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Abstract

We consider the problem of locating a facility on a network, represented by a graph. A set of
strategic agents have different ideal locations for the facility; the cost of an agent is the distance
between its ideal location and the facility. A mechanism maps the locations reported by the
agents to the location of the facility. We wish to design mechanisms that are strategyproof, in
the sense that agents can never benefit by lying, and at the same time provide a small approxi-
mation ratio with respect to the minimax measure. We design a novel “hybrid” strategyproof
randomized mechanism that provides a tight approximation ratio of 3/2 when the network is
a circle (known as a ring in the case of computer networks). Furthermore, we show that no
randomized SP mechanism can provide an approximation ratio better than 2− o(1) even when
the network is a tree, thereby matching a trivial upper bound of two.

1 Introduction

In facility location problems one must locate a facility so as to serve a set of agents. Each choice
of location for the facility has a cost (also known as effect) with respect to each agent. In this
context, a mechanism (or social choice function, or location rule) receives the locations of the
agents as input, and outputs the facility location.

Mechanisms are often expected to optimize some quantitative measure; two such measures
have been prominently featured in the operations research literature (see, e.g., [9]). Under the
intuitive minisum measure the goal is to minimize the sum of the costs of the agents, thereby
maximizing efficiency. In this paper, however, we seek equitable solutions. Marsh and Schilling [13]
list 20 different measures of equity that have been employed in the facility location literature. The
“earliest and most frequently used” ([13], p.6) measure is the minimax, where the best location
is one that minimizes the maximum cost of any agent. This measure has been suggested as early
as 1965 [6], and is a paradigmatic example of the Rawlsian principle, which seeks to improve the
situation of the members of society that are worst-off [16]. The literature includes studies that
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argue for the equitability of the minimax measure in the context of public services [8], and, in
particular, fire station locations [17].

A natural assumption regarding the preferences of the agents is that they are single peaked,
that is, each agent has an ideal location (or peak), and the “closer” the facility is to an agent’s
ideal location the lower is the agent’s cost [3]. This setting has been extensively studied, especially
by social choice theorists (as it easily lends itself to social choice interpretation, e.g., in terms of
elections where the locations correspond to political points of view). A significant body of literature,
starting with the work of Moulin [14], rigorously studies the game theoretic aspects of this setting.
This line of work seeks strategyproof (SP) mechanisms, in the sense that an agent cannot benefit
by misreporting its ideal location, regardless of the reports of the other agents; in other words,
reporting truthfully must be a dominant strategy.

We will be particularly interested in the setup of Schummer and Vohra [19], where the agents
are located on a network that is represented as a graph. The cost of an agent in their work is
just the length of the shortest path between the agent’s ideal location and the facility location.
This abstract setting has many applications (e.g., traffic network); our running example will be
telecommunications networks such as a local computer network or the Internet. In this case, the
agents are the network users or service providers, and the facility can be, e.g., a filesharing server
or a router. This interpretation motivates attention to specific, common network topologies such as
tree networks (also known as hierarchical networks), star networks (which are, graph-theoretically
speaking, a special case of trees), and ring networks. Interestingly, in computer networks an agent’s
perceived network location can be easily manipulated, for example by generating a false IP address,
rerouting incoming and outgoing communication, etc.

Schummer and Vohra give a characterization of the SP mechanisms when the underlying network
is a tree. Furthermore, they demonstrate that if the network contains a cycle then any SP and onto
mechanism is almost dictatorial, in the sense that one fixed agent dictates the location of the facility.
This result is analogous to the celebrated Gibbard-Satterthwaite impossibility theorem [5, 18], but
holds for the case where the preferences of the agents are restricted by the topology of the network.
It follows from the results of Schummer and Vohra (but was also previously known) that when the
network is a tree then the minisum can be implemented by an SP mechanism. In contrast, there is
no SP mechanism that implements the minimax (i.e., always selects a solution that minimizes the
maximum cost) under essentially any nontrivial network topology.

In this paper we ask whether the minimax can be well approximated by an SP mechanism,
where approximation is defined in the usual sense by looking at the worst-case ratio between the
maximum cost of the mechanism’s solution and the maximum cost of the optimal solution. We
note that by resorting to approximation we may lose some of the axiomatic properties that make
the minimax appealing, e.g., Pareto optimality.1 However, in some systems the performance is
commonly quantified by the minimax measure; this is in particular true in telecommunications
networks where arguably the prominent performance measure is the maximum network delay, that
is, the maximum time it takes a bit to travel from one node of the network to another (here the
distances in the graph correspond to network congestion). Therefore, in some settings approximat-
ing the minimax while guaranteeing strategyproofness implies optimizing performance in the face
of strategic behavior.

As it turns out, our answers are straightforward when restricted to deterministic mechanisms,
1The minimax can be adapted to satisfy Pareto optimality by combining it in a multiobjective model with an

efficiency objective [13].
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but become more intricate when randomization is allowed. We believe that the consideration of
randomized mechanisms in the setting of Schummer and Vohra [19] is one of our main conceptual
contributions.

Our results. We first observe that even a dictatorship gives us a deterministic SP 2-approximation
mechanism. Moreover, this bound is tight with respect to deterministic mechanisms, even if the
network is a line.

In Section 3 we deal with randomized mechanisms for the case where the network is a circle. We
present a mechanism that works by combining two mechanisms: one is applied when all the agents
are located on one semicircle, whereas the other is applied when the agents are not located on one
semicircle. We show that this mechanism is an SP 3/2-approximation mechanism for the minimax
when the network is a circle. This result matches a lower bound of 3/2. Although the theorem’s
proof is quite lengthy, we suggest that the truly striking aspect of this result is the mechanism
itself and its strategyproofness. Indeed, the mechanism seems to be a coarse hybridization of
two mechanisms, where the combination is required for achieving the desired approximation ratio.
Although each of the two mechanisms is SP in its own right, it seems to us quite extraordinary
that the combined mechanism is SP as well.

In Section 4 we establish that, in contrast to circles, if the network is a tree then randomization
cannot significantly help us. Indeed, even though we show that there is a randomized SP mechanism
with an approximation ratio of 2 − 2/(n + 2) (where n is the number of agents), we establish
the following lower bound: for every n there exists a tree network such that no randomized SP
mechanism can have an approximation ratio that is smaller than 2− o(1) for the minimax.

