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Asymptotic Equivalence of Symplectic Capacities

Efim D. Gluskin and Yaron Ostrover

Abstract

A long-standing conjecture states that all normalized symplectic capacities coincide

on the class of convex subsets of R2n. In this note we focus on an asymptotic (in the

dimension) version of this conjecture, and show that when restricted to the class of

centrally symmetric convex bodies in R2n, several symplectic capacities, including the

Ekeland–Hofer–Zehnder capacity, the displacement energy capacity, and the cylindrical

capacity, are all equivalent up to an absolute constant.

1 Introduction

Consider the space R
2n equipped both with the standard symplectic form ω “ dp^ dq, and

with the standard inner product x¨, ¨y. Note that under the usual identification between

R
2n and C

n, these two structures are the real and the imaginary parts, respectively, of

the standard Hermitian inner product in C
n. Moreover, one has that ωpv, uq “ xv, Juy,

where J is the standard complex structure in R
2n » C

n. Symplectic capacities, whose

axiomatic definition below is due to Ekeland and Hofer [4], are numerical invariants which

roughly speaking measure the symplectic size of sets. More precisely, let B2nprq stand for

the Euclidean open ball of radius r, and Z2nprq for the cylinder B2prq ˆ C
n´1.

Definition 1.1. A symplectic capacity on pR2n, ωq associates to each subset U Ă R
2n a

number cpUq P r0,8s such that the following hold:

pP1q cpUq ď cpV q whenever U Ď V (monotonicity),

pP2q c
`
ψpUq

˘
“ |α| cpUq for ψ P DiffpR2nq such that ψ˚ω “ αω (conformality),

pP3q 0 ă c
`
B2nprq

˘
, and c

`
Z2nprq

˘
ă 8 (nontriviality).

Moreover, a symplectic capacity is said to be normalized if in addition it satisfies

pP4q c
`
B2nprq

˘
“ c

`
Z2nprq

˘
“ πr2 (normalization).

Note that propery pP2q implies that c is a symplectic invariant which scales like a

two-dimensional invariant, and pP3q that symplectic capacities significantly differ from any

volume related invariants. The first examples of symplectic capacities were constructed by

Gromov in [9], where he developed and used pseudoholomorphic curve techniques to prove a

striking symplectic rigidity result, nowadays known as Gromov’s “non-squeezing theorem”.

It states that one cannot map a ball inside a thinner cylinder by a symplectic embedding.
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More precisely, the theorem asserts that if r ă 1, there is no symplectic embedding of the

unit ball B2n into the cylinder Z2nprq. This naturally leads to the definition of two nor-

malized symplectic capacities: the Gromov width, given by cpUq “ suptπr2 |B2nprq s
ãÑ Uu;

and the cylindrical capacity, cpUq “ inftπr2 |U s
ãÑ Z2nprqu. Here

s
ãÑ stands for symplectic

embedding. It is not hard to verify that these two capacities are the smallest and largest

possible normalized symplectic capacities, respectively.

Shortly after Gromov’s work [9] many other symplectic capacities were constructed,

reflecting different geometrical and dynamical properties. Among these are the Hofer–

Zehnder capacity [13, 14], the Ekeland–Hofer capacities [4, 5], the displacement energy [11],

the Floer–Hofer capacity [7, 8], spectral capacities [6, 19, 26], and more recently, Hutchings’

embedded contact homology (ECH) capacities [15]. These quantities play an important role

in symplectic geometry, and their properties, interrelations, and applications to symplectic

topology and Hamiltonian dynamics are intensively studied (see e.g., [3] and [17] for two

excellent surveys).

In the two-dimensional case, Siburg [23] showed that any symplectic capacity of a com-

pact connected domain with smooth boundary Ω Ă R
2 equals its Lebesgue measure. In

higher dimensions symplectic capacities do not coincide in general. A theorem by Her-

mann [10] states that for any n ě 2 there is a bounded star-shaped domain S Ă R
2n with

cylindrical capacity cpSq ě 1, and arbitrarily small Gromov width cpSq. Still, for a large

class of sets in R
2n, including ellipsoids, polydiscs, and convex Reinhardt domains, all nor-

malized symplectic capacities coincide [10]. In [25] Viterbo showed that for any bounded

convex set K of R2n one has cpKq ď 4n2cpKq. Moreover, it was conjectured [10, 12, 25]

that:

Conjecture 1.2. For any convex body K in R
2n one has cpKq “ cpKq.

