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Abstract

The problem of characterizing all the testable graph properties is considered by many to be
the most important open problem in the area of property-testing. Our main result in this paper
is a solution of an important special case of this general problem; Call a property tester oblivious
if its decisions are independent of the size of the input graph. We show that a graph property
P has an oblivious one-sided error tester, if and only if P is semi hereditary. We stress that
any “natural” property that can be tested (either with one-sided or with two-sided error) can be
tested by an oblivious tester. In particular, all the testers studied thus far in the literature were
oblivious. Our main result can thus be considered as a precise characterization of the natural
graph properties, which are testable with one-sided error.

One of the main technical contributions of this paper is in showing that any hereditary graph
property can be tested with one-sided error. This general result contains as a special case all the
previous results about testing graph properties with one-sided error. These include the results
of [23] and [6] about testing k-colorability, the characterization of [25] of the graph-partitioning
problems that are testable with one-sided error, the induced vertex colorability properties of [4],
the induced edge colorability properties of [17], a transformation from two-sided to one-sided
error testing [25], as well as a recent result about testing monotone graph properties [11]. More
importantly, as a special case of our main result, we infer that some of the most well studied
graph properties, both in graph theory and computer science, are testable with one-sided error.
Some of these properties are the well known graph properties of being Perfect, Chordal, Interval,
Comparability, Permutation and more. None of these properties was previously known to be
testable.

1 Introduction

1.1 Definitions and background

The meta problem in the area of property testing is the following: Given a combinatorial structure
S, distinguish if S satisfies some property P or if S is ε-far from satisfying P, where S is said to be
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ε-far from satisfying P if an ε-fraction of its representation should be modified in order to make S
satisfy P. The main goal is to design randomized algorithms, which look at a very small portion of
the input, and using this information distinguish with high probability between the above two cases.
Such algorithms are called property testers or simply testers for the property P. Preferably, a tester
should look at a portion of the input whose size is a function of ε only. Blum, Luby and Rubinfeld
[14] were the first to formulate a question of this type, and the general notion of property testing
was first formulated by Rubinfeld and Sudan [36], who were motivated in studying various algebraic
properties such as linearity of functions.

The main focus of this paper is in testing properties of graphs, where a property of graphs
is simply a family of graphs closed under isomorphism. Throughout the paper we only consider
decidable graph properties, that is, properties P for which it is possible to decide in finite time
whether an input graph G satisfies P. In this case a graph G, is said to be ε-far from satisfying a
property P, if one needs to add/delete at least εn2 edges to/from G in order to turn it into a graph
satisfying P. A tester for P should distinguish with high probability, say 2/3, between the case that
G satisfies P from the case that G is ε-far from satisfying P. Here we assume that the tester can
query some oracle, whether a pair of vertices, i and j, are adjacent in the input graph G. In what
follows we will say that a tester for a graph property P has one-sided error if it accepts any graph
satisfying P with probability 1 (and still rejects those that are ε-far with probability at least 2/3). If
the tester may reject graphs satisfying P with non-zero probability then it is said to have two-sided
error.

The study of the notion of testability for combinatorial structures, and mainly for labelled graphs,
was introduced in the seminal paper of Goldreich, Goldwasser and Ron [23]. In this paper it was
shown that many natural graph properties such as k-colorability, having a large clique and having
a large cut, have a tester, whose query complexity, that is, the number of oracle queries of type
“does (i, j) belong to E(G)”, can be upper bounded by a function that depends only on ε and is
independent of the size of the input (the dependence on ε may vary between properties). In this
paper we will say that properties having such efficient testers, that is, whose query complexity can
be upper bounded by a function of ε only, are simply testable. Following [23], many other graph
properties were shown to be testable, while others were shown to be non-testable. We note that the
model of graph property testing that we study here is the so called dense graph model as defined
in [23]. Graph property testing has also been studied in other models, such as the bounded degree
model [24] and the general density model [31].

1.2 Related work

The most interesting results in property-testing are those that show that large families of problems
are testable. The main result of [23] states that a certain abstract graph partition problem, which
includes as special cases k-colorability, having a large cut and having a large clique, is testable. The
authors of [25] gave a characterization of the partition problems discussed in [23] that are testable with
one-sided error. In [4], a logical characterization of a family of testable graph properties was obtained.
According to this characterization, every first order graph-property of type ∃∀ (see Subsection 2.3.2)
is testable, while there are first-order graph properties of type ∀∃ that are not testable. These results
were extended in [17]. There are also several general testability and non-testability results in other
areas besides testing graph properties. In [5] it is proved that every regular language is testable.
This result was extended to any read-once branching program in [30]. On the other hand, it was
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proved in [20], that there are read-twice branching programs that are not-testable. The main result
of [8] states that any constraint satisfaction problem is testable.

With this abundance of general testability results, a natural question is what makes a combina-
torial property testable. As graphs are the most well studied combinatorial structures in the theory
of computation, it is natural to consider the problem of characterizing the testable graph properties,
as the most important open problem in the area of property testing. Regretfully, though, finding
such a characterization remains a challenging open problem. The main result of this paper, Theorem
2, resolves an important natural special case of this open problem, which concerns property testers
with one-sided error. For additional results and references on graph property-testing as well as on
testing properties of other combinatorial structures, the reader is referred to [18], [22], [35] and [12].

2 The New Results

2.1 The main technical result and its immediate applications

A graph property is hereditary if it is closed under removal of vertices (and not necessarily under
removal of edges). Equivalently, such properties are closed under taking induced subgraphs. The
main technical result of this paper is the following:

Theorem 1 (Main Technical Result) Every hereditary graph property is testable with one-sided
error.

As we will see later, the testing algorithms we design for a given hereditary property P, simply
sample a set of vertices S and accept if and only if the graph induced by S satisfies P. This
immediately implies that these testers have one-sided error. Of course, the main difficulty lies in
proving that if the input is ε-far from satisfying P then the graph induced by a large enough S (but
only large enough as a function of ε) will not satisfy P with high probability.

We note that besides certain partition properties such as having a large cut and having a large
clique, which were proved to be testable with two-sided error in [23], essentially any graph property
that was studied in the literature is hereditary. Thus, Theorem 1 combined with the graph partition
problems of [23] imply the testability of (nearly) any natural graph property. To demonstrate the
generality of Theorem 1, we use it to infer that many graph properties, which prior to this paper
were not known to be testable, are in fact testable with one-sided error. These include the following
hereditary properties:

• Perfect Graphs: A graph G is perfect if for every induced subgraph of G, denoted G′, the
chromatic number of G′ equals the size of the largest clique in G′.

• Chordal Graphs: A graph is chordal if it contains no induced cycle of length at least 4.

• Interval Graphs: A graph G on n vertices is an interval graph if there are closed intervals
on the real line I1, . . . , In such that (i, j) ∈ E(G) if and only if Ii ∩ Ij 6= ∅.

• Circular-Arc Graphs: A graph G on n vertices is a circular-arc graph if there are closed
intervals on a cycle I1, . . . , In such that (i, j) ∈ E(G) if and only if Ii ∩ Ij 6= ∅.
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• Comparability Graphs: A graph G is a comparability graph if its edges can be oriented
such that if there is a directed edge from i to j and from j to k, then there is one from i to k.

• Permutation Graphs: A graph G on n vertices is a permutation graph if there is a permu-
tation σ of {1, . . . , n} such that (i, j) ∈ E(G) iff (i, j) is an inversion under σ.

• Asteroidal Triple-Free Graphs: G is asteroidal triple-free if it contains no independent set
of 3 vertices such that each pair is joined by a path that avoids the neighborhood of the third.

• Split Graphs: G is a split graph if V (G) can be split into a clique and an independent set.

Another abstract family of hereditary graph properties, which have been extensively studied, are
the so called intersection graph properties. In this case we fix a certain “type” T of sets and say that
a graph G on n vertices has the intersection property defined by T , if there are n sets S1, . . . , Sn of
type T , such that vertices i and j are connected in G if and only if Si ∩ Sj 6= ∅. For example, the
property of being a d-Box (see [16] and its references) is obtained by letting the “type” of the sets be
axis parallel boxes in Rd. See the monograph [29] for more information and examples of intersection
graph properties.

It is clear that the above surveyed properties are some of the most well-studied properties in
graph-theory as well as in theoretical and applied computer-science. These properties also arise
naturally in Chemistry, Biology, Social Sciences, Statistics as well as in many other areas. See
[26], [29], [32] and their references, where other hereditary properties and their applications are also
discussed.

To further convey the reader of the power of Theorem 1 we mention that Lemma 4.2, which is
the main result needed to obtain Theorem 1, immediately implies, for example, that for every ε there
is c = c(ε), such that if a graph G is ε-far from being Chordal then G contains an induced cycle of
length at most c, and that similar results hold for any other hereditary property. This is non-trivial
as it is not clear a priori that there is no graph that is, say, 1

100 -far from being Chordal and yet
contains only induced cycles of length at least, say, Ω(log n). Put in other way, if G has the property
that all its induced subgraphs of size c = c(ε) are chordal, then G is ε-close to being Chordal. This
gives a strong connection between the local properties of a graph and its global properties. In fact,
we can show that an analogous result holds for any graph property, see Theorem 6.

2.2 The main result: oblivious testing with one-sided error

By a result of [4] and [25], it is possible to assume that a property tester works by making its queries
non-adaptively. In other words, the tester first picks a random subset of vertices S, then queries
all pairs (i, j) i, j ∈ S and then continues without making additional queries. Inspecting previous
results on property-testing, motivates the following notion of a slightly more restricted tester, which
works while being “oblivious” to the size of the input1.

Definition 2.1 (Oblivious Tester) A tester (one-sided or two-sided) is for a property P is said
to be oblivious if it works as follows: given ε the tester computes an integer Q = Q(ε) and asks an
oracle for a subgraph induced by a set of vertices S of size Q, where the oracle chooses S randomly

1The tester implied by the results of [25] and [4] may use the size of the input in order to determine both the query
complexity and in order to make its decisions
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and uniformly from the vertices of the input graph. If Q is larger than the size of the input graph then
the oracle returns the entire graph. The tester then accepts or rejects (possibly randomly) according
to ε and the graph induced by S.