Additional related work. Our work builds on a previous paper by Procaccia and Tennen-
holtz [15]. The basic setting of Procaccia and Tennenholtz is a very special case of ours, where the
network is, very simply, a line. In this setting, if one wishes to minimize the maximum cost then
the best deterministic SP mechanism has an approximation ratio of 2, whereas the best randomized
SP mechanism has a ratio of 3/2. Procaccia and Tennenholtz focus on two extensions of the basic
setting: location of two facilities on a line (where the cost of an agent is its distance to the nearest
facility), and location of one facility on a line when each agent controls multiple points. Tighter
results for these two extensions have been found by Lu et al. [12]. All the foregoing results by
Procaccia and Tennenholtz and by Lu et al. hold only when the agents are located on a line, and
they do not consider more general networks. In a very recent paper that is partly motivated by
a draft of this paper, Lu et al. [11] provide results with respect to locating two facilities and the
minisum measure; in particular they give a deterministic SP mechanism for locating two facilities
on a circle that yields an O(n)-approximation for the minisum, thereby matching an Ω(n) lower
bound. They also provide a randomized SP 4-approximation 2-facility mechanism for the minisum
in any metric space.

A significant body of work (see, e.g., [7, 10, 2, 4]) deals with a model practically identical to
ours, and considers several variations on the following question: how bad can a Condorcet point
be in terms of its sum of costs? A Condorcet point is a location in a network that is preferred by
more than half the agents to any other location. The quality of the Condorcet point is measured
by bounding the ratio between its sum of costs and the sum of costs of the optimal location. In
this respect the results are reminiscent of approximation (for the minisum), but the approach is
descriptive rather than algorithmic. In addition, this line of work does not directly deal with
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incentives.

2 Model and Deterministic Mechanisms

We use the model of Schummer and Vohra [19]. Let N = {1, . . . , n} be the set of agents. The
network is represented by a graph G, formalized as follows. The graph is a closed, connected subset
of Euclidean space G ⊂ Rk. The graph is composed of a finite number of closed curves of finite
length, known as the edges. The extremities of the curves are known as vertices. The agents and
the facility may be located anywhere on G.

The reader might feel that the traditional, discrete model of graphs is more appropriate. In
addition, other related papers (e.g., [10]) consider a similar continuous model, but allow the agents
to be located only on the vertices (whereas the facility can be located anywhere). Crucially, all our
results, or slight variations thereof, hold under both these alternative models as well.

The distance between two points x, y ∈ G, denoted d(x, y), is the length of the minimum-length
path between x and y, where a path is a minimal connected subset of G that contains x and y. The
center of the path between x and y is denoted cen(x, y), that is, it is a point z on the path such
that d(x, z) = d(y, z). We will also use this notation to denote the center of an interval in R.

A cycle in G is defined to be the union of two paths such that their intersection is equal to the
set of both their endpoints. A graph that does not contain cycles is called a tree.

We shall be especially interested in the graph that is a single cycle; we refer to such a graph as a
circle. Given that G is a circle, we denote the shorter open arc between x, y ∈ G by (x, y), and the
shorter closed arc between x and y by [x, y].2 For every x ∈ G, we denote by x̂ the antipodal point
of x on G, that is, the diametrically opposite point. For two points x, y ∈ G, and in the context of
an arc of length less than half the circumference of G, we denote the “clockwise operator” by �,
and its strong version by �; specifically, x � y means that x is clockwise of y on the circle. We
believe that this operator is completely intuitive and requires no formal definition, but in case of
need the reader may find such a definition in [19].

Each agent i ∈ N has an (ideal) location xi ∈ G. The collection x = 〈x1, . . . , xn〉 ∈ Gn is
referred to as the location profile.

A deterministic mechanism is a function f : Gn → G that maps the reported locations of the
agents to the location of a facility. When the facility is located at y ∈ G, the cost of agent i is
simply the distance between xi and y:

cost(y, xi) = d(xi, y) .

A randomized mechanism is a function f : Gn → ∆(G), i.e., it maps location profiles to
probability distributions overG (which randomly designate the location of the facility). If f(x) = P ,
where P is a probability distribution over G, then the cost of agent i is the expected distance from
xi,

cost(P, xi) = Ey∼P [d(xi, y)] .

A mechanism is said to be strategyproof (SP) if agents can never benefit by lying; formally, for
every x ∈ Gn, i ∈ N , and deviation x′i ∈ G, it holds that cost(f(x′i,x−i), xi) ≥ cost(f(x), xi), where
x−i = 〈x1, . . . , xi−1, xi+1, . . . , xn〉 is the vector of locations excluding xi.

2If x and y are antipodal these arcs are ambiguously defined, and when this is problematic we specify to which
arc we are referring.
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We are interested in optimizing the minimax, that is, minimizing the maximum cost. The
maximum cost of y with respect to x is mc(y,x) = maxi∈N cost(y, xi); the maximum cost of a
distribution P with respect to x is naturally defined as mc(P,x) = Ey∼P [mc(y,x)].

Deterministic mechanisms. We note that the problem of designing an optimal SP mechanism is
very simple with respect to deterministic mechanisms. Consider the mechanism given by f(x) = x1

for all x ∈ Gn, that is, a dictatorship of agent 1. This mechanism is clearly SP. Crucially, this
mechanism does quite well in terms of the minimax: it provides a 2-approximation. To see this,
given x ∈ Gn, let y be an optimal facility location. Then for all i ∈ N ,

d(x1, xi) ≤ d(x1, y) + d(y, xi) ≤ 2 ·max{d(y, x1), d(y, xi)} ≤ 2 ·mc(y,x) .

On the other hand, a deterministic SP mechanism cannot achieve an approximation ratio better
than two, even if the underlying graph G is a line [15]. Since in a general graph any edge is locally
a line, this lower bound applies to any graph. In other words, dictatorship gives a tight SP upper
bound. In the sequel we shall therefore restrict our attention to randomized mechanisms.