Here, by a convex body we mean a compact convex subset of R
2n with non-empty

interior. The above conjecture is particularly challenging due to the scarcity of examples of

convex domains for which capacities have been computed. Moreover, an affirmative answer

to Conjecture 1.2 would in particular implies Viterbo’s volume-capacity conjecture [25],

and it was recently shown that the latter would in turn settle a 70-years old question in

convex geometry known as the Mahler conjecture. For more information regarding these

applications of Conjecture 1.2 see [1] and [20].

A somewhat more modest question in the same direction (c.f. Problem 1.4 in [10],

Problem 8 in [3], and Section 5 in [20]) is whether Conjecture 1.2 above holds asymptotically

in the dimension, i.e.,

Question 1.3. Is there is an absolute constant A ą 0 such that for every convex body K

in R
2n one has

cpKq ď AcpKq.

Here we will give a partial answer to this question. Before we state our main result

we need to recall the definition of the Ekeland–Hofer–Zehnder capacity. The restriction of
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the symplectic form ω to a smooth closed hypersurface S Ă R
2n canonically defines a 1-

dimensional subbundle, kerpω|Sq, whose integral curves comprise the characteristic foliation

of S. In other words, a closed characteristic of S is an embedded circle in S tangent to the

canonical line bundle

SS “ tpx, ξq P TS |ωpξ, ηq “ 0 for all η P TxSu.

Recall that the symplectic action of a closed curve γ is defined by Apγq “
ş
γ
λ, where

λ “ pdq is the Liouville 1-form. The action spectrum of S is

LpSq “ t|Apγq| ; γ is a closed characteristic on Su.

In [4] and [14] it was proved that for a smooth convex body K Ă R
2n, the two aforemen-

tioned Hofer–Zehnder and Ekeland–Hofer capacities coincide, and are given by the minimal

action over all closed characteristics on the boundary of the body K, i.e.,

c
EH

pKq “ c
HZ

pKq “ min LpBKq. (1)

We remark that although the above definition of closed characteristics, as well as the equal-

ities in p1q, were given only for the class of convex bodies with smooth boundary, they

can naturally be generalized to the class of convex sets in R
2n with nonempty interior (see

e.g., [2]). In what follows, we refer to the coinciding Ekeland–Hofer and Hofer–Zehnder

capacities on this class as the Ekeland–Hofer–Zehnder capacity, and denote it by c
EHZ

.

Our first result in the note is the following. Recall that a convex body K Ă R
n is said

to be centrally symmetric if K “ ´K.

Theorem 1.4. For every centrally symmetric convex body K in R
2n,

cpKq ď 4c
EHZ

pKq.

Remark 1.5. Other symplectic capacities, like the spectral capacities cσ , which are based

on a choice of an action selector σ, and the displacement energy d, are known to be bigger

than or equal to the Hofer–Zehnder capacity (see e.g., Section 2.3.4 in [3]). Thus, it fol-

lows from Theorem 1.4 that on the class of symmetric convex sets in R
2n, the normalized

symplectic capacities c
EHZ

, d, cσ and c, are all coincide up to an absolute constant.

In fact, we prove a slightly stronger result than Theorem 1.4 which shows that for a

centrally symmetric convex bodyK Ă R
2n, the aforementioned symplectic capacities are all

equivalent to yet another quantity associated with the bodyK. More precisely, for a convex

body K Ă R
2n with 0 P IntpKq, we denote by K˝ “ ty P R

2n | xx, yy ď 1, for every x P Ku
the polar body of K:. Moreover, we denote

}J}
K˝ÑK

:“ sup
v,uPK˝

xJv, uy.

:As a matter of fact, the polar body K
˝ should be defined as a subset of the dual space of R2n. However,

since we have fixed a scalar product in our setting, we will identify the latter space with R
2n itself.
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To explain the reason for this notation, we remark that when the convex bodyK is centrally

symmetric, }J}
K˝ÑK

is the operator norm of the complex structure J , when the latter is

considered as a linear map between the normed spaces J : pR2n, } ¨ }K˝q Ñ pR2n, } ¨ }Kq, i.e.,

}J}
K˝ÑK

“ sup
v,uPK˝

xJv, uy “ sup
v : }v}K˝ ď1

}Jv}K .