Note, that by insisting that the oracle chooses the set of vertices S, an oblivious tester indeed
operates without knowing the size of the input, because if the tester had to choose S then it would
have to know the size of the input graph in order to specify a vertex of the graph. We believe that the
above definition captures the essence of property testing in the dense graph model as essentially all
the testers that have been analyzed in this model were in fact oblivious, or could trivially be turned
into oblivious testers. Even the testers for properties such as having an independent set of size 1

2n or
a cut with at least 1

8n
2 edges (see [23]), whose definition involves the size of the graph, have oblivious

testers. The reason is simply that these properties can easily be expressed without using the size
of the graph. For example, in order to test if a graph has a cut with at least 1

8n
2 edges one can

sample some Q = Q(ε) vertices and accept the input if and only if the graph induced on the sample
has a cut of size at least (1

8 −
ε
2)Q2 (of course, one needs to prove that this sampling scheme indeed

works, see [23]). Another family of graph properties for which we can confine ourselves to oblivious
testers is the family of hereditary properties, which is shown to be testable by an oblivious tester in
the present paper. We finally note that most “applications” of property-testing (see [18] and [35])
involve testing properties of huge networks such as the Internet, whose size is anyway unknown.

Observe, that there are two restrictions that the above definition imposes on an oblivious tester.
The first is that it cannot use the size of the input in order to determine the size Q, of the sample
of vertices. In other words, Q is only a function of ε and not a function of ε and n. The reader
should note that a tester for a testable graph property (as defined in the Section 1) may have a
query complexity that is bounded by a function of ε but one that depends on the size of the graph
(e.g. Q(ε, n) = 1/ε+ (−1)n). Though this seems like an annoying technicality, it was proved in [10]
that this subtlety may have non-trivial ramifications. The second, seemingly more severe, restriction
on an oblivious tester is that it cannot use the size of the input in order to make its decisions after
the subgraph induced on the set S of Q vertices has been obtained. One can easily “cook” graph
properties that cannot be tested by an oblivious tester. However, these properties are somewhat
non-natural. One example out of many is the following property, which we denote by P ′: A graph on
an even number of vertices satisfies P ′ if and only if it is bipartite, while a graph on an odd number
of vertices satisfies P ′ if and only if it is triangle-free. A tester for P ′ clearly must use the size of the
input in order to make its decision regarding the graph induced by the sample.

We now turn to the main result of this paper, which gives a characterization of the graph prop-
erties that can be tested with 1-sided error by an oblivious tester. Intuitively, in order to test a
property with 1-sided error the tester must “find” some kind of proof that the input does not satisfy
the property. Of course the graph itself is such a proof, but as we confine ourselves to testers whose
number of queries is independent of the size of the input, the tester must find a small proof of this
fact. For hereditary properties, such proofs exists, and are in fact (relatively) abundant. These are
small induced subgraph that do not satisfy the property. In fact, this is the main idea behind our
algorithm for testing hereditary properties. See Lemma 4.2, which is the main technical result of
this paper.

A natural question is if other non-hereditary properties have such small proofs. For example,
having a clique of size 1

2n obviously does not have such small proofs. The reason is that for any fixed
graph C there are graphs that contain C as an induced subgraph and have a clique of size 1

2n, and
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graphs that contain C as an induced subgraph and are far from having a clique of size 1
2n. In [25] it

was shown that when considering the partition-problems of [23], which contain the clique property
as a special case, then non-hereditary partition properties cannot be tested with 1-sided error. For
general properties the situation is much more involved. However, considering only oblivious testers
enables us to precisely characterize the graph properties, which are testable with one-sided error. To
state this characterization we need the following definition:

Definition 2.2 (Semi-Hereditary) A graph property P is semi-hereditary if there exists a hered-
itary graph property H such that the following holds:

1. Any graph satisfying P also satisfies H.

2. There is a function M : (0, 1) 7→ N, such that any graph G of size at least M(ε), which is ε-far
from satisfying P, contains an induced subgraph that does not satisfy H.

Comment 2.3 As H is hereditary, an equivalent and simpler condition equivalent to item 2 above
is that G itself does not satisfy H. However, the statement above will be more convenient for the
proof of Theorem 2.

Clearly, any hereditary graph property P is also semi-hereditary because we can take H in the
above definition to be P itself. In simple words, a semi-hereditary P is obtained by taking a hereditary
graph property H, and removing from it a (possibly infinite) set of graphs. This means that the
first item in Definition 2.2 is satisfied. As there are graphs not satisfying P that do satisfy H these
graphs do not contain any induced subgraph that does not satisfy H (because H is hereditary). The
only restriction, which is needed in order to get item 2 in Definition 2.2, is that P will be such that
for any ε > 0 there will be only finitely many graphs that are ε-far from satisfying it, and yet contain
no induced subgraph that does not satisfy H.

We are now ready to state the main result of this paper.

Theorem 2 (Main Result) A graph property P has an oblivious one-sided error tester if and
only if P is semi-hereditary.

Returning to the graph property P ′ discussed above, note that by Theorem 1 this property,
which is not semi-hereditary, can be tested with one-sided error by a non-oblivious tester. Therefore,
it is not the case that a graph property is testable if and only if it is semi-hereditary. However,
if we disregard this and other non-natural graph properties then we may assume that in order to
test them we can confine ourselves to oblivious testers. Theorem 2 can thus be considered as a
precise characterization of the “natural” graph properties, which are testable with one-sided error.
We believe that it may be very interesting to further study property-testing via the framework of
oblivious testers, see Section 7.

Theorems 1 and 2 suggest many questions, some of which we discuss and resolve in the following
subsections, while others are discussed in Section 7 and are left as interesting open problems.
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2.3 Additional results

2.3.1 On the (im)possibility of relaxing the notion of property-testing

Theorem 1 implies that any hereditary graph property is testable, when one uses the standard notion
of ε-far as defined in Section 1. Suppose we forbid addition of edges and define a graph G on n vertices
to be ε-fardel from satisfying property P if one needs to delete from G at least εn2 edges in order
to turn it into a graph satisfying P. We say that property P is testabledel if there is a tester for
distinguishing between graphs satisfying P from those that are ε-fardel from satisfying it, whose
number of queries can be upper bounded by a function of ε. A natural question is which graph
properties are testabledel. Obviously, any hereditary property, which is also closed under removal of
edges (such as k-colorability) is testabledel as in these cases being ε-fardel is equivalent to ε-far. The
following theorem is a sharp contrast to Theorems 1 and 2.

Theorem 3 For any hereditary property P, which is not satisfied by all graphs, and is satisfied by
any complete graph, there is a constant δ = δ(P) > 0 such that testingdel property P (even with
two-sided error) requires nδ queries.

Note, that any natural hereditary property, such as any of those discussed in Subsection 2.1, is
satisfied by any complete graph, thus the above result applies to these properties. We briefly mention
that we can also prove a similar statement when one allows only edge additions. See Section 6.

2.3.2 Unbounded first order graph properties

A first order graph property is one involving the boolean operators ∧,∨,¬, the ∀,∃ quantifiers, the
equality operator =, and the adjacency relation ∼. For example, the triangle-freeness property can
be written as ∀ v1, v2, v3¬(v1 ∼ v2 ∧ v2 ∼ v3 ∧ v1 ∼ v3). The main result of [4] states that every first
order graph property without quantification ∀∃ is testable (possibly with two-sided error). The main
tool in [4] was a theorem stating that any hereditary graph property, which is expressible in terms
of a finite family of forbidden induced subgraphs is testable. Theorem 1 is a powerful extension of
this result as it allows the family of forbidden induced subgraphs to be infinite. One may thus ask
whether Theorem 1 can be used in order to extend the result of [4]. Theorem 4 below gives a positive
answer to this question. To state this extension we need the following definition.

Definition 2.4 (Unbounded First-Order Properties of type ∃∀) An unbounded first order
graph property of type ∃∀ is of the form

∃x1, . . . , xt

∞∧
i=1

∀y1, . . . , yi Ai(x1, . . . , xt, y1, . . . , yi) (1)

where each Ai(x1, . . . , xt, y1, . . . , yi) is a quantifier-free first order expression.

The main result of [4] states that any graph property that can be expressed as above while using
a single relation Ai is testable. Using the main techniques of this paper, we can extend this to
expressions containing infinitely many expressions Ai.

Theorem 4 Every graph property describable by an unbounded first order graph property of type ∃∀
is testable (possibly with two-sided error).
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It should be noted that it is proved in [4] that there are first order graph properties with alter-
nation of type ∀∃ which are not testable, thus Theorem 4 is in some sense best possible.

2.3.3 ANDing hereditary graph properties

We next describe a consequence of Theorem 1 (in fact, of the main step of proving Theorem 1),
which does not assert the testability of some graph property, but rather one that may be useful in
the general study of graph property testing. Suppose P = {P1,P1, . . . , } is a (possibly infinite) set of
monotone graph properties, that is, properties that are closed under removal of vertices and edges.
It was proved in [11] that in this case there is a function δ : (0, 1) 7→ (0, 1) such that if a graph
G is ε-far from satisfying all the properties of P then for some i it is also δ(ε)-far from satisfying
Pi. Note, that this statement is non-trivial only when P is infinite, as if P contains k properties we
can clearly take δ(ε) = ε/k (in fact, to get the case of finite k the properties only need to be closed
under removal of edges). Consider now the case when the properties are assumed to be hereditary
properties, which are not necessarily monotone. Now it is not at all clear that a similar statement
holds even for k = 2, as modifying a graph in order to turn it into a graph satisfying P1 may increase
its distance from satisfying P2. Using Theorem 1 we can show that a similar result holds even for
infinite sets of properties.

Theorem 5 For any (possibly infinite) set of hereditary graph properties P = {P1,P2, . . .}, there is
a function δP : (0, 1) 7→ (0, 1) with the following property: If a graph G is ε-far from satisfying all
the properties of P, then for some i, the graph G is δP(ε)-far from satisfying Pi.

