , then the desired estimate is trivial, as |S ∩ B| ≤ |B| = m.
Otherwise we show that in fact |S| ≤ m. Indeed, if |S ∩ A| ≥ m/4 then |S ∩ B| ≤ m/2 (since
otherwise the induced subgraph of H ′ on S contains a cycle, and hence so does the induced subgraph
of H on S). However, in this case |S| ≤ 2|S ∩B| ≤ m, as claimed. Therefore, we may assume that

m

2s−2
< |S ∩A| < m

4
.

Let i be an integer so that
m

2i+1
≤ |S ∩A| ≤ m

2i
.

Then 2 ≤ i ≤ s − 2. We claim that in this case |S ∩ Bi| ≤ m
2i

. To see this note that otherwise the
induced subgraph of Hi on S contains a cycle, and hence so does the induced subgraph of H on S.
Therefore, in this case |B \S| ≥ m

2i
≥ |S ∩A|, implying that |S| ≤ m in this case too, and completing

the proof. 2

By the last proposition, for every d ≥ 9 · 256, and all sufficiently large n divisible by 2b
√
d

16
c−1

there is a bipartite graph G on n vertices with average degree at most d, for which

a(G) ≤ 1
2
n+

n

2b
√
d

16
c−1

.

This clearly implies the assertion of Theorem 7.3, for an appropriately chosen constant b′.
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7.3 Remarks

• The estimate in Theorem 7.2 can be easily improved for regular graphs. In [7] it is shown that
for every d-regular bipartite graph G with n vertices

a(G) ≥ 1
2
n+

n

2(d− 1)2
.

Theorem 7.3 shows that such an estimate does not hold for non-regular bipartite graphs with
average degree d.

• It will be interesting to close the gap between the bounds in Theorems 7.2 and 7.3.

8 The graph of diameters of a three-dimensional point set

The Diameter graph D(X) of a finite set of points X in R3 is the graph whose vertices are the points
of X, where two are adjacent if and only if their distance is the diameter of X. It is well known that
any such graph is 4-colorable, as proved by Eggleston [20] and Grünbaum [25], in response to a well
known question suggested by Borsuk [14] whether any set in Rn can be partitioned into n + 1 sets
of smaller diameter.

Peter Brass [15] suggested that a stronger result may hold for any finite set of points X in R3.
Namely, he asked if it is true that D(X) can always be colored properly by 4 colors so that two of
the color classes are of size 1. This is partially supported by the known result that any two odd
cycles in D(X) have a common vertex [19]. A weaker conjecture he suggested is that there exists an
absolute constant c such that for every finite set of points X in R3 one can delete at most c points
from D(X) so that the resulting graph becomes bipartite. In this section we show that even this
weaker conjecture is false.

Theorem 8.1 For every positive integer s there is a finite set of points X = Xs in R3 that cannot
be partitioned into three sets, A,B and C such that A is of size at most s and the diameter of each
of the sets B and C is strictly smaller than that of X.

To prove the theorem we construct appropriate finite sets of points in R3 whose diameter graphs are
related to the (abstract) graphs constructed in [39].
Proof: Let S0 = T0 be a set of 2s + 1 points forming the vertices of a regular 2s + 1-gon in the
xy-plane, where the points lie on a circle centered at the origin and the diameter of S0 is 1. Fix a
small ε > 0, and let

Ti = (1−
(
i+ 1

2

)
ε)S0,

where 0 ≤ i ≤ k. It is not difficult to check that the maximum distance between a point in Ti and a
point in Tj is

1−
(i+1

2

)
+
(j+1

2

)
2

ε+O(ε2). (8)

For 1 ≤ i ≤ k, let Si be a translate of Ti, where Si lies on a plane parallel to the xy-plane at height
bi
√
ε for each odd i, and at height −bi

√
ε for each even i, where the numbers bi are chosen to be
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positive and such that the maximum distance between a point of Si and a point of Si−1 is precisely
1. A simple computation based on (8) implies that bi = d i2e+O(ε) for each i. It thus follows that the
maximum square of a distance between a point in Si and a point in Sj , where i and j have different
parities, is

(1−
(i+1

2

)
+
(j+1

2

)
2

ε+O(ε2))2 + ((d i
2
e+ d j

2
e)
√
ε+O(ε3/2))2

= 1− (i− j)2 − 1
4

ε+O(ε2).

This is 1, by the choice of the numbers bi, if |i − j| = 1, and, assuming ε is sufficiently small, is
strictly smaller than 1 if |i− j| > 1. If i ≡ j (mod 2) then, easily, the maximum distance between a
point of Si and a point of Sj is smaller than 1.

Suppose, now, that k ≥ s, and let X = Xk,s = ∪ki=0Si. By the discussion above, the diameter of
X is 1. The graph D(X) is the following graph. Its vertices are the (k + 1)(2s+ 1) points

{a(i)
j : 0 ≤ i ≤ k, 0 ≤ j ≤ 2s},

where the points {a(i)
j : 0 ≤ j ≤ 2s} denote the points of Si. The lower indices are chosen such that

the points a(0)
0 , a

(0)
1 , . . . , a

(0)
2s form a cycle in D(X), in this order. Each set {a(i)

j : 0 ≤ j ≤ 2s}, for

i ≥ 1, is an independent set, and a
(i)
j is adjacent to a(i−1)

j−1 and to a(i−1)
j+1 , where the lower indices are

computed modulo 2s+ 1.
Since k ≥ s, the above graph contains the following 2s+ 1 odd cycles:

Cj = a
(0)
j , a

(1)
j+1, a

(2)
j+2, . . . , a

(s)
j+s, a

(s−1)
j+s+1, a

(s−2)
j+s+2, . . . , a

(0)
j+2s, a

(0)
j+2s+1 = a

(0)
j ,

where the lower indices are computed modulo 2s + 1. Moreover, no vertex lies in more than two
of the cycles Cj , (0 ≤ j ≤ 2s). It follows that if we omit an arbitrary set of at most s vertices of
the graph, at least one of the odd cycles Cj remains. Therefore, one cannot omit s vertices and
transform D(X) into a bipartite graph, completing the proof of the theorem. 2

9 On ranks of perturbations of identity matrices

The main result of this section is motivated by a question of Moses Charikar concerning the maximum
possible number of nearly orthogonal unit vectors in the d-dimensional Euclidean space. Although it
seems that a related result can be obtained by a different technique, based on the linear programming
method applied in Coding Theory, the result here applies to a more general situation, as it does not
assume that the matrices considered are positive semi-definite, and the proof is simpler. We first
describe the combinatorial result, and then comment on its relevance to the Johnson-Lindenstrauss
Lemma [30].

Lemma 9.1 Let A = (ai,j) be an n by n real, symmetric matrix with ai,i = 1 for all i and |ai,j | ≤ ε
for all i 6= j. If the rank of A is d, then

d ≥ n

1 + (n− 1)ε2
.

In particular, if ε ≤ 1√
n

then d ≥ n/2.
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Proof: Let λ1, . . . , λn denote the eigenvalues of A, then their sum is the trace of A, which is n,
and at most d of them are nonzero. Thus, by Cauchy-Schwartz,

∑n
i=1 λ

2
i ≥ d(n/d)2 = n2/d. On

the other hand, this sum is the trace of AtA, which is precisely
∑
i,j a

2
i,j ≤ n + n(n − 1)ε2. Hence

n+ n(n− 1)ε2 ≥ n2/d, implying the desired result. 2

Lemma 9.2 Let B = (bi,j) be an n by n matrix of rank d, and let P (x) be an arbitrary polynomial
of degree k. Then the rank of the n by n matrix (P (bi,j)) is at most

(k+d
k

)
. Moreover, if P (x) = xk

then the rank of (P (bi,j)) is at most
(k+d−1

k

)
.

Proof: Let v1 = (v1,j)nj=1,v2 = (v2,j)nj=1, . . . ,vd = (vd,j)nj=1 be a basis of the row-space of B. Then
the vectors (vk1

1,j · v
k2
2,j · · · v

kd
d,j)

n
j=1, where k1, k2, . . . , kd range over all non-negative integers whose sum

is at most k, span the rows of the matrix (P (bi,j)). In case P (x) = xk it suffices to take all these
vectors corresponding to k1, k2, . . . , kd whose sum is precisely k. 2

Theorem 9.3 Let B be an n by n real matrix with bi,i = 1 for all i and |bi,j | ≤ ε for all i 6= j. If
the rank of B is d, and 1√

n
≤ ε < 1/2, then

d ≥ Ω(
1

ε2 log(1/ε)
log n).

Proof: We may and will assume that B is symmetric, since otherwise we simply apply the result to
(B + Bt)/2 whose rank is at most twice the rank of B. If ε ≤ 1/nδ for some fixed δ > 0, the result
follows by applying Lemma 9.1 to a 1

ε2
by 1

ε2
submatrix of B. Thus we may assume that ε ≥ 1/nδ

for some fixed, small δ > 0. To simplify the presentation we omit all ceiling signs. Put k = logn
2 log(1/ε)

and note that by Lemma 9.2 the rank of the n by n matrix (bki,j) is at most
(d+k
k

)
≤ ( e(k+d)

k )k. On
the other hand, by Lemma 9.1, the rank of this matrix is at least n/2. Therefore

log n
2 log(1/ε)

log(
e(d+ logn

2 log(1/ε))
logn

2 log(1/ε)

) ≥ log(n/2),

implying that

d ≥ (1 + o(1))
log n

2e log(1/ε)
(

1
ε2
− e),

where the o(1) term tends to zero as δ tends to zero. This completing the proof. 2

Remarks:

• The estimate in Theorem 9.3 is essentially optimal when ε is 1 over some small power of n, by
known constructions of error-correcting codes.

• The Johnson-Lindenstraus Lemma, proved in [30], asserts that for any ε > 0, any set A of n
points in an Euclidean space can be embedded in an Euclidean space of dimension k = c(ε) logn
with distortion at most ε. That is, there is a mapping f : A 7→ Rk such that for any a, b ∈ A,
the distance between f(a) and f(b) is at least the distance between a and b, and at most that
distance multiplied by 1 + ε. The proof gives that c(ε) ≤ O( 1

ε2
). Theorem 9.3 shows that this
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is nearly tight: c(ε) must be at least Ω( 1
ε2 log(1/ε)

), even for embedding the set of points of a
simplex. Indeed, if we have n + 1 points in Rk, and the distance between any pair of distinct
points among them is at least 1 and at most 1 + ε, we can put one of the points, say P0, at
the origin, and shift all other points by at most ε making sure that their distance from P0 is
exactly 1. By the triangle inequality the distance between any pair of the shifted points is
still 1 + O(ε). Therefore, if vi is the k-dimensional vector representing the i-th point, then
the matrix C = (vti · vj) is an n by n matrix with all diagonal entries being 1, and all other
entries being 1/2 + O(ε). Moreover, the rank of this matrix is at most k. Therefore, the rank
of B = 2C − J , where J is the all 1 n by n matrix, is at most k + 1. By Theorem 9.3 this
rank is at least Ω( 1

ε2 log(1/ε)
log n), supplying the required lower bound for the dimension k.
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