Here we use the standard identification between normed spaces and centrally symmetric

convex bodies, i.e., for a non-empty centrally symmetric convex body K in R
2n we denote

by } ¨ }K the norm on R
2n induced by K, that is, } ¨ }K “ inftr : x P rKu.

Theorem 1.6. For every centrally symmetric convex body K in R
2n,

1

}J}
K˝ÑK

ď c
EHZ

pKq ď cpKq ď 4

}J}
K˝ÑK

. (2)

Remark 1.7. In fact, in the proof of Theorem 1.6 we use the centrally symmetric assump-

tion on the body K only for the right-most inequality of p2q. The first two inequalities on

the left-hand side hold for every convex body K in R
2n.

Note that Theorem 1.4 follows immediately from Theorem 1.6. Moreover, we wish to

emphasize that Theorem 1.6 provides in many cases an efficient way to approximate the

numerical value of the capacities c
EHZ

pKq and cpKq (for centrally symmetric convex bodies),

as the quantity }J}
K˝ÑK

is a-priori much easier to compute than the above mentioned

symplectic capacities.

Another by-product of Theorem 1.6, which may be of independent interest, concerns

the equivalence of the cylindrical capacity and the Gromov width capacity with their lin-

earized versions clin and clin respectively. The definitions of these two quantities are given

in Definitions 2.4 and 3.1 below. It turns out that for centrally symmetric convex bodies

in R
2n, the cylindrical capacity c is asymptotically equivalent to its linearized version clin,

while surprisingly enough, this is false for the Gromov width capacity. More precisely,

Theorem 1.8. For every centrally symmetric convex body K in R
2n,

cpKq ď clinpKq ď 4cpKq.

On the other hand, there exist a centrally symmetric convex body rK in R
2n such that

clinp rKq ď π, while cp rKq ě
c
n

2
.

Note that an immediate corollary from Theorem 1.8 is that the linearized versions of

the Gromov width and the cylindrical capacity are not asymptotically equivalent.

Notations: We denote by Kn the class of convex bodies of Rn, i.e., compact convex sets

with non-empty interior. For K P Kn, we denote by hK : Rn Ñ R its support function

given by hKpuq “ suptxx, uy : x P Ku. Also, we denote by gK : Rn Ñ R the gauge function

gKpxq “ inftr|x P rKu associated with K. Note that when K is centrally symmetric, i.e.,
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K “ ´K, the gauge function gKpxq is a norm, and is denoted by }x}K . Furthermore, when

0 P intpKq, one has that hK “ gK˝ , where K˝ “ ty P R
n | xx, yy ď 1, for every x P Ku is

the polar body of K. The Euclidean norm will be denoted by | ¨ |. Finally, we denote by S
n

the unit sphere in R
n`1, i.e., Sn “ tx P R

n`1 | |x| “ 1u.

Acknowledgments: The authors are grateful to Shiri Artstein-Avidan and Boaz Klartag

for many stimulating discussions on various topics related to convex and symplectic geome-

try. The second-named author was partially supported by the European Research Council

(ERC) under the European Unions Horizon 2020 research and innovation programme, start-

ing grant No. 637386, and by the ISF grant No.1274/14.

2 Proof of Theorem 1.6

Note first that there is no loss of generality in assuming that in addition to being compact

and with non-empty interior, all convex bodies considered also have a smooth boundary,

and contain the origin in their interior. Indeed, affine translations in R
2n are symplectomor-

phisms, which accounts for the assumption that the origin is in the interior. Secondly, once

Theorem 1.6 is proved for smooth convex domains, the general case follows by standard

approximation arguments, as symplectic capacities are continuous on the class of convex

bodies with respect to the Hausdorff distance (see e.g. [18] page 376).

Moreover, in what follows we will make repeated use of the following well-known geo-

metric observation form convex geometry.

Lemma 2.1. Let gK be the gauge function associated with a smooth convex body K. Then,

when restricted to the boundary BK, the gradient ∇gK is a surjective map ∇gK : BK Ñ BK˝.

A proof of Lemma 2.1 can be found e.g., in Subsection 1.7.1 of [22]. We turn now to

the proof of Theorem 1.6, and start with the following proposition.

Proposition 2.2. For every smooth convex body K P K2n,

1

}J}
K˝ÑK

ď c
EHZ

pKq.