2.3.4 An extremal result for all graph property

Confirming a conjecture of Erdős, it was shown in [33] that if a graph is ε-far from being k-colorable,
then it contains a non k-colorable subgraph of size that depends only on ε. In [11] this result was
extended to any monotone graph property. As we have alluded to in Subsection 2.1, the main
technical result of this paper, Lemma 4.2, immediately implies that this result can be extended
to any hereditary graph property. In fact, we can show that a similar result holds for any graph
property.

Theorem 6 For every graph property P, there is a function WP(ε) with the following property: If
G is ε-far from satisfying P, then G contains an induced subgraph of size at most WP(ε), which
does not satisfy P.

2.4 Comparison to previous results

We next survey the previous results on graph property-testing, which were shown to be testable with
one-sided error. As all these properties are hereditary, their testability with one-sided error follows
as a special case of Theorem 1.

• H-free: For every fixed graph H let PH be the property of not containing a copy of H, and let
P∗H be the property of not containing an induced copy of H. The property PH was (implicitly)
shown to be testable in [3], and P∗H was shown to be testable in [4].
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• k-colorability: The k-colorability property was (implicitly) shown to be testable already in
[33]. In [23], a simplified explicit tester was studied with a significantly better query complexity.
This result was further improved by [6].

• Induced vertex colorability: The main technical step in the proof of the main result of [4]
was in showing that for every finite set of k-colored graphs K, one can test the property of a
graph being vertex k-colorable with no induced colored graph from the set K. Note, that any
such property is hereditary

• Induced edge colorability: Following [4], further induced edge-colorability properties were
studied in [17]. In this case we have a finite set of k-edge-colored graphs K, and the property
defined by K is that of having a k-edge-coloring with no induced colored graph from the set K.
Note, that any such property is hereditary, and that by Theorem 1 we can even take K to be
an infinite family of edge-colored graphs.

• Graph partition problems: One of the main results of [23] is that any graph-partition
problem is testable with two-sided error. A characterization of the graph-partition properties
that are testable with one-sided error was obtained in [25]. This characterization (essentially)
follows as a special case of Theorem 2, as what it (implicitly) states is that a partition problem
is testable with one-sided error if and only if it is hereditary.

• Monotone graph properties: Very recently, the authors have shown in [11] that any mono-
tone graph property is testable with one-sided error (a graph-property is monotone if it is
closed under removal of vertices and edges, therefore, any monotone property is in particular
hereditary). Though this family of graph properties is very general and contains many inter-
esting graph properties such as k-colorability, being H-free and certain Ramsey properties, it
fails to include many interesting hereditary non-monotone properties such as those that were
discussed in Subsection 2.1.

• One-sided vs. two-sided testers: The first author has shown ([25], Appendix D) that if a
hereditary graph property is testable with two-sided error then it is also testable with one-sided
error (but not necessarily with the same query complexity). By Theorem 1, this transformation
becomes obsolete, as Theorem 1 directly asserts that any hereditary graph property is testable
with one-sided error.

• Bounded first order graph properties: Theorem 4 extends the main result of [4], where
the first order graph-property can contain only a single predicate Ai.

It is important to note that Theorems 1 and 2 do not assert the existence of one-sided error
testers, which are as efficient as the ad-hoc testers that were designed for every specific property in
the above mentioned papers. For example, the query complexity of the tester for k-colorability that
follows as a special case of Theorem 1, is significantly larger than the query complexity which is
guaranteed by the main result of [23] and [6]. These large bounds are obviously a consequence of the
generality of Theorems 1 and 2. Furthermore, by Theorem 4 of [11], the upper bounds of Theorems
1 and 2 cannot be generally improved even for monotone graph properties. See the precise statement
in [11].
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2.5 Recent results

Recently, Lovász and B. Szegedy [28] found an alternative proof of Theorem 1 using the method
of convergent graph sequences. Their result is slightly weaker than ours as it does not give any
explicit upper bound on the query complexity of testing even simple hereditary properties such as
triangle-freeness. Rödl and Schacht [34] have generalized Theorem 1 and showed that any hereditary
property of k-uniform hypergraphs is testable. This proof applies variants of the recently proved
hypergraph regularity lemmas. In a joint work with Fischer and Newman [2] we have managed to
give a combinatorial characterization of the testable graph properties (recall that in this paper we
mainly deal with one-sided error testers). This characterization implies that the regularity lemma
is in some sense essential to graph property testing. Finally, the main techniques developed in this
paper have been applied in another recent study [13] of the family of hereditary graph properties.

2.6 Organization

Our main tool in the proof of Theorem 1 is a novel application of a powerful variant of Szemerédi’s
Regularity Lemma proved in [4]. In Section 3 we introduce the basic notions of regularity and state
the regularity lemmas that we use and some of their standard consequences. The proof of Theorem
1 is quite involved technically, and thus we give in Section 4 an overview of it. In this section
we also prove Theorem 6. The ideas of this proof, especially the usage of the notion of colored-
homomorphism, may be useful for handling other problems involving induced subgraphs. In Section
5 we give the full proof of Theorem 1 as well as the proof of Theorem 2. The proofs of Theorems 3,
4 and 5 appear in Section 6. In Section 7, we describe several possible extensions and open problems
that this paper suggests. Throughout the paper, whenever we relate, for example, to a function
f3.1, we mean the function f defined in Lemma/Claim/Theorem 3.1. We would like to mention that
readers that are not familiar with applications of the regularity-lemma may find it useful to refer to
[11] prior to reading this paper.

3 Regularity Lemma Background

In this section we discuss the basic notions of regularity, some of the basic applications of regular
partitions and state the regularity lemmas that we use in the proof of Theorem 1. See [27] for a
comprehensive survey on the regularity-lemma. We start with some basic definitions. For every two
nonempty disjoint vertex sets A and B of a graph G, we define e(A,B) to be the number of edges of
G between A and B. The edge density of the pair is defined as d(A,B) = e(A,B)/|A||B|.

Definition 3.1 (γ-regular pair) A pair (A,B) is γ-regular, if for any two subsets A′ ⊆ A and
B′ ⊆ B, satisfying |A′| ≥ γ|A| and |B′| ≥ γ|B|, the inequality |d(A′, B′)− d(A,B)| ≤ γ holds.

A very useful lemma that we use in this paper is Lemma 3.2 below, which helps us find many
induced copies of some fixed graph F , whenever a family of vertex sets are pairwise regular “enough”
and their densities correspond to the edge-set of F . Several versions of this lemma were previously
proved in papers using the regularity lemma. See [4] for one such proof.

Lemma 3.2 For every real 0 < η < 1 and integer f ≥ 1 there exist γ = γ3.2(η, f) and δ = δ3.2(η, f)
with the following property. Suppose U1, . . . , Uf is an f -tuple of disjoint vertex sets of a graph G
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such that for every 1 ≤ i < j ≤ f the pair (Ui, Uj) is γ-regular. Let F be a graph on f vertices
v1, . . . , vf such that whenever (vi, vj) ∈ E(F ) we have d(Ui, Uj) ≥ η, and whenever (vi, vj) 6∈ E(F )

we have d(Ui, Uj) ≤ 1 − η. Then, at least δ
∏f
i=1 |Ui| of the f -tuples u1 ∈ U1, . . . , uf ∈ Uf span an

induced copy of F , where each ui plays the role of vi.

Comment 3.3 Observe, that the functions γ3.2(η, f) and δ3.2(η, f) may and will be assumed to be
monotone non-increasing in f . Also, for ease of future definitions (in particular the one given in
(4)) we set γ3.2(η, 0) = δ3.2(η, 0) = 1 for any 0 < η < 1.

Note, that in terms of regularity, Lemma 3.2 requires all the pairs (Ui, Uj) to be γ-regular.
However, and this will be very important later in the paper, the requirements in terms of density are
not very restrictive. In particular, if η ≤ d(Ui, Uj) ≤ 1−η then we don’t care if (i, j) is an edge of F .

A partition A = {Vi | 1 ≤ i ≤ k} of the vertex set of a graph is called an equipartition if |Vi| and
|Vj | differ by no more than 1 for all 1 ≤ i < j ≤ k (so in particular each Vi has one of two possible
sizes). The Regularity Lemma of Szemerédi can be formulated as follows.

Lemma 3.4 ([37]) For every m and ε > 0 there exists a number T = T3.4(m, ε) with the following
property: Any graph G on n ≥ T vertices, has an equipartition A = {Vi | 1 ≤ i ≤ k} of V (G) with
m ≤ k ≤ T , for which all pairs (Vi, Vj), but at most ε

(
k
2

)
of them, are ε-regular.

The function T3.4(m, ε) may and is assumed to be monotone nondecreasing in m and monotone
non-increasing in ε. Another lemma, which will be very useful in this paper is Lemma 3.5 below.
Some versions of this lemma appear in various papers applying the Regularity Lemma. See [4] for
one such proof.

Lemma 3.5 For every l and γ there exists δ = δ3.5(l, γ) such that for every graph G with n ≥ δ−1

vertices there exist disjoint vertex sets W1, . . . ,Wl satisfying:

1. |Wi| ≥ δn.

2. All
(
l
2

)
pairs are γ-regular.

3. Either all pairs have densities at least 1
2 , or all pairs have densities less than 1

2 .

Comment 3.6 Observe, that the function δ3.5(l, γ) may and will be assumed to be monotone non-
increasing in l and monotone non-decreasing in γ. Therefore, for ease of future applications we will
assume that for all l and γ we have δ3.5(l, γ) ≤ 1/2.

Our main tool in the proof of Theorem 1 in addition to Lemmas 3.2 and 3.5 is Lemma 3.8 below,
proved in [4]. This lemma can be considered a variant of the standard regularity lemma, where one
can use a function that defines ε as a function of the size of the partition, rather than having to use a
fixed ε as in Lemma 3.4. We denote such functions by E throughout the paper. To state the lemma
we need the following definition.