3 Randomized Mechanisms on Circles

We presently consider the case where the graph G is a circle. An important remark is that, even
using randomization, we cannot hope to achieve an SP approximation ratio better than 3/2. Indeed,
Procaccia and Tennenholtz [15] have established that a randomized SP mechanism does not yield
an approximation ratio smaller than 3/2 on a line.

Furthermore, they have provided a straightforward matching SP upper bound of 3/2 on a line
using the Left-Right-Middle (LRM) Mechanism: given x ∈ Gn, with probability 1/4 return the
leftmost agent mini∈N xi, with probability 1/4 return the rightmost agent maxi∈N xi, and with
probability 1/2 return the midpoint of the interval between them, that is,

cen
(

min
i∈N

xi,max
i∈N

xi

)
=

mini∈N xi + maxi∈N xi
2

.

The idea behind the strategyproofness of this mechanism is very simple: an agent can only affect
the outcome of the mechanism by deviating to a location x′i < mini∈N xi or x′i > maxi∈N xi. In
this case, the agent pushes the left or right boundaries away from its location by δ, but in doing
so may push the midpoint towards its own location by δ/2. Since the midpoint is selected with
probability exactly twice that of each of the boundaries, the two terms cancel out.

Of course, when the agents are on a circle, in general it is meaningless to refer to the “leftmost”
or “rightmost” agent. However, since any semicircle can naturally be treated as an interval (in the
sense that there are two extreme agent locations), it is plausible to think of a hybrid mechanism
that uses the LRM mechanism when the agents are located on one semicircle and uses some other
SP mechanism otherwise.

An obvious candidate for an SP mechanism for the case in which the agents are not all on one
semicircle is the Random Point (RP) Mechanism, which chooses a point on the circle uniformly
at random. The RP mechanism is trivially SP and gives an approximation ratio of 7/4 for that
case. To informally see this, observe that the worst approximation ratio is obtained when many
agents are uniformly distributed over slightly more than a semicircle. Assume without loss of
generality that the circumference of the circle is 1. Then, if the mechanism chooses a point outside
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the semicircle (this happens with probability roughly 1/2), the maximum cost is roughly 1/2 since
there is an agent opposite that point on the circle. If the mechanism chooses a point on the
semicircle (this also happens with probability roughly 1/2), the expected cost is roughly 3/8.
Taken together, the expected maximum cost of the mechanism is roughly 7/16 (which is the sum
(1/2) · (1/2) + (1/2) · (3/8)). Obviously, the optimal location is the center of the semicircle, which
provides a maximum cost of roughly 1/4. This gives an approximation ratio of 7/4. Therefore a
hybrid mechanism which uses the LRM mechanism when the agents are located on one semicircle
and uses the RP mechanism otherwise gives an approximation ratio of 7/4.

A priori, it seems that there is no reason to suppose that such hybridizations of two SP mecha-
nisms may result in an SP mechanism. Nevertheless, quite surprisingly, the hybrid mechanism just
proposed is SP.

First observe that under the RP mechanism the expected cost of each agent is exactly 1/4. Thus,
if the agents are not all on one semicircle, so long as this remains the case, no agent can benefit by
deviating. Likewise, it is not difficult to verify that if all agents remain on one semicircle then a
deviation cannot be beneficial (although this fact does not follow directly from the strategyproofness
of the LRM mechanism on a line). The unlikely phenomenon is that an agent cannot benefit from
a deviation even if by deviating it triggers a shift from the RP mechanism to the LRM mechanism
or vice versa.

To see this, we first informally observe that if all the agents are located on one semicircle, no
agent can benefit by deviating in a way that triggers a shift to the RP mechanism. Indeed, it
suffices to show that an agent’s cost under the LRM mechanism cannot exceed 1/4. Note that the
highest cost is obtained when the agents are distributed along exactly one semicircle, in which case
each one of the extreme agents incurs an expected cost of 1/4.

To deal with the opposite direction, it suffices to show that if the agents are not on one semicircle,
an agent i ∈ N deviating in a way that triggers the LRM mechanism will incur a cost of at least
1/4. Let l (for “left”) and r (for “right”) be the two extreme agent locations in the new profile,
where l � r. Note that since the agents were not on one semicircle under the original profile, we
have that xi ∈ (l̂, r̂). Let y = cen(l, r) be the center of the arc (l, r) (see Figure 3). We claim
that d(xi, y) ≥ 1/4. This follows immediately from the fact that d(l̂, y) ≥ 1/4, d(r̂, y) ≥ 1/4, and
xi ∈ (l̂, r̂). Hence, the cost of agent i after the deviation is at least

cost(lrm(x′), xi) =
1
4
· d(xi, l) +

1
4
· d(xi, r) +

1
2
· d(xi, y) ≥ 1

4
· (d(xi, l) + d(xi, r)) +

1
2
· 1

4
≥ 1

4
,

where the last transition follows from the fact that d(xi, l) + d(xi, r) is the length of the long arc
between l and r, therefore the value of this sum is at least 1/2. In conclusion, this hybrid mechanism
is SP and provides an approximation ratio of 7/4.

Can one do better by building on the above ideas? We next propose a more sophisticated mech-
anism which is, like the last mechanism, a hybridization of two mechanisms: the LRM mechanism
when the agents are located on one semicircle, and the Random Center (RC) Mechanism (defined
below) when the agents are not on one semicircle.

Mechanism 1. Given x ∈ Gn:

1. If x is such that the agents are located on one semicircle, i.e., there exist y, z ∈ G such that
for all i ∈ N , xi ∈ [y, z], then we execute the LRM Mechanism on the arc [y, z], treating it as
an interval with the boundaries y < z.

6



2. If x is such that the agents are not located on one semicircle, we execute the Random Center
(RC) Mechanism, defined as follows.

(a) Randomly select a point y ∈ G.
(b) Let x̂i and x̂j be the two antipodal points adjacent to y, that is, x̂i is the first antipodal

point encountered when walking clockwise from y, and x̂j is the first antipodal point
encountered when walking counterclockwise from y.

(c) Return cen(x̂i, x̂j).