To prove Proposition 2.2 we first need some preparation. Recall (see e.g., Chapter 1

of [13]) that the classical geometric problem of finding closed characteristics on BK has

the following dynamical interpretation. If the boundary BK is represented as a regular

energy surface tx P R
2n |Hpxq “ 1u of a smooth Hamiltonian function H : R2n Ñ R, then

the restriction to BK of the Hamiltonian vector field XH , defined by iXH
ω “ ´dH, is a

section of the line bundle SBK . Thus, the images of the periodic solutions of the classical

Hamiltonian equation 9x “ XHpxq “ J∇Hpxq on BK are precisely the closed characteristics

of BK. In particular, the closed characteristics do not depend (up to parametrization) on

the choice of the Hamiltonian function. Indeed, if the energy surface can be represented

as a regular level set of some other function F : R2n Ñ R, then XH “ αXF on BK for

some scalar function α ‰ 0, and the corresponding Hamiltonian equations have the same
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solutions up to parametrization. Finally, note that for a smooth convex body K the gauge

function gK is a defining function for K, i.e., K “ g´1
K pr0, 1sq, BK “ g´1

K p1q, and 1 is a

regular value of gK .

Lemma 2.3. Let γ : r0, T s Ñ BK be a solution of the Hamiltonian equation 9γ “ J∇gKpγq,
with γp0q “ γpT q. Then there exist t0 P r0, T s such that gKpγpt0q ´ γp0qq ě 1.

Proof of Lemma 2.3. It follows immediately from the assumptions that

0 “
ż T

0

9γptqdt “
ż T

0

J∇gKpγptqqdt “ J

ż T

0

∇gKpγptqqdt.

From this one can conclude that
ż T

0

x∇gKpγptqq, γp0qydt “ 0.

In particular, this implies that there exists t0 P r0, T s such that

x∇gKpγpt0qq, γp0qy ď 0. (3)

Next, from Lemma 2.1 it follows that ∇gKpγpt0qq P BK˝, and we obtain that

gKpγpt0q ´ γp0qq “ suptxγpt0q ´ γp0q, uy |u P K˝u ě xγpt0q ´ γp0q,∇gKpγpt0qqy. (4)

Finally, from Euler’s homogeneous function theorem it follows that for every x P BK,

one has xx,∇gKpxqy “ gKpxq “ 1, and hence the combination of this fact together with

inequalities p3q and p4q completes the proof of the lemma.

Proof of Proposition 2.2. Let γ : r0, T s Ñ BK be a closed characteristic on the boundary

BK, i.e., a solution of the Hamiltonian equation 9γ “ J∇gKpγq, with γp0q “ γpT q. Note

that

Apγq “ 1

2

ż T

0

xJγptq, 9γptqy dt “ 1

2

ż T

0

xγptq,∇gKpγptqqy dt “ T

2
. (5)

It follows from Lemma 2.3, the subadditivity property of gK , and the definition of γ, that,

1 ď gK

ˆż t0

0

9γptqdt
˙

ď
ż t0

0

gKp 9γptqqdt “
ż t0

0

gKpJ∇gKpγptqqqdt. (6)

On the other hand, it follows from the definition of an operator norm that

ż t0

0

gKpJ∇gKpγptqqqdt ď
ż t0

0

}J}
K˝ÑK

gK˝p∇gKpγptqqq dt. (7)

The combination of p6q, p7q, and Lemma 2.1 gives

1 ď
ż t0

0

}J}
K˝ÑK

gK˝p∇gKpγptqqq dt “
ż t0

0

}J}
K˝ÑK

dt, (8)

and thus we obtain that
1

}J}
K˝ÑK

ď t0. (9)
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Note that since γp0q “ γpT q, repeating the same arguments as above (this time, integrating

in p6q, p7q, and p8q between t0 and T ) we obtain also that

1

}J}
K˝ÑK

ď T ´ t0. (10)

From p5q it follows that mintt0, T ´ t0u ď T {2 “ Apγq, and since, by definition, the capacity

c
EHZ

pKq is defined to be the minimal action of closed characteristics on the boundary BK,

we conclude from p9q and p10q that,

1

}J}
K˝ÑK

ď c
EHZ

pKq.

This completes the proof of the proposition.