Definition 3.7 (The function WE,m) Let E(r) : N 7→ (0, 1) be an arbitrary monotone non-
increasing function, and m be an arbitrary positive integer. We define the function WE,m : N 7→ (0, 1)
inductively as follows: WE,m(1) = T3.4(m, E(0)). For any integer i > 1 put R = WE,m(i − 1) and
define

WE,m(i) = T3.4(R, E(R)/R2) . (2)
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Lemma 3.8 ([4]) For every integer m and monotone non-increasing function E : N 7→ (0, 1) define

S = S3.8(m, E) = WE,m(100/E(0)4) .

For any graph G = (V,E) on n ≥ S vertices, there exists an equipartition A = {Vi | 1 ≤ i ≤ k}
of V (G) as well as an equipartition B = {Ui | 1 ≤ i ≤ k} of a subset of vertices U ⊆ V (G), which
satisfy the following:

1. m ≤ k ≤ S.

2. Ui ⊆ Vi for all i ≥ 1, and |Ui| ≥ n/S.

3. In the equipartition B, all pairs are E(k)-regular.

4. All but at most E(0)
(
k
2

)
of the pairs 1 ≤ i < j ≤ k are such that |d(Vi, Vj)− d(Ui, Uj)| < E(0).

Comment 3.9 For technical reasons (see the proof in [4]), Lemma 3.8 requires that for any r > 0
the function E(r) will satisfy E(r) ≤ min{E(0)/4, 1/4r2}. However, we can always assume wlog that
E satisfies this condition because if it does not, then we can apply Lemma 3.8 with E ′ which is defined
as E ′(r) = min{E(r), E(0)/4, 1/4r2}. We will thus disregard this technicality.

The main power of Lemma 3.8 is that for any function E it allows us to find k sets of vertices
U1, . . . , Uk of size Ω(n) such that all pairs (Ui, Uj) are E(k)-regular. Note, that in Lemma 3.4 we
have no “control” on the relation between the number of sets and the regularity measure between
them, as we first fix the regularity measure ε, and then get via the lemma k sets of vertices, where k
can be very large in terms of ε. In Lemma 3.8 k can also be very large but the the lemma guarantees
that so will be the regularity measure between the sets, via the function E .

One of the difficulties in the proof of Theorem 2, is in showing that all the constants that are used
in the course of the proof can be upper bounded by functions depending on ε only. The following
observation will thus be useful.

Proposition 3.10 If m is bounded by a function of ε only then for any E : N 7→ (0, 1), the integer
S = S3.8(m, E) can be upper bounded by a function of ε only 2.

It should be noted that the dependency of the function T3.4(m, ε) on ε is a tower of exponents of
height polynomial in 1/ε (see the proof in [27]). Thus, even for moderate functions E the integer S
has a huge dependency on ε, which is a tower of towers of exponents of height polynomial in 1/ε.

One of the main results of [4] is that for every finite set of graphs F , the property of not
containing any member of F as an induced subgraph can be tested with one-sided error and with
query complexity depending on ε only. The proof technique in [4], which applies Lemmas 3.2, 3.5
and 3.8 critically relies on the fact that the family of graphs is finite. The main step in the proof
of Theorem 1 is in extending the above to infinite families of graphs. To this end, we use the main
idea of [11], as well as a new type of homomorphism, in order to prove this stronger result. As in
[11] the main idea of the proof is to apply Lemma 3.8 with a suitable function E(r). However, as it
turns out, dealing with hereditary properties, which are not necessarily monotone, is considerably
more involved. The techniques we apply in the next section, in particular the notion of colored-
homomorphism, may be useful in dealing with other problems involving induced subgraphs.

2In our application of Lemma 3.8 the function E(r) will (implicitly) depend on the error parameter ε and on the
fixed property P being tested. For example, we will set E(r) = f(r,P, ε) for some function f . However, that will not
change the fact that for a fixed property P, the integer S3.8(m, E) can be bounded from above by a function of ε only.
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4 Overview of the Proof of Theorem 1

The proof of Theorem 1 is very technical and rather long and appears in its entirety in Section 5.
In this section we try to give an overview of the proof, while keeping out most of the (unnecessary)
technical details. We start with an equivalent formulation of Theorem 1. To this end we introduce
a convenient way of handling hereditary graph properties.

Definition 4.1 (Forbidden Induced Subgraphs) For a hereditary graph property P, define F =
FP to be the set of graphs which are minimal with respect to not satisfying property P. In other words,
a graph F belongs to F if it does not satisfy P, but any graph obtained from F by removing a vertex,
satisfies P.

For a (possibly infinite) family of graph F , a graph G is said to be induced F-free if it contains
no induced copy of any graph F ∈ F . Note, that for any hereditary graph property P there is a
family of graphs F = FP such that a graph satisfies P if and only if it is induced F-free. For F one
can simply take the family of forbidden induced subgraphs as in Definition 4.1. For example, when
P is the property of being Chordal (see Subsection 2.1) then FP is the set of cycles of length at least
4. As another example note that if P is the property of being bipartite then FP is the family of odd
cycles. Observe, that F may contain infinitely many graphs. Clearly for any family F , the property
of being induced F-free is hereditary, thus, the hereditary graph properties are precisely the graph
properties, which are equivalent to being induced F-free for some family F . For ease of presentation,
it will be more convenient to derive Theorem 1 from the following (essentially equivalent3) lemma,
whose proof is the main technical step in this paper.

Lemma 4.2 (Main Technical Result) For every (possibly infinite) family of graphs F , there
are functions NF (ε), fF (ε) and δF (ε) such that the following holds for any ε > 0: If a graph G on
n ≥ NF (ε) vertices is ε-far from being induced F-free, then G contains δnf induced copies of a
graph F ∈ F of size f , where f ≤ fF (ε) and δ ≥ δF (ε).

Before continuing with the overview of the proof of Theorem 1, we note that the above lemma
immediately implies Theorem 6. Indeed, given any graph property P let F be the family of graphs
not satisfying P. Observe, that if a graph is ε-far from satisfying P then it is also ε-far from being
induced F-free and thus by Lemma 4.2 it contains an induced subgraph F ∈ F of size at most fF (ε),
and by our choice of F the graph F does not satisfy P. Therefore, as the function WP(ε) in the
statement of Theorem 6 we can take the function fF (ε).

4.1 Homomorphism and colored homomorphism

For the proof of Lemma 4.2 we will need a new type of homomorphism, which is suitable for handling
induced subgraph.

Definition 4.3 (Colored-Homomorphism) Let K be a complete graph whose vertices are colored
black or white, and whose edges are colored black, white or grey (neither the vertex coloring nor the
edge coloring is assumed to be proper in the standard sense). A colored-homomorphism from a graph
F to a graph K is a mapping ϕ : V (F ) 7→ V (K), which satisfies the following:

3See Section 5 for a discussion about the subtle difference due to the possible necessity of testing some properties
non-uniformly.
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1. If (u, v) ∈ E(F ) then either ϕ(u) = ϕ(v) = t and t is colored black, or ϕ(u) 6= ϕ(v) and
(ϕ(u), ϕ(v)) is colored black or grey.

2. If (u, v) 6∈ E(F ) then either ϕ(u) = ϕ(v) = t and t is colored white, or ϕ(u) 6= ϕ(v) and
(ϕ(u), ϕ(v)) is colored white or grey.

If there is a colored-homomorphism from a graph F to a colored complete graph K, we write for
brevity F 7→c K. Some explanation is in place as to the meaning of the colors in the above definition.
To this end, it is instructive to compare the definition of a colored-homomorphism to the standard
notion of homomorphism.

Definition 4.4 (Homomorphism) A homomorphism from a graph F to a graph K is a mapping
ϕ : V (F ) 7→ V (K), which maps edges to edges, namely (v, u) ∈ E(F ) implies (ϕ(v), ϕ(u)) ∈ E(K).

For brevity, we denote by F 7→ K the fact that there is a homomorphism from F to K. The
fact that F 7→ K, simply means that we can partition the vertex set of F into k = |V (K)| subsets
V1, . . . , Vk, such that each Vi is edgeless and if (i, j) 6∈ E(K) then none of the vertices of F that
belong to Vi is connected to any of the vertices of F that belong to Vj . In particular, note that
F 7→ Kk if and only if F is k-colorable (where Kk is a clique of size k). The standard notion of
homomorphism is sufficient for dealing with not necessarily induced subgraphs as was carried out in
[11]. The reason is that having a homomorphism to a graph K is “closed under removal of vertices
and edges” in the sense that if F 7→ K and F ′ is a subgraph of F then F ′ 7→ K. When one wants to
handle induced subgraphs it soon turns out that standard homomorphism is not sufficient as it does
not supply enough information about F . The reason for that is that a standard homomorphism has
no requirement about the non-edges of the graph. Returning to the colored-homomorphism from
Definition 4.3, suppose we interpret the colors of K as follows: A white edge of K represents a
non-edge, a black edge of K represents an existing edge and a grey edge represents a “don’t care.”
As for the vertex colors, we think of a black vertex as a complete graph, and a white vertex as
an edgeless graph. Thus, the fact that F 7→c K where K is a colored complete graph of size k is
equivalent to the following: There is a partition of V (F ) into k subsets V1, . . . , Vk such that each Vi
is either complete or edgeless, where Vi is complete if i ∈ V (K) is black and edgeless if i ∈ V (K) is
white. Also, if (i, j) is colored white then none of the vertices of F that belong to Vi is connected
to any of the vertices of F that belong to Vj . Similarly, if (i, j) is colored black then all the vertices
of F that belong to Vi are connected to all the vertices of F that belong to Vj . Finally, if (i, j) is
colored grey then there is no restriction on pairs (v ∈ Vi, u ∈ Vj) (or in our “formal” notation, we
“don’t care” if (v ∈ Vi, u ∈ Vj) is an edge of F ). It is clear that a colored-homomorphism carries a
lot more information about the structure of F than a standard homomorphism.

Our definition of colored-homomorphism should also be thought of with Lemma 3.2 in mind.
Note, that in this lemma we only require d(Ui, Uj) ≥ η when (i, j) ∈ E(F ) and d(Ui, Uj) ≤ 1−η when
(i, j) 6∈ E(F ). In particular, if η ≤ d(Ui, Uj) ≤ 1− η then we “don’t care” whether (i, j) ∈ E(F ). In
fact, as the details of the proof of Lemma 4.2 reveal, the possibility of having grey edges in the coloring
of K in the definition of the colored-homomorphism is unavoidable (at least in our proof). Note,
that as far as Lemma 3.2 is concerned, we only need the edge coloring in the colored-homomorphism.
The details below supply some explanation for the need of the vertex coloring.