An equivalent way of thinking about the RC Mechanism is letting the mechanism choose the
center of an interval between two adjacent antipodal points with probability proportional to the
length of the interval. The RC Mechanism may seem unintuitive; the idea behind it is the observa-
tion that the optimal solution on a circle is the center of the longest arc between any two adjacent
antipodal points.

Some technical comments regarding Mechanism 1 are in order. Regarding the first item, there
may be many choices of y and z such that xi ∈ [y, z] for all i ∈ N , but the LRM Mechanism
is indifferent to the choice. In the context of the second item, it holds that y ∈ [x̂i, x̂j ] by the
assumption that in x the agents are not on one semicircle, i.e., y is on the same arc whose center
we return. Furthermore, the RC mechanism is ambiguously defined when the random point y is an
antipodal point itself, but this happens with probability zero.

The following theorem shows that Mechanism 1 is SP and provides the best possible approxi-
mation ratio.

Theorem 3.1. Assume that G is a circle. Then Mechanism 1 is an SP 3/2-approximation mech-
anism for the minimax.

The nontrivial part of the theorem’s proof is the strategyproofness of the mechanism. Although
the proof is long, it revolves around several basic properties of the RC Mechanism. Very generally
speaking, one of the ideas at the core of the proof is that the locations occupied by the agents in x
are special, but only in the trivial sense that for every i ∈ N the antipodal point x̂i is among the
antipodal points employed by the RC Mechanism. For this reason, the cost of an agent (assuming
that the circumference of the circle is one) under the RC Mechanism is at most 1/4 (Lemma A.5).
A second important idea is that the expected cost of agent agent i under the RC Mechanism
is essentially the same as if the mechanism were choosing uniformly on the circle, except for its
behavior on the arc between the two antipodal points adjacent to xi (Lemma A.4). The detailed
proof is given in Appendix A.

4 Randomized Mechanisms on Trees

In the following we assume that the graph G is a tree. We first observe that randomization allows
us to do slightly better than dictatorship, especially when the number of agents is small. Indeed,
given x ∈ Gn, the center of G with respect to x is a point

y ∈ argminz∈Gmc(z,x)

that optimizes the minimax. It is easy to verify that when G is a tree the center is unique.3

Therefore, we can denote the (unique) center of G with respect to x by cen(G,x).
3This would not be true in a discrete graph model, but this issue can still be easily circumvented.
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We consider the following mechanism: given x ∈ Gn, the distribution on the returned location
gives probability 1/(n + 2) to xi for each i ∈ N , and probability 2/(n + 2) to cen(G,x). The fact
that the mechanism is SP follows from the fact that when agent i deviates from xi to x′i, it holds
that

|d(xi, cen(G,x))− d(xi, cen(G,x′))| ≤ d(xi, x′i)
2

,

and therefore, denoting the above mechanism by f ,

cost(f(x′), xi)− cost(f(x), xi) ≥
1
n
· d(xi, x′i)−

2
n
· d(x, x′i)

2
= 0 .

The approximation ratio of the mechanism satisfies

mc(f(x),x)
OPT

≤
2

n+2 ·OPT + n
n+2 · 2 ·OPT

OPT
= 2− 2

n+ 2
.

Despite this small improvement over dictatorship, we shall demonstrate that we cannot do
significantly better. In other words, our final major result asserts that an SP mechanism cannot
achieve an approximation ratio that is bounded away from two for the minimax, even on trees.

Theorem 4.1. Let N = {1, . . . , n}. Then there exists a tree G such that no SP randomized
mechanism can have an approximation ratio that is smaller than 2−O

(
1

2
√

log n

)
for the minimax.

The proof of the theorem is given in Appendix B.

5 Discussion

The results presented above are tight and rather exhaustive4 as long as one is interested in optimiz-
ing the minimax. However, as noted in the introduction the minisum is an equally interesting and
prominent measure. In an expanded version of this paper we investigate the minisum as well [1].
We show that selecting the ideal location of one of the agents uniformly at random provides an
approximation ratio of 2 − 2/n for the minisum. This mechanism is clearly SP, but we moreover
establish that, when the network is a circle, it possesses a stronger game theoretic property called
group strategyproofness: even a coalition of agents cannot benefit by jointly misreporting their lo-
cations. Specifically, there must be at least one member of the coalition that does not gain from the
deviation. This last result is of theoretical interest although it is not as meaningful as our minimax
results from a mechanism design point of view.

Future work can take several directions. First, we note that that our Mechanism 1 is not group
SP, even when the agents are assumed not to be located on one semicircle before and after the
deviation (that is, the RC Mechanism is used in both cases). The counterexample is due to Dror
Shemesh and Omri Sivan.5 Is there a group SP 3/2-approximation mechanism on a circle?

Second, Procaccia and Tennenholtz [15] show that when two facilities must be located, and
the cost of each agent is its distance to the nearest facility, then providing SP approximations for

4One could consider, though, restricted graph topologies (e.g., trees with bounded branching factor) that circum-
vent Theorem 4.1 and possibly allow for additional positive results.

5Consider an instance with 3 agents located at a distance of 0.05, 0.5 and 0.75 from some point on a circle with
circumference 1. The costs under truthtelling are 0.2475, 0.2475 and 0.21, respectively. Yet, if the first and second
agents deviate to 0.1 and 0.45, respectively, the newly incurred cost by each one of them is reduced to 0.2425.
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the minisum and minimax becomes much more complicated even on a line. As mentioned in the
introduction, Lu et al. [11] provide some results for this setting with respect to the minisum and
general metric spaces or circles. It remains open to tighten the results of Lu et al., extend them to
the minimax, and most importantly generalize them to the case of k facilities for k > 2.

Third, recall that many measures were featured in the literature. For example, minimizing
the sum of squared costs is known to be the unique solution that satisfies desirable axiomatic
properties when the graph is a tree [9]. Can our results be generalized in a way that captures
multiple measures? In more detail, Marsh and Schilling [13] provide a framework in which the
different equity measures can be organized; this framework consists of three dimensions. One could
hope for a result that relates feasible SP approximation ratios to the parameters along the different
dimensions.