We now turn to discuss the relation between the standard regularity lemma (Lemma 3.4), the
stronger regularity lemma (Lemma 3.8) and colored-homomorphism. We stress that some of the
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explanations we give below are not completely accurate, and are given in order to explain the main
ideas of the proof. The formal proof appears in Section 5. Given ε > 0 and a graph G, Lemma 3.4
returns an equipartition of V (G) of size k. Let the regularity graph of G, denoted R = R(G), be the
following graph. R is a graph on k vertices, where vertices i and j are connected if and only if (Vi, Vj)
is a dense regular pair (with the appropriate parameters). In some sense, the regularity graph is an
approximation of the original graph, up to εn2 modifications. This approximation was good enough
when considering monotone properties in [11] (this notion of regularity graph is standard when
applying Lemma 3.4) but it is not good enough when dealing with induced graphs, which is the case
we consider here. The reason is that R only approximates the dense pairs of the equipartition, while
it carries no restriction or information on the sparse pairs in this equipartition. This is somewhat
analogous to the fact that standard homomorphism is not good enough for dealing with induced
subgraphs. Just like we defined colored-homomorphism we introduce colored regularity graphs as
follows; Let R be a complete graph on k vertices. Color (i, j) black if (Vi, Vj) is a very dense pair,
white if (Vi, Vj) is a very sparse pair, and grey if (Vi, Vj) is neither very dense nor very sparse (we omit
the precise definition of “very”). Note, that a colored regularity graph carries a lot more information
about G. Note also how this definition relates to a colored-homomorphism.

4.2 Proof strategy

Our overall strategy for the proof of Lemma 4.2 can be described as follows: given a graph G, which
is ε-far from being induced F-free, we will construct another “well structured” graph G̃ by making
less than εn2 edge modifications. This will guarantee that G̃ spans an induced copy of some F ∈ F .
One of the key ingredients of the proof will be that as G is close to G̃ and G̃ is “well structured”
we will be able to infer that G also contains a copy of some graph F ′ ∈ F in a way that will allow
us to infer that G actually contains many induced copies of some (possibly other) F ′′ ∈ F . For
simplicity, in the following overview, we will briefly argue how to find many induced copies of some
graph F ∈ F in the graph G̃ rather than G. The way to argue why G must also contain many copies
of some F ∈ F is that the densities of the a partition of G and G̃ are very similar. See the next
section for the full details.

Suppose a graph G is ε-far from being induced F-free. We would want to apply Lemma 3.4 on
G, then construct the colored regularity graph, and then argue that if we make few (less than εn2)
modifications in G then the new graph G̃, contains an induced copy of a graph F ∈ F . Furthermore,
as we make very few changes, the colored regularity graph is also a “good” approximation of G̃. We
would thus want to use Lemma 3.2, where for the sets U1, . . . , Uf we take the clusters V1, . . . , Vk of
the equipartition in order to get that there are many induced copies of F in G̃. However, we are
faced with the following two problems: (i) As F may be infinite, we don’t know the size of the graph
F ∈ F that we may expect to find in G̃. As Lemma 3.2 needs to know the size of F in advance, we
don’t know how small a γ should we choose in order to apply Lemma 3.4. (ii) Note that Lemma 3.2
allows the copies of F to have only one vertex in each of the sets Ui. However, the induced copy of
the graph F ∈ F that we may find in G̃ may have many vertices in each cluster Vi. Note further,
that Lemma 3.4 does not guarantee anything about the graphs induced by each Vi.

The main idea of the proof is to overcome the first problem by applying Lemma 3.8 with a suitable
function E that will guarantee that the partition is regular enough even for the largest graph F ∈ F
we may expect to find in G̃. For the second problem we apply Lemma 3.5 on each of the clusters
Vi in order to find subsets Wi,1, . . . ,Wi,f ⊂ Vi. Note that by Lemma 3.2, if for all j′, j′′ we have
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d(Wi,j′ ,Wi,j′′) ≥ 1/2 then Wi,1, . . . ,Wi,f span many cliques of size f , while if for all j′, j′′ we have
d(Wi,j′ ,Wi,j′′) ≤ 1/2 then they span many independent sets of size f . This is the main reason for
the vertex coloring of R, that is, we color vertex i of R black, if the sets returned by Lemma 3.5 are
very dense, and white if they are sparse. We note that overcoming both problems mentioned above
simultaneously adds another level of complication.

An important ingredient in the proof of Lemma 4.2 will be the following function. The reader
should think of the graphs R considered below as the set of colored regularity graphs discussed above,
and the parameter r as representing the size of R.

Definition 4.5 (The family Fr) For any (possibly infinite) family of graphs F , and any integer r
let Fr be the following set of colored complete graphs: A colored complete graph R belongs to Fr if
and only if it has at most r vertices and there is at least one F ∈ F such that F 7→c R.

In the proof of Lemma 4.2, the set Fr, defined above, will represent a subset of the colored
regularity graphs of size at most r. Namely, those R for which there is at least one F ∈ F such that
F 7→c R. We now arrive at the key definition used in the proof of Lemma 4.2.

Definition 4.6 (The function ΨF) For any family of graphs F and integer r for which Fr 6= ∅,
let

ΨF (r) = max
R∈Fr

min
{F∈F :F 7→cR}

|V (F )|. (3)

Define ΨF (r) = 0 if Fr = ∅. Therefore, ΨF (r) is monotone non-decreasing in r.

One of the key definitions in [11], is a function analogous to ΨF but with respect to standard
homomorphism. In our case as well, ΨF is one of the main tools with which we apply Lemma 3.8.
As by Lemma 3.4 we can upper bound the size of the regularity graph R, we can also upper bound
the size of the smallest graph F ∈ F for which F 7→c R.

As we have mentioned in the previous section, the main difficulty that prevents one from proving
Theorem 1 using Lemma 3.2 is that one does not know a priori the size of the graph that one may
expect to find in the equipartition. This leads us to define the following function

E(r) = γ3.2

( ε
6
, ΨF (r)

)
· δ3.5

(
ΨF (r), γ3.2(

ε

6
, ΨF (r))

)
. (4)

We next try to explain why the above defined E(r) when applied with Lemma 3.8 is useful in
resolving the two difficulties mentioned above. Recall that r stands for the size of the regularity
graph returned by Lemma 3.8. If we apply Lemma 3.8 with the above E then by the first term in
the definition of E we know that the sets Ui (recall the statement of Lemma 3.4) are regular enough
to allow one to apply Lemma 3.2 with the largest member of F , which we may need to work with.
This is due to invoking ΨF (r). The reason we need the second term in the definition of E is that we
intend to apply Lemma 3.5 on each of the sets Ui in order to obtain certain subsets of Ui. This term
guarantees that even the subsets of Ui will be “regular-enough” for our purposes (via Claim 5.1).

5 Proofs of Main Results

We start with the proof of Lemma 4.2, which is the main technical step in the proof of Theorem 1.
We then use Theorem 1 in order to prove Theorem 2. We assume the reader is familiar with the
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overview of the proof of Lemma 4.2 given in Section 4. For the proof we need the following simple
fact, which states that large enough subsets of a regular pair are themselves somewhat regular.

Claim 5.1 If (A,B) is a γ-regular pair with density η, and A′ ⊆ A and B′ ⊆ B satisfy |A′| ≥ ξ|A|
and |B′| ≥ ξ|B| for some ξ ≥ γ, then (A′, B′) is a max{2γ, γ/ξ}-regular pair.

Proof: As (A,B) is a γ-regular pair with density η, then by definition of a regular pair, for every
pair of subsets of A′ ⊆ A with |A′| ≥ ξ|A| ≥ γ|A| and B′ ⊆ B with |B′| ≥ ξ|B| ≥ γ|B| we have
|d(A′, B′)−d(A,B)| ≤ γ. Note, that if A′ and B′ are as above, then for every pair of subsets A′′ ⊆ A′
and B′′ ⊆ B′ satisfying |A′′| ≥ γ

ξ |A
′| and |B′′| ≥ γ

ξ |B
′| also satisfy |A′′| ≥ γ|A| and |B′′| ≥ γ|B|.

Therefore, by the γ-regularity of (A,B) we have |d(A′′, B′′) − d(A,B)| ≤ γ. We thus conclude that
|d(A′′, B′′)− d(A′, B′)| ≤ 2γ. Hence, (A′, B′) is max{2γ, γ/ξ}-regular.

Proof of Lemma 4.2: Fix any family of graphs F . Let ΨF (r) be the function from Definition 4.6
and define the following functions of r:

α(r) = αF (r) = δ3.5(ΨF (r), γ3.2(ε/6, ΨF (r))), (5)

β(r) = βF (r) = α(r) · γ3.2(ε/6, ΨF (r)), (6)

and

E(r) = EF (r) =

{
ε/6, r = 0
min{β(r), ε/6}, r ≥ 1

(7)

For the rest of the proof set
S(ε) = SF (ε) = S3.8(6/ε, E), (8)

and note that as we define S(ε) in terms of m = 6/ε we get by Proposition 3.10 that S(ε) is indeed
a function of ε only. We now set NF (ε) to be the following function of ε

N = NF (ε) = S(ε) (9)

(as we have just argued, S(ε) and therefore also N can be upper bounded by functions of ε only).
We postpone the definition of fF (ε) and δF (ε) till the end of the proof.

In the rest of the proof we consider any graph G on n vertices, with n ≥ N ≥ S(ε), which is
ε-far from being induced F-free. Given G, we can use Lemma 3.8 with m = 6/ε and E(r) as defined
in (7), in order to obtain an equipartition A of V (G) into 6/ε ≤ k ≤ S(ε) clusters V1, . . . , Vk (this
is possible by item (1) in Lemma 3.8). Throughout the rest of the proof, k will denote the size of
the equipartition returned by Lemma 3.8. By item (2) of Lemma 3.8, for every 1 ≤ i ≤ k we have
sets Ui ⊆ Vi each of size at least n/S(ε). Also, by item (3) of Lemma 3.8, every pair of these sets
is at least β(k)-regular (recall that E(k) ≤ β(k)). For each 1 ≤ i ≤ k, apply Lemma 3.5 on the
subgraph induced by G on each Ui with ` = ΨF (k) and γ = γ3.2(ε/6, ΨF (k)) in order to obtain the
appropriate sets Wi,1, . . . ,Wi,ΨF (k) ⊂ Ui, all of size at least α(k)|Ui| (recall the definition of α(r) in
(5)). It is crucial to note that we apply Lemma 3.5 on each of the sets U1, . . . , Uk after we apply
Lemma 3.8 on G, thus we “know” the value of k. The following observation will be useful for the
rest of the proof:

Claim 5.2 All the pairs (Wi,i′ ,Wj,j′) are γ3.2(ε/6,ΨF (k))-regular. Also, if i 6= j then we also have
|d(Wi,i′ ,Wj,j′)− d(Ui, Uj)| ≤ ε/6.
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Proof: Consider first pairs that belong to the same set Ui. In this case, the fact that any pair
(Wi,i′ ,Wi,j′) is γ3.2(ε/6,ΨF (k))-regular follows immediately from our choice of these sets, as we
applied Lemma 3.5 on each set Ui with γ = γ3.2(ε/6, ΨF (k)). Consider now pairs that belong
to different sets Ui, Uj . As was mentioned above, any pair (Ui, Uj) is β(k)-regular. As each set
Wi,j satisfies |Wi,j | ≥ α(k)|Ui|, we get from Claim 5.1 and the definition of β(k) that any pair
(Wi,i′ ,Wj,j′) is at least max{2β(k), β(k)/α(k)} ≤ γ3.2(ε/6,ΨF (k))-regular (here we use the fact
that α(k) ≤ 1/2, which is guaranteed by Comment 3.6). Finally, as each of the sets Wi,j satisfies
|Wi,j | ≥ α(k)|Ui| ≥ β(k)|Ui| ≥ E(k)|Ui| we get from the fact that each pair (Ui, Uj) is E(k)-regular
that |d(Wi,i′ ,Wj,j′)− d(Ui, Uj)| ≤ E(k) ≤ ε/6, thus completing the proof.

Recall that our goal is to show that G contains many induced copies of some graph F ∈ F . To
this end, we would like to apply Lemma 3.2 on some appropriately chosen subset of the sets Wi,j

defined above. As by Claim 5.2 all the pairs of sets Wi,j are regular (we will later infer that they
are regular enough for our purposes), we just have to find sets, whose densities will correspond to
the edge set of some graph F ∈ F (recall the statement of Lemma 3.2). To this end, we define a
graph G̃ that will help us in choosing the sets Wi,j . The graph G̃ is obtained from G by adding and
removing the following edges, in the following order:

1. For 1 ≤ i < j ≤ k such that |d(Vi, Vj) − d(Ui, Uj)| > ε/6, for all v ∈ Vi and v′ ∈ Vj the pair
(v, v′) becomes an edge if d(Ui, Uj) ≥ 1

2 , and becomes a non-edge if d(Ui, Uj) <
1
2 .

2. For 1 ≤ i < j ≤ k such that d(Ui, Uj) <
1
3ε, all edges between Vi and Vj are removed. For all

1 ≤ i < j ≤ k such that d(Ui, Uj) > 1− 1
3ε, all non-edges between Vi and Vj become edges.

3. If for a fixed i all densities of pairs from Wi,1, . . . ,Wi,l are less than 1
2 , all edges within the

vertices of Vi are removed. Otherwise, all the above densities are at least 1
2 (by the choice of

Wi,1, . . . ,Wi,l through Lemma 3.5), in which case all non-edges within Vi become edges.

In what follows we denote by d(A,B) and d̃(A,B) the edge density of the pair (A,B) in G and
G̃, respectively. The following claim states several relations between the densities of G and G̃.

Claim 5.3 For any i and i′ < j′ we either have d̃(Wi,i′ ,Wi,j′) = 1 and d(Wi,i′ ,Wi,j′) ≥ 1
2 or

d̃(Wi,i′ ,Wi,j′) = 0 and d(Wi,i′ ,Wi,j′) ≤ 1
2 . Also, for any i < j and any i′, j′ precisely one of the

following holds:

(1) d̃(Vi, Vj) = 1 and d(Wi,i′ ,Wj,j′) ≥ ε/6.

(2) d̃(Vi, Vj) = 0 and d(Wi,i′ ,Wj,j′) ≤ 1− ε/6.

(3) ε/6 ≤ d̃(Vi, Vj) ≤ 1− ε/6 and ε/6 ≤ d(Wi,i′ ,Wj,j′) ≤ 1− ε/6.

Proof: The proof follows easily from the three steps for obtaining G̃ from G. The first assertion of
the claim (concerning the relation between d̃(Wi,i′ ,Wi,j′) and d(Wi,i′ ,Wi,j′)) follows directly from the
third step of obtaining G̃. As for the second assertion (concerning the relation between d̃(Vi, Vj) and
d(Wi,i′ ,Wj,j′)), assume the first step was applied to a pair (Vi, Vj). In this case either d̃(Vi, Vj) = 1
and d(Ui, Uj) ≥ 1/2 or d̃(Vi, Vj) = 0 and d(Ui, Uj) ≤ 1/2. By Claim 5.2 we get that in the former case
for any i′, j′ we have d(Wi,i′ ,Wj,j′) ≥ 1/2−ε/6 ≥ ε/6, while in the latter d(Wi,i′ ,Wj,j′) ≤ 1/2+ε/6 ≤
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1 − ε/6, as needed. Note, that if the first step was applied to a pair (Vi, Vj) then the second step
has no effect, thus either (1) or (2) will hold at the end of the process. Assume the second step was
applied to a pair (Vi, Vj). In this case either d̃(Vi, Vj) = 1 and d(Ui, Uj) ≥ 1−ε/3 or d̃(Vi, Vj) = 0 and
d(Ui, Uj) ≤ ε/3. Again, by Claim 5.2, we get that in the former case d(Wi,i′ ,Wj,j′) ≥ 1− ε/3− ε/6 ≥
ε/6 while in the latter d(Wi,i′ ,Wj,j′) ≤ ε/3 + ε/6 ≤ 1− ε/6. If none of the two steps was applied to
(Vi, Vj), then we initially had |d(Vi, Vj)− d(Ui, Uj)| ≤ ε/6 and ε/3 ≤ d(Ui, Uj) ≤ 1− ε/3. Thus, item
(3) holds as in this case we have ε/6 ≤ d(Vi, Vj) = d̃(Vi, Vj) ≤ 1− ε/6 and by Claim 5.2 for any i′, j′

we have ε/6 ≤ d(Wi,i′ ,Wj,j′) ≤ 1− ε/6.

Claim 5.4 The graphs G and G̃ differ by less than εn2 edges.

Proof: As the number of pairs v ∈ Vi, v′ ∈ Vj is n2/k2, and by item (4) of Lemma 3.8 the number of

pairs 1 ≤ i < j ≤ k for which |d(Vi, Vj)− d(Ui, Uj)| > ε/6 = E(0) is at most E(0)
(
k
2

)
= 1

6ε
(
k
2

)
, in the

first step we changed less than 1
6ε
(
k
2

)
n2

k2
≤ 1

6εn
2 edges. In the second stage, if d(Ui, Uj) <

1
3ε then by

the modifications made in the first step, we have d(Vi, Vj) <
1
2ε. Similarly if d(Ui, Uj) > 1− 1

3ε then
by the modifications made in the first step, we have d(Vi, Vj) > 1− 1

2ε. Thus in this step we make at

most
(
k
2

)
1
2ε(n

2/k2) ≤ 1
2εn

2 modifications. Finally, in the third step we make at most k
(
n/k

2

)
≤ n2/k

modifications. As we apply Lemma 3.8 with m = 6/ε, we have n2/k ≤ 1
6εn

2. Altogether, we make
less than εn2 modifications.

We now turn to use the notion of colored-homomorphism, which was introduced in Section 4. For
the rest of the proof, let R be the following colored complete graph on k vertices. We color i ∈ V (R)
white if Vi is edgeless in G̃. Otherwise (i.e. Vi is a complete graph in G̃, by step (3) in obtaining G̃
from G) we color vi black. If d̃(Vi, Vj) = 0 we color (i, j) white, if d̃(Vi, Vj) = 1 we color (i, j) black,
otherwise (i.e. ε/6 ≤ d̃(Vi, Vj) ≤ 1− ε/6, by Claim 5.3) we color (i, j) grey. Our goal in the following
two claims is to identify a graph F ∈ F , which we will later show to be abundant in G.

Claim 5.5 G̃ spans an induced copy of a graph F ′ ∈ F . Moreover, F ′ 7→c R.

Proof: As G is by assumption ε-far from being induced F-free, and by Claim 5.4 G̃ is obtained from
G by making less than εn2 modifications (of adding and removing edges) G̃ spans an induced copy
of a graph F ′ ∈ F . We claim that there is a colored-homomorphism from F ′ to R. Indeed, consider
a mapping ϕ : V (F ′) 7→ V (R) which maps all the vertices of F ′ that belong to Vi to vertex i of R.
We claim that this is a colored-homomorphism from F ′ to R. Suppose first that (u, v) is an edge of
F ′. If u and v belong to the same vertex set Vi, then Vi must be complete in G̃. By definition of
ϕ they are both mapped to i ∈ V (R) and by our coloring of R, vertex i is colored black. If u ∈ Vi
and v ∈ Vj then it cannot be the case that d̃(Vi, Vj) = 0, hence (i, j) ∈ E(R) was not colored white.
Similarly, if (u, v) is not an edge of F ′, then if u and v belong to the same vertex set Vi, then Vi must
be edgeless. Hence, vertex i is colored white. If u ∈ Vi and v ∈ Vj then it cannot be the case that
d′(Vi, Vj) = 1, hence (i, j) ∈ E(R) was not colored black. We thus get that ϕ satisfies the definition
of a colored-homomorphism.