Fourth, the most interesting, as well as most challenging, question concerns the extension of
the results of Schummer and Vohra [19] to randomized mechanisms, that is, obtaining a charac-
terization of randomized SP mechanisms on a network. Presumably such a characterization would
immediately yield tight bounds on the feasible radnomized SP approximation ratios under any con-
ceivable measure. Since such a characterization would in particular have to capture nonintuitive
mechanisms like Mechanism 1, this goal seems to be very ambitious; the deterministic results of
Schummer and Vohra are already quite intricate!

A Proof of Theorem 3.1

In the proof we assume without loss of generality that the circumference of the circle G is 1. In
addition, we denote the outcome of the LRM Mechanism and the RC Mechanism given x ∈ Gn by
lrm(x) and rc(x), respectively.

Lemma A.1. Mechanism 1 is a 3/2-approximation mechanism for the minimax.

Proof. Assume first that x ∈ Gn is such that not all agents are located on one semicircle. Let α be
the length of the longest arc between two adjacent agents, and assume without loss of generality
that these agents are agents 1 and 2. Since the agents are not located on one semicircle, it holds
that α ≤ 1/2. It can be verified that the optimal facility location is cen(x̂1, x̂2), hence we have
that OPT = (1 − α)/2. The mechanism selects the optimal solution with probability α, and with
probability 1−α selects a solution with maximum cost at most 1/2. Therefore, the approximation
ratio is at most

mc(rc(x),x)
OPT

≤
α · 1−α

2 + (1− α) · 1
2

1−α
2

= 1 + α ≤ 3
2
. (1)

If x is such that all the agents are located on one semicircle, then the LRM mechanism is applied:
we choose the optimal location with probability 1/2, and a location with twice the optimal cost
with probability 1/2, hence the approximation ration is, once again, 3/2.

In order to establish the strategyproofness of Mechanism 1, we must examine four types of lies:
an agent deviating such that before the deviation all the agents were located on one semicircle and
after the deviation they are located on one semicircle—“semicircle to semicircle” (the LRM Mech-
anism is applied to both); not semicircle to semicircle (RC to LRM); semicircle to not semicircle
(LRM to RC); and not semicircle to not semicircle (RC to RC). The semicircle to semicircle case
is relatively straightforward, and we tackle it first.
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xi = r

l

(a) Truthful location profile x.

xi = r

r′l

x′i

α
β

(b) Manipulated location profile x′.

Figure 1: Illustration of the proof of Lemma A.2.

Lemma A.2 (Semicircle to semicircle). Assume that x ∈ Gn is such that the agents are on one
semicircle, and agent i deviates such that in the new location profile x′ the agents are also on one
semicircle. Then

cost(lrm(x), xi) ≤ cost(lrm(x′), xi) .

Proof. Let x1 � x2 � . . . � xn, and denote x1 = l (for “left”) and xn = r (for “right”). Suppose
agent i deviates from xi to x′i, such that the agents are on one semicircle. If (x′i, xi) intersects with
the new semicircle, the proof follows directly from the fact that the LRM Mechanism is SP when
applied to an interval [15].

It is easy to verify that (x′i, xi) may lie in the complement of the new semicircle only if (i) the
deviating agent is r and x′i � l; or (ii) the deviating agent is l and x′i ≺ r. We prove the lemma for
the former case, but note that the latter case is completely analogous.

Indeed, suppose without loss of generality that xi = r and x′i � l. Let r′ be the adjacent agent
to r such that r′ � r. It must hold that x′i � r̂′ (otherwise in the new location profile the agents
are not all on one semicircle). We denote α = d(r, r′), β = d(x′i, l), and γ = d(l, r) (see Figure 1).
From the assumptions of the lemma it follows that γ ≤ 1

2 . The short arc from x′i to xi lies in the
complement of the new semicircle if and only if 1− β − γ ≤ β + γ, that is, β + γ ≥ 1/2.

We first calculate the cost of xi in the location profile x:

cost(lrm(x), xi) =
1
4
· γ +

1
4
· 0 +

1
2
· γ

2
=
γ

2
.

We distinguish between two cases:
Case 1: α ≤ 1 − β − γ. In this case, the cost of the LRM Mechanism in the new location profile
with respect to xi is

cost(lrm(x′), xi) =
1
4
· α+

1
4
· (1− β − γ) +

1
2
·
(
α+

γ − α+ β

2

)
=

1
4

+
α

2
.

It holds that
cost(lrm(x), xi) ≤ cost(lrm(x′), xi)⇔ γ ≤ 1

2
+ α ,

but this holds since γ ≤ 1
2 .

Case 2: α > 1−β−γ. In this case, the cost of the left-middle-right mechanism in the new location
profile with respect to xi is

cost(lrm(x′), xi) =
1
4
· α+

1
4
· (1− β − γ) +

1
2
·
(

1− β − γ +
γ − α+ β

2

)
=

3
4
− β

2
− γ

2
.
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It holds that

cost(lrm(x), xi) ≤ cost(lrm(x′), xi)⇔
γ

2
≤ 3

4
− β

2
− γ

2
⇔ γ ≤ 3

4
− β

2
.

Since γ ≤ 1
2 , it is sufficient to show that 1

2 ≤
3
4 −

β
2 , which holds if and only if β ≤ 1

2 . The last
inequality follows from the fact that all the agents are on one semicircle after the deviation; this
concludes the proof of the lemma.

The other three deviations are more complicated, and their proofs require laying some founda-
tions first. We start with two simple lemmata concerning partitions of intervals on the line, both
of which will prove useful in several points in the sequel. On a circle, the arc between two points
x, y ∈ G such that d(x, y) ≤ 1/2 can be regarded as an interval.

Lemma A.3. Let x, y ∈ [0, 1] ⊂ R. It holds that

d(x, 1/2) ≤ y · d(x, cen(0, y)) + (1− y) · d(x, cen(y, 1)) .

Proof. Assume without loss of generality that x ≤ 1/2. We distinguish between two cases.
Case 1: y/2 ≥ x. In this case,

y · d(x, cen(0, y)) + (1− y) · d(x, cen(y, 1)) = y ·
(y

2
− x
)

+ (1− y) ·
(
y +

1− y
2
− x
)

=
1
2
− x .