Claim 5.6 There is a graph F ∈ F of size f ≤ ΨF (k) for which F 7→c R.
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Proof: By Claim 5.5, there is a graph F ′ ∈ F for which F ′ 7→c R. Therefore, R belongs to Fk
(recall Definition 4.5 and the fact that R is of size k). It thus follows from the definition of ΨF (see
Definition 4.6) that F contains a graph of size at most ΨF (k) such that F 7→c R.

The reader may want to recall at this stage that in order to apply Lemma 3.2 with respect to a
graph on f vertices we need f distinct vertex sets. The following proposition will enable us to apply
Lemma 3.2 on an appropriately chosen f sets of vertices in order to infer that G contains many
induced copies of F .

Proposition 5.7 Let F be the graph from Claim 5.6 and denote its vertex set by {1, . . . , f} with
f ≤ ΨF (k). Let ϕ : V (F ) 7→ V (R) be the colored homomorphism from F to R, which is guaranteed
to exist by Claim 5.6, and put ti = ϕ(i) for every i ∈ V (F ). The following holds with respect to the
sets Wt1,1, . . . ,Wtf ,f :

• If (i, j) ∈ E(F ) then d(Wti,i,Wtj ,j) ≥ ε/6.

• If (i, j) 6∈ E(F ) then d(Wti,i,Wtj ,j) ≤ 1− ε/6.

Proof: First, note that we choose the sets as Wt1,1, . . . ,Wtf ,f in order to make sure that we do not
choose the same Wi,i′ twice, because as we may need to use several sets Wi,j from the same set Ui
(in the case that ti = tj for some i 6= j). Also, observe that as f ≤ ΨF (k) and we obtained through
Lemma 3.5 ` = ΨF (k) sets Wi,j from each Ui, we can indeed choose the sets in the above manner,
even if all the chosen sets Wi,j belong to the same Ui.

Assume that (i, j) ∈ E(F ). As ϕ is a colored homomorphism from F to R we conclude that
either ϕ(i) = ϕ(j) = t and t ∈ V (R) is colored black or ϕ(i) = t 6= t′ = ϕ(j) and (t, t′) ∈ E(R) is
colored black or grey. By the way we colored R in the paragraph preceding Claim 5.5 this means that
either ϕ(i) = ϕ(j) = t and Vt is a complete graph in G̃ or ϕ(i) = t 6= t′ = ϕ(j) and d̃(Vt, Vt′) ≥ ε/6.
Finally, by Claim 5.3 this means that in both cases d(Wti,i,Wtj ,j) ≥ ε/6. The case of (i, j) 6∈ E(F )
is analogous.

The proof of Lemma 4.2 now follows easily from the above proposition. Consider the sets
Wt1,1, . . . ,Wtf ,f as in Proposition 5.7. By Claim 5.2 any pair of these sets is at least γ3.2(ε/6,ΨF (k))-

regular in G. Moreover, by Proposition 5.7, these f ≤ ΨF (k) sets satisfy in G (not in G̃) the edge
requirements of Lemma 3.2, which are needed in order to infer that they span many induced copies
of F (recall that F has at most ΨF (k) vertices). Thus, Lemma 3.2 ensures that Wt1,1, . . . ,Wtf ,f span

in G (not in G̃) at least

δ3.2(ε/6,ΨF (k)) ·
f∏
i=1

|Wti,i| (10)

induced copies of F . We next show that we can take F as the graph in the statement of Lemma 4.2.
To show this, we should only define the functions fF (ε) and δF (ε) (the function NF (ε) is defined in
(9)). As |Ui| ≥ n/S(ε) and |Wti,i| ≥ α(k)|Ui|, we conclude from (10) that G contains at least

δ3.2(ε/6,ΨF (k)) · (α(k)/S(ε))f · nf (11)
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induced copies of F . Thus, as f ≤ ΨF (k), k ≤ S(ε) and by the monotonicity properties of all the
functions considered in the proof, we can replace k with S(ε) and f with ΨF (S(ε)) and thus define

fF (ε) = ΨF (S(ε)). (12)

Similarly, we can replace k and f in (11) in order to define

δF (ε) =
δ3.2(ε/6,ΨF (S(ε)))

(S(ε)/α(S(ε)))ΨF (S(ε))
. (13)

This completes the proof of Lemma 4.2.

Before proving Theorem 1 we briefly discuss the notions of uniform and non-uniform testing,
which were defined and studied in [11] and [10]. We give here only a rough overview of the result of
[10]. A tester is defined in [10] as non-uniform if it knows ε in advance, and therefore should be able
to distinguish between graphs that satisfy P from those that are ε-far from satisfying it (only for
that specific ε). A tester is uniform if it can accept ε as part of the input. The main result of [10] is
that there are monotone graph properties, which have non-uniform one-sided testers but cannot be
tested by a uniform (one-sided or two-sided) testers. The main reason is that the are monotone and
decidable properties (in fact even in coNP ) with the property that the query complexity of testing
them cannot be computed given only the value of ε. It thus follows that we cannot design uniform
testers for all the hereditary graph properties.

Note, that in (9), (12) and (13) the only function that may be non-computable is ΨF . Thus
whenever this function is computable so are the three functions of Lemma 4.2. As the proof of
Theorem 1 suggests (see below), once these functions are computable, the tester is uniform. Finally,
we note that for any reasonable graph property, and in particular those that were discussed in
Subsection 2.1, ΨF is indeed computable (not necessarily very efficiently). Thus, these properties
are testable in the usual sense. We thus assume henceforth that F is such that the functions NF (ε),
fF (ε) and δF (ε) are computable. Note however, that even if they are not computable, we still get a
non-uniform tester for any (decidable) hereditary graph property.

Proof of Theorem 1: We show that any hereditary property can be tested with one-sided error even
by an oblivious tester. Fix any hereditary graph property P, and let F be the family of forbidden
induced subgraphs of P as in Definition 4.1. Let NF (ε), fF (ε) and δF (ε) be the functions of Lemma
4.2 and assume they are computable. To design our one-sided error tester for P we just need to
note that if a graph on n vertices contains at least δnf induced copies of a graph F on f vertices,
then sampling 2/δ sets of f vertices each, which is a total of 2f/δ, finds an induced copy of F with
probability at least 2/3.

Given a graph G the one-sided error tester for P works as follows; it asks the oracle for a subgraph
of G induced by a randomly chosen set of max{NF (ε), 2fF (ε)/δF (ε)} vertices. It declares G to be
a graph satisfying P if and only if the induced subgraph on S satisfies P. Clearly, if G satisfies P,
then as P is hereditary the algorithm accepts G with probability 1. If G is ε-far from satisfying P
and G has less that NF (ε) vertices, the algorithm answers correctly with probability 1, as in this
case S spans G. If G has more than NF (ε) vertices, then by Lemma 4.2 there is a member of F
of size f ≤ fF (ε) such that G spans δF (ε)nf induced copies of F . By the observation from the
preceding paragraph, S spans an induced copy of F with probability at least 2/3. As F ∈ F and
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P is hereditary, we get that with probability at least 2/3, the graph spanned by S does not satisfy
P. Hence, the tester rejects G with probability at least 2/3. Also, its query complexity is always a
function of ε only.

Proof of Theorem 2: Let P be a semi-hereditary property and let H be the hereditary graph
property as in Definition 2.2. We next show that P has an oblivious one-sided error tester. As H is
hereditary we get from Theorem 1 and the fact that its proof actually gives an oblivious tester for
H that there is a function QH(ε) such that H can be tested by an oblivious one-sided error tester
with query complexity QH(ε). The oblivious tester T we design for testing P works as follows: its
query complexity is Q(ε) = max{M(ε/2), QH(ε/2)} (the function M is part of Definition 2.2). After
getting from the oracle the randomly chosen induced subgraph, which we denote by G′, the tester T
proceeds as follows: If G′ is of size strictly smaller than Q(ε), the algorithm accepts if and only if G′

satisfies P. If G′ is of size at least Q(ε) the algorithm accepts if and only if G′ satisfies H.
We turn to show that T is indeed an oblivious one-sided error tester for P. We first observe

that T satisfies the definition of an oblivious tester. We also note that if the input graph is of size
less than Q(ε) then we accept the input if and only if it satisfies P because by the definition of an
oblivious tester this means that the input graph was of size less than Q(ε) and therefore the oracle
returned the entire input graph. Let us now consider an input of size at least Q(ε) and recall that
Q(ε) ≥ M(ε/2). If this input satisfies P then by the first item of Definition 2.2 it also satisfies H,
and as in this case we accept if and only if G′ satisfies H this means that T accepts the input. Hence,
T has one-sided error. Suppose now that the input is ε-far from satisfying P. This means that after
adding/deleting 1

2εn
2 edges, the input is still ε

2 -far from satisfying P. By item 2 of Definition 2.2 and
as in this case the input must be of size at least M(ε/2), this means that after adding/deleting 1

2εn
2

edges, the input still contains an induced subgraph not satisfying H. In other words, this means that
the input is at least ε

2 -far from satisfying H. As Q(ε) ≥ QH(ε/2) we infer that with probability at
least 2/3 the graph G′ spans an induced subgraph not satisfying H and therefore G′ does not satisfy
H (as it is hereditary). As in this case T accepts if and only if G′ satisfies H, this means that T will
reject an input that is ε-far from satisfying P with probability at least 2/3.

Assume now that property P has a one-sided error oblivious tester T . Our goal is to show the
existence of a hereditary property H as in Definition 2.2. Let F be the following family of graphs:
a graph F on |V (F )| vertices belongs to F if (i) For some ε > 0 the query complexity of T satisfies
Q(ε) = |V (F )| (recall that the query complexity of T is a function of ε only). (ii) If for this ε the
sample of vertices spans a graph isomorphic to F , then T rejects the input with positive probability.
We claim that we can take H in Definition 2.2 to be the property of being induced F-free.