Case 2: y/2 < x. We have that

y·d(x, cen(0, y))+(1−y)·d(x, cen(y, 1)) = y·
(
x− y

2

)
+(1−y)·

(
y +

1− y
2
− x
)

=
1
2
−x+(2xy−y2) .

Since y/2 < x, it holds that 2xy > y2, hence 1/2− x+ (2xy − y2) > 1/2− x.

Lemma A.4. Let y1, . . . , ym+1 ∈ [0, 1/2] such that y1 = 0, ym+1 = 1/2. For all i = 1, . . . ,m,
define di = yi+1 − yi. Then

m∑
i=1

di ·
 i−1∑
j=1

dj +
di
2

 =
1
8

.

The intuition behind Lemma A.4 is that choosing the center of each interval with probability
equal to the length of the interval is like randomly choosing a point in [0, 1/2] with probability 1/2.
The expected distance of a random point in [0, 1/2] from 0 is 1/4, multiplying by 1/2 yields 1/8.

Proof of Lemma A.4. By reorganizing the terms, it can be verified that

m∑
i=1

di ·
 i−1∑
j=1

dj +
di
2

 =
(
∑m

i=1 di)
2

2
=

1
8
.

The next lemma implies that under the Random Center Mechanism, the cost of an agent is at
most 1/4. It follows from the two previous lemmata.
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α

β

x̂n

x̂3

Figure 2: Illustration of the proof of Lemma A.5.

Lemma A.5. For all x ∈ Gn such that x is not on one semicircle, and for all i ∈ N ,

cost(rc(x), xi) ≤
1
4

.

Proof. Assume that the locations of the agents satisfy x̂1 � x̂2 · · · � x̂n � x̂1, and that there are
no antipodal points in (x̂i, x̂i+1) for all i ∈ N . Let i ∈ N , and assume without loss of generality
that xi ∈ [x̂1, x̂2]. In addition, let α = d(x̂1, xi) and β = d(xi, x̂2) (see Figure 2).

We wish to calculate the cost of the Random Center Mechanism with respect to agent i. We can
break this cost down into two components: the cost when choosing a point in the arc [x̂1, x̂2] (this
happens with probability α+ β), and the rest of the cost. Notice that xi ∈ [x̂1, x̂2], i.e., the length
of the arc between x̂1 and x̂2 that includes xi is is at most 1/2; this holds by the assumption that
the agents are not on one semicircle. Therefore we can treat [x̂1, x̂2] as an interval. By normalizing
d(x̂1, x̂2), we get from Lemma A.3 that if we partition the arc [x̂1, x̂2] into two arcs of length y and
1 − y and choose the center of each with probability y and 1 − y, respectively, the cost of agent i
can only increase. In particular, this is true when y = α. Hence, we have that

cost(rc(x), xi) ≤ cost(rc(x ∪ {x̂i}), xi) , (2)

where x∪{x̂i} is the profile x with an additional agent at x̂i, that is, an additional antipodal point
at xi. It is sufficient to show that

cost(rc(x ∪ {x̂i}), xi) ≤
1
4
.

The expression cost(rc(x ∪ {x̂i}), xi) is the expected distance from agent i when the center of one
of the arcs

[xi, x̂2], [x̂2, x̂3], [x̂3, x̂4], . . . , [x̂n, x̂1], [x̂1, xi] , (3)

is chosen, where the probability of choosing the center of an arc is its length. In order to make this
explicit, denote di = d(x̂i, x̂i+1) for i = 1, . . . , n− 1, dn = d(x̂n, x̂1). We have

cost(rc(x∪{x̂i}), xi) =
α2

2
+
β2

2
+
i−1∑
j=2

(
dj ·

(
β +

j−1∑
k=2

dk +
dj
2

))
+

n∑
j=i

dj ·
α+

n∑
k=j+1

dk +
dj
2


(4)
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a

(b) Manipulated location profile x′.

Figure 3: Illustration of the proof of Lemma A.6.

We partition the expression in the right hand side of Equation (4) into two sums, each corre-
sponding to the cost of the mechanism on a semicircle of length 1/2, and apply Lemma A.4 to each,
with y1 = xi in both cases, and d1 = α or d1 = β. In more detail, it holds that

β2

2
+

i−1∑
j=2

(
dj ·

(
β +

j−1∑
k=2

dk +
dj
2

))
=

1
8
,

and
α2

2
+

n∑
j=i

dj ·
α+

n∑
k=j+1

dk +
dj
2

 =
1
8
.

We conclude that the expression on the right hand side of Equation (4) is exactly 1/4.

Lemma A.6 (Not semicircle to semicircle). Assume that x ∈ Gn is such that the agents are not
on one semicircle, but agent i deviates such that in the new location profile x′ the agents are on
one semicircle. Then

cost(rc(x), xi) ≤ cost(lrm(x′), xi) .

Proof. By Lemma A.5 we have that cost(rc(x), xi) ≤ 1/4, therefore it will be sufficient to prove
that cost(lrm(x′), xi) ≥ 1/4.

Let l (for “left”) and r for “right” be the two extreme agent locations in x′, where l � r. Note
that since the agents were not on one semicircle under x, we have that xi ∈ (l̂, r̂). Let y = cen(l, r)
be the center of the arc (l, r) (see Figure 3). We claim that d(xi, y) ≥ 1/4. This follows immediately
from the facts that d(l̂, y) ≥ 1/4, d(r̂, y) ≥ 1/4, and xi ∈ (l̂, r̂). Hence, the cost of the mechanism
is at least

cost(lrm(x′), xi) =
1
4
· d(xi, l) +

1
4
· d(xi, r) +

1
2
· d(xi, y) ≥ 1

4
· (d(xi, l) + d(xi, r)) +

1
2
· 1

4
≥ 1

4
,

where the last transition follows from the fact that d(xi, l) + d(xi, r) is the length of the long arc
between l and r, therefore the value of this sum is at least 1/2.
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Figure 4: Illustration of the proof of Lemma A.7.

In order to deal with the last two deviations, we require one additional fundamental lemma.
The lemma asserts that the cost of the RC Mechanism with respect to a point y can only decrease
if the point y is added to the vector of locations. This is, in fact, the mirror image of Equation (2),
which is itself a special case of Lemma A.3.

Lemma A.7. Let x ∈ Gn such that x is not on one semicircle, and let y ∈ G. Then

cost(rc(x), y) ≥ cost(rc(x ∪ {y}), y) .

Proof. The cost incurred from the mechanism rc(x) with respect to y is identical to the cost incurred
from rc(x ∪ {y}) for all the intervals, except for the interval the point ŷ is on. Let p and q denote
the antipodal points adjacent to ŷ such that p � ŷ � q. Denote δ = d(p, ŷ) and λ = d(ŷ, q), and
assume without loss of generality that δ ≤ λ (see Figure 4).

It is sufficient to show that the cost incurred when the random chosen point is on the arc [p, q]
is lower under rc(x ∪ {y}) than under rc(x). The cost incurred by points on the arc [p, q] under
rc(x ∪ {y}) is δ (d(y, p) + δ/2) + λ (d(y, q) + λ/2). The cost incurred by points on the arc [p, q]
under rc(x) is (δ + λ)

(
d(y, q) + δ+λ

2

)
. It holds that

(δ + λ)
(
d(y, q) +

δ + λ

2

)
≥ δ

(
d(y, p) +

δ

2

)
+ λ

(
d(y, q) +

λ

2

)
⇔ d(y, q) + λ ≥ d(y, p).

The inequality on the right hand side holds since d(y, q) + λ = 1
2 while d(y, p) ≤ 1

2 .

Lemma A.8 (Semicircle to not semicircle). Assume that x ∈ Gn is such that the agents are on
one semicircle, but agent i deviates such that in the new location profile x′ the agents are not on
one semicircle. Then

cost(lrm(x), xi) ≤ cost(rc(x′), xi) .

Proof. Let x1 � x2 · · · � xn be the location of the n agents, and denote l = x1 (the leftmost agent)
and r = xn. Let i ∈ N , and assume without loss of generality that d(xi, r) ≤ d(xi, l), or equivalently
d(xi, l̂) ≤ d(xi, r̂). Let α = d(r, l̂), and β = d(r, xi). Finally, let x′i denote the new location of agent
i (see Figure 5).

We first calculate the cost of xi in the location profile x under the LRM mechanism. We have
that d(xi, l) = 1

2 − α− β, d(r, l) = 1
2 − α, and

d(xi, cen(l, r)) =
1
4
− α

2
− β .

14



l l̂

r

r̂

x∗i

xi

x̂i

x̂∗i

α

β
α+ β

Figure 5: Illustration of the proof of Lemma A.8.

Then

cost(lrm(x), xi) =
β

4
+

1
2 − α− β

4
+

1
4 −

α
2 − β
2

=
1
4
− α

2
− β

2
. (5)

We now wish to give a lower bound on cost(rc(x′), xi). First, by Lemma A.7 we have that

cost(rc(x′), xi) ≥ cost(rc(x′ ∪ {xi}), xi) .

A subtle remark is that the above argument allows us to take r̂ into account even if xi = r and
agent i deviated to x′i, a fact that allows us to avoid distinguishing this extreme case.

Next, we would like to fix an “optimal” location for x̂′i. First notice that since x′ is not on
one semicircle, it must hold that x′i ∈ (r̂, l̂), that is, x̂′i ∈ (r, l). Now, we ask: what is the location
of x̂′i that yields the lowest cost with respect to xi, when the RC Mechanism chooses a point in
G \ (l̂, r̂) (the long arc between l̂ and r̂)? There are no antipodal points, other than x̂′i, in G \ (l̂, r̂).
Furthermore, we can treat this arc as an interval with respect to distances from xi, since the short
arcs [xi, l̂] and [xi, r̂] are contained in G\(l̂, r̂). Therefore, we can apply Lemma A.3 (by normalizing
the length of G \ (l̂, r̂)). In particular, let x̂∗i � xi such that

d(x̂∗i , xi) = d(xi, l̂) = α+ β ,

and let x∗ = 〈x∗i , x−i〉; see Figure 5 for an illustration. From (the proof of) Lemma A.3 it follows
that

cost(rc(x′ ∪ {xi}), xi) ≥ cost(rc(x∗ ∪ {xi}), xi) .

Hence, it is sufficient to prove that

cost(rc(x∗ ∪ {xi}), xi) ≥
1
4
− α

2
− β

2
. (6)

We calculate the cost of the mechanism rc(x∗∪{xi}) with respect to agent i. Let y be the point
chosen by the mechanism. By the choice of x∗i , if y is on the arc [l̂, x̂∗i ], the cost is zero. If y ∈ [l̂, x̂i],
we apply Lemma A.4 with y1 = xi, ym+1 = x̂i, yj = x̂j−1 for j = 2, . . . ,m+ 1, and d1 = α+ β. We
get:

(α+ β)2

2
+

m∑
j=2

(
dj ·

(
α+ β +

j−1∑
k=2

dk +
dj
2

))
=

1
8
.
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Thus,
m∑
j=2

(
dj ·

(
α+ β +

j−1∑
k=2

dk +
dj
2

))
=

1
8
− (α+ β)2

2
. (7)

Similarly, if y ∈ [x̂i, x̂∗i ], we apply Lemma A.4 with y1 = xi, y2 = x̂∗i , ym+1 = x̂i, yj = x̂n−j+3 for
j = 3, . . . ,m+ 1, and d1 = α+ β. We get the same expected cost as in Equation (7).

Taken together,

cost(rc(x∗ ∪ {xi}), xi) = 2
(

1
8
− (α+ β)2

2

)
=

1
4
− (α+ β)2 .

It holds that
1
4
− (α+ β)2 ≥ 1

4
− α

2
− β

2
⇔ α+ β ≤ 1

2
,

but the last inequality follows directly from the fact that xi ∈ [r, l]. This establishes Equation (6),
and thus completes the proof of Lemma A.8.

Lemma A.9 (Not semicircle to not semicircle). Assume that x ∈ Gn is such that the agents are
not on one semicircle, and agent i deviates such that in the new location profile x′ the agents are
not on one semicircle. Then

cost(rc(x), xi) ≤ cost(rc(x′), xi) .