To establish the first item of Definition 2.2 it is enough to show that there is no graph G satisfying
P, which spans an induced subgraph isomorphic to a graph F ∈ F . Suppose such a G exists, and
consider the execution of T on G with an ε for which Q(ε) = |V (F )|. By definition of F we get that T
asks for a random subgraph of G of size |V (F )|, and that if T gets a graph isomorphic to F it rejects
G with positive probability. As we assume that G spans an induced copy of a graph isomorphic to
F , this means that T has a non-zero probability of rejecting G, contradicting our assumption that
T is one-sided.

To establish the second item of Definition 2.2, we claim that we can take M(ε) = Q(ε). Indeed,
consider a graph G on at least Q(ε) vertices that is ε-far from satisfying P. As T is a tester for P it
should reject G with non-zero probability. By definition of an oblivious tester and as G has at least
Q(ε) vertices, this means that G must contain an induced subgraph F , of size precisely Q(ε), with
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the property that if T gets F from the oracle then it rejects G. By definition of F this means that
F ∈ F . Hence, we can take F itself to be the graph not satisfying H.

6 Proofs of Additional Results

In this Section we give the proofs of Theorems 3, 4 and 5. We start with the proof of Theorem
3. Note that when considering the notion of ε-fardel there is no sense in considering hereditary
properties, which are not satisfied by some independent set, as in this case any graph with even a
single independent set (say, of size 3) is arbitrarily far from satisfying the property. Moreover, finding
this independent set requires Ω(n2) queries.

Our main tool for the proof of Theorem 3 is the following result, which is essentially proved by
Frankl and Füredi in [21].

Theorem 7 ([21]) For any graph F = (R, T ), with |T | = t > 0 edges there is a constant δ = δ(F )
with the following property: For any integer n there is a graph Gn = (V,E) on n vertices, which
consists of (1− n−δ)

(
n
2

)
/t induced copies of of F , such that no two copies of F share an edge.

Proof of Theorem 3: By the discussion above we may assume that P has at least one forbidden
induced subgraph F = (R, T ) and that F is not an independent set. Put t = |T | and for any n
let Gn be the graph, whose existence is guaranteed by Theorem 7. As all these graphs consist of
(1−n−δ)

(
n
2

)
/t > n2/4t induced copies of F , where non of the copies share an edge, these graphs are

all at least 1
4t -fardel from being induced F free. Hence, they are also at least 1

4t -fardel from satisfying
P. On the other, as we assume that any clique satisfies P, and G contains (1− n−δ)

(
n
2

)
edges, any

randomized algorithm with query-complexity much smaller than nδ cannot testdel property P. The
reason is that the algorithm has a negligible probability of distinguishing between the graphs Gn,
which are 1

4t -fardel from satisfying P, and a clique of size n, which by assumption satisfies P.

Suppose we define ε-faradd and testableadd but now allowing only edge additions. One can easily
see that simple modifications of the proof of Theorem 3 imply that the same lower bound can be
proved for testingadd any hereditary property, which is not closed under edge additions and which is
satisfied by any edgeless graph.

We continue with the proof of Theorem 4. As most of the technical details are very similar to
those appearing in [4] we only discuss the main idea needed to obtain the extension of the result of
[4]. We start with a useful result of [4].

Definition 6.1 (Indistinguishability) Two graph properties P and Q are called indistinguishable
if for every ε > 0 there exists N = N(ε) satisfying the following; A graph on n ≥ N vertices satisfying
one of the properties is never ε-far from satisfying the other.

Lemma 6.2 ([4]) If P and Q are indistinguishable graph properties, then P is testable if and only
if Q is testable.

We next define an extension of the notion of colorability. A similar notion was used in [4], where
F was restricted to be finite.
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Definition 6.3 (F-colorability) Suppose we are given an integer c, and a (possibly infinite) family
(with repetitions) F of graphs, each of which is provided with a c-coloring (i.e. a function from its
vertex set to {1, . . . , c} which is not necessarily a proper c-coloring in the usual sense). A c-coloring
of a graph G is called an F-coloring if no member of F appears as an induced subgraph of G with an
identical coloring. A graph G is called F-colorable if there exists an F-coloring of it.

Note, that for any family of colored graphs F (finite or infinite), being F-colorable is a hereditary
graph property. We thus get the following from Theorem 1:

Lemma 6.4 For any family of colored graphs F , being F-colorable is testable.

Note, that by Theorem 1 being F-colorable is in fact testable with one-sided error, but we do
not need this stronger assertion here. The following lemma shows the relevance of the notion of
F-colorability for the proof of Theorem 4.

Lemma 6.5 For every first order property P of the form

∃x1, . . . , xt

∞∧
i=1

∀y1, . . . , yi Ai(x1, . . . , xt, y1, . . . , yi)

there exists a (possibly infinite) family F , of (2t+(t
2) + 1)-colored graphs such that the property P is

indistinguishable from the property of being F-colorable.

Proof: (sketch) The proof uses ideas very similar to those used to prove Lemma 2.2 in [4] and is
thus omitted. We briefly mention that one can use the same technique of [4] along with the fact that
one is allowed to put in F infinitely many forbidden colored subgraphs.

Proof of Theorem 4: Immediate from Lemmas 6.2, 6.4 and 6.5.

We conclude this section with the proof of Theorem 5.

Proof of Theorem 5: For each of the hereditary properties Pi, let Fi be the family of forbidden
induced subgraphs of Pi as in Definition 4.1, and let F = F1

⋃
F2
⋃
F3
⋃
. . .. Clearly, a graph G

satisfies all the properties of P if and only if it is induced F-free. Consider a graph G, which is ε-far
from satisfying all the properties of P. In this case G is also ε-far from being induced F-free, hence,
by Lemma 4.2, there is a graph F ∈ F of size f = fF (ε) such that G contains δF (ε)nf induced copies
of F . Note, that adding or removing an edge from G destroys at most

(
n
f−2

)
≤ nf−2 induced copies

of F . Thus, one must add or delete at least δF (ε)n2 edges to G in order to turn it into a graph
containing no induced copy of F . Let i be such that F ∈ Fi. We may now infer that G is δF (ε)-far
from satisfying Pi. Finally, note that as F is determined by P, we can also say that G is δP(ε)-far
from satisfying Pi.
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7 Concluding Remarks and Open Problems

• Our main result in this paper can be considered a characterization of the natural graph proper-
ties that are testable with one-sided error. Thus, a natural and interesting open problem related
to this paper is to complete the characterization of the graph properties that are testable with
one-sided error by arbitrary testers, and not just oblivious ones.

• Theorem 1 asserts that any hereditary property is testable with one-sided error. However,
the upper bounds on the query complexity, which this theorem guarantees are huge. Even for
rather simple properties, these bounds are towers of towers of exponents of height polynomial
in 1/ε. Some specific properties, such as k-colorability, have far more efficient testers, whose
query complexity is polynomial in 1/ε (see [6]). For others, like being H-free (that is, containing
no copy of H as a (not necessarily induced) subgraph), it is known that whenever H is not
bipartite, there is no tester (one-sided or two-sided) whose query complexity is polynomial in
1/ε (see [1], [9]). Recall that a hereditary property P is equivalent to being FP -free for a
possibly infinite family of graphs FP . The hardness of testing hereditary properties for which
FP is finite is (relatively) well understood, as it follows from the main result of [7] that if
FP has a graph on at least 5 vertices, then there is no tester (one-sided or two-sided) for P,
whose query complexity is polynomial in 1/ε. When FP is infinite the situation is much more
complicated, and there are no general results which guarantee or rule out the possibility of
designing testers with query complexity polynomial in 1/ε. In particular, a natural intriguing
and probably challenging problem is the following:

Which hereditary graph properties can be tested with poly(1/ε) queries?

As a special case of this problem, it seems interesting to study the query complexity needed to
test the natural graph properties that were discussed in Subsection 2.1.

• Theorem 2 gives a precise characterization of the graph properties that have oblivious one-sided
testers. As we have explained in Section 1, any natural property that can be tested, can be
tested by an oblivious tester. It may thus be simpler, but still very interesting, to resolve the
following problem:

Which graph properties have (possibly two-sided) oblivious testers?

Note, that the definition of an oblivious tester implicitly assumes that the query complexity of
such a tester is a function of ε only.

• Fischer and Newman [19] have recently shown that every testable graph property is also es-
timable, namely, for any such property one can estimate how far is a given graph from satisfying
the property (in this paper this quantity is denoted by ε) while making a constant number of
queries. Combining Theorem 1 and the result of [19] we get that any hereditary property is
estimable.
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[21] P. Frankl and Z. Füredi, Colored packings of sets in combinatorial design theory, Annals of
Discrete Math. 34 (1987), 165-178.

[22] O. Goldreich, Combinatorial property testing - a survey, In: Randomization Methods in Algo-
rithm Design (P. Pardalos, S. Rajasekaran and J. Rolim eds.), AMS-DIMACS (1998), 45-60.

[23] O. Goldreich, S. Goldwasser and D. Ron, Property testing and its connection to learning and
approximation, Proc. of 37th Annual IEEE FOCS, (1996), 339–348. Also, JACM 45(4): 653-750
(1998).

[24] O. Goldreich and D. Ron, Property Testing in Bounded-Degree Graphs, Proc. of STOC 1997,
406-415.

[25] O. Goldreich and L. Trevisan, Three theorems regarding testing graph properties, Proc. 42nd

IEEE FOCS, IEEE (2001), 460-469. Also, Random Structures and Algorithms, 23(1):23-57,
2003.

[26] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, 1980.
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János Bolyai Math. Soc., Budapest (1996), 295–352.

[28] L. Lovász and B. Szegedy, Graph limits and testing hereditary graph properties, manuscript,
2006.

[29] T. A. McKee and F.R. McMorris, Topics in Intersection Graph Theory, SIAM, Philadel-
phia, PA, 1999.

[30] I. Newman, Testing of functions that have small width branching programs, Proc. of 41th FOCS
(2000), 251-258.

[31] M. Parnas and D. Ron, Testing the diameter of graphs, Random structures and algorithms, 20
(2002), 165-183.
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