Proof. The proof of the lemma follows quite directly from the previous lemmata. Indeed, by
Lemma A.7 we have that

cost(rc(x′ ∪ {xi}), xi) ≤ cost(rc(x′), xi) .

Let p, q ∈ G be the two antipodal points adjacent to xi. By Lemma A.4, for any x̂′i ∈ G \ [p, q],

cost(rc(x), xi) = cost(rc(x′ ∪ {xi}), xi) .

Hence, it sufficient to handle the case where x̂′i ∈ [p, q]. Notice that xi ∈ [p, q], that is, xi is in
the short arc between p and q, by our assumption that the agents in x are not on one semicircle.
Therefore, we can apply Lemma A.3 to this arc (by normalizing its length, and replacing x in the
lemma by xi and y by x̂′i). It follows that the optimal location for x̂′i is the edges of the arc [p, q],
which directly means that

cost(rc(x), xi) ≤ cost(rc(x′ ∪ {xi}), xi) .

B Proof of Theorem 4.1

Let m, k ∈ N, whose value remains to be determined. The construction of the graph G is recursive,
and depends on m and k. We start with an edge of length 1, which connects the vertices l0 (for
“left”) and r0 (for “right”). The vertex l0 is connected to m vertices via edges of length 1; these
vertices are called left vertices on level 1. Each left vertex on level 1 is connected to m vertices via
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(b) Location profile x1.

Figure 6: An Illustration of the proof of Theorem 4.1, for m = 3 and k = 2. A number inside a
node indicates the number of agents that are located at this node.

m edges of length 2; these vertices are called left vertices on level 2. In general, each left vertex on
level d is connected to m left vertices on level d+ 1 via edges of length 2d. The maximum level is
k, that is, the left vertices on level k are leaves. The construction is symmetric with respect to the
right vertices, i.e., r0 is connected to m right vertices on level 1 via edges of length 1, and so on.

Now, let f : Gn → ∆(G) be a randomized SP mechanism. Assume for ease of exposition that
2mk divides n, and consider a location profile x0 where there are n/2 agents at l0 and n/2 agents
at r0; this profile is illustrated in Figure 6(a). Clearly, since the distance between l0 and r0 is 1,
we have that E[d(f(x0), l0)] ≥ 1/2, or E[d(f(x0), r0)] ≥ 1/2; assume without loss of generality that
the former statement is true.

Next, consider the location profile x1, where we have n/2m agents in each left vertex on level
1, and n/2 agents in r0; this profile is illustrated is Figure 6(b). We claim that it still holds that
E[d(f(x1), l0)] ≥ 1/2. Indeed, x1 can be obtained from x0 by moving the agents, one by one, from
l0 to the left vertices on level 1. Due to strategyproofness, the expected distance from l0 cannot
decrease after each deviation. Since the expected distance was initially at least 1/2, this is true
after the n/2 agents have all deviated.

Denote the left vertices on level 1 by l11, . . . , l
1
m. For any point y ∈ G such that d(y, l0) ≥ 1/2,

we have that
m∑
j=1

d(y, l1j ) ≥ m+ (m− 2) · 1
2

=
3m− 2

2
.

Since this is true point-wise, it is also true that the sum of expected distances between f(x1) and
the left vertices on level 1 is at least 3m−2

2 , that is,

m∑
j=1

E[d(f(x1), l1j )] ≥
3m− 2

2
.

By averaging over these m vertices we conclude that there exists a left vertex on level 1, denoted
l1, such that E[d(f(x1), l1)] ≥ 3/2− 1/m.
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We subsequently consider the location profile x2 that is obtained from x1 by moving the n/(2m)
agents from l1 to its m neighbors on level 2, such that each left vertex on level 2 that is adjacent
to l1 has n/(2m2) agents. By similar arguments as before, we get that E[d(f(x2), l1)] ≥ 3/2− 1/m,
and, therefore, that there exists a left vertex on level 2 that is adjacent to l1, call it l2, such that

E[d(f(x2), l2)] ≥
2m+ (m− 2)

(
3
2 −

1
m

)
m

≥ 7
2
− 4
m

.

We inductively build location profiles x3,x4, . . . ,xk in this fashion. We then have the following
claim.

Lemma B.1. There exists a left vertex on level k, denoted lk, such that

E[d(f(xk), lk)] ≥ 2k+1 − 1
2

− 2k+1 − (k + 2)
m

. (8)

Proof. We prove the lemma by induction on the level d. For d = 0, we have that

20+1 − 1
2

− 20+1 − (0 + 2)
m

=
1
2
,

which is indeed the lower bound that we have obtained for E[d(f(x0), l0)].
Let us assume that there exists a left vertex on level d, denoted ld, such that

E[d(f(xd), ld)] ≥ 2d+1 − 1
2

− 2d+1 − (d+ 2)
m

.

Constructing xd+1 along the lines given above, we get that there is a left vertex on level d + 1,
denoted ld+1, such that

E[d(f(xd+1), ld+1)] ≥ 1
m

[
2d ·m+ (m− 2)

(
2d+1 − 1

2
− 2d+1 − (d+ 2)

m

)]
≥ 2d+2 − 1

2
− 2d+2 − (d+ 3)

m
.

From Lemma B.1 we obtain a location profile xk and a left vertex on level k, lk, such that
Equation (8) holds, hence the expected maximum distance is at least the expression at the right
hand side of Equation (8). On the other hand, under xk the solution that locates the facility at
lk−1 has a maximum cost of 2k−1. The ratio is at least

mc(f(xk),xk)
mc(lk−1,xk)

≥
2k+1−1

2 − 2k+1−(k+2)
m

2k−1
≥ 2− 1

2k
− 4
m

.

Note that we have to choose m and k such that n/(2mk) ≥ 1, so that we still have at least one
agent at each of m left vertices on level k in our construction. By taking k = Θ

(√
log n

)
, and

m = Θ
(
n1/k

)
= Θ

(
n

1√
log n

)
,

we satisfy the above constraint and get that the approximation ratio of f is as announced.
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