To describe the second ingredient in the proof of Theorem 1.6 we need to introduce one

more definition. It is known (see e.g., Appendix C in [21]) that for a Lebesgue measurable

set U Ă R
2n,

cpUq “ inf
ϕ

Area
`
πpϕpUqq

˘
,

where π is the orthogonal projection to the complex line E “ tz P C
n | zj “ 0 for j ‰ 1u,

and the infimum is taken over all symplectic embeddings ϕ of U into R
2n. Recall that with

our notations, under the natural identification R
2n » C

n one has that zj “ qj ` ipj . Thus,

a nature way to “linearize” the cylindrical capacity c is as follows. Let ISpp2nq be the affine

symplectic group, defined as the semi-direct product Spp2nq˙Tp2nq of the linear symplectic

group and the group of translations in R
2n.

Definition 2.4. The linearized cylindrical capacity clin of a set U Ă R
2n is defined as

clinpUq “ inf
S

Area
`
πpSpUqq

˘
,

where the infimum is taken over all affine symplectic maps S P ISpp2nq.

Now, the second main ingredient in the proof of Theorem 1.6 is the following:

Proposition 2.5. For every centrally symmetric convex body K P K2n,

cpKq ď clinpKq ď 4

}J}
K˝ÑK

. (11)

To establish Proposition 2.5 we shall need the following geometric observation. For

v P R
2n, we denote by Kv the section K X tvuK, and by } ¨ }K˝

v
the semi-norm defined by

}w}K˝
v

“ suptxw, yy | y P Kvu.

Lemma 2.6. For a symmetric convex body K P K2n, a linear symplectic map S P Spp2nq,
and the orthogonal projection π to the complex line E “ tz P C

n | zj “ 0 for j ‰ 1u defined

above, one has

Area
`
πpSpKqq

˘
ď 4}ST e}K˝}STJe}K˝

v
, (12)

where ST stands for the transpose of the matrix S, e is a unit vector parallel to the q1-axis,

and v “ ST e.
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Proof of Lemma 2.6. The lemma follows from a much more general result by Rogers and

Shephard [24], which states that for every symmetric convex body K Ă R
n, one has

VolnpKq ď
´
VolkpπEpKqqVoln´kpK X EKq

¯1{k
ď

ˆ
n

k

˙1{k

VolnpKq, (13)

for every k-dimensional subspace E of Rn, where πE stands for the orthogonal projection

on the subspace E. We remark that we use only the case where n “ 2 and k “ 1, in

which inequality p13q is an elementary geometric fact. It can be easily checked that the

right-hand side of p12q exactly equals the product of the length of the projection of πpSKq
to the q1-axis, and the length of the intersection of πpSKq with the p1-axis.

We are now in a position to prove Proposition 2.5.

Proof of Proposition 2.5. Note that, by definition, for every measurable set U Ă R
2n

one has cpUq ď clinpUq, and hence the left-hand side inequality in p11q holds. Next, we

recall the easily verified fact that for any v,w P R
2n such that ωpv,wq “ 1, there exists a

linear symplectic map S P Spp2nq such that v “ ST e and w “ STJe, where as before, e is a

unit vector parallel to the q1-axis. From this fact, Lemma 2.6, and Definition 2.4 it follows

that for a centrally symmetric convex body K P K2n

clinpKq ď 4 inf
vPS2n´1

inf
w : xJv,wy“1

}v}K˝}w}K˝
v

“ 4 inf
vPS2n´1

}v}K˝ inf
w : xJv,wy“1

}w}K˝
v
. (14)

We focus now on the second infimum on the right-hand side of p14q. Note that for a fixed

vector v P S
2n´1, the equality xJv,wy “ 1 is equivalent to xJv,w ´ Jvy “ 0. Denoting

z :“ w ´ Jv, we can write

inf
w : xJv,wy“1

}w}K˝
v

“ inf
z : zKJv

}Jv ` z}K˝
v
. (15)

This quantity measures the distance, with respect to the semi-metric induced by } ¨ }K˝
v
,

between the vector Jv and the subspace tJvuK orthogonal to it. Using the Hahn–Banach

theorem we obtain

inf
z : zKJv

}Jv ` z}K˝
v

“ dist}¨}
K˝

v

pJv, tJvuKq “ sup
u

xu, Jvy, (16)

where the supremum is taken over all vectors u such that u P spantJvu and }u}Kv
ď 1. Note

that we have used the fact that pK˝
v q˝ “ Kv. Next, we use the fact that Jv is orthogonal

to v (and hence in particular }Jv}Kv
ă 8) to deduce from p15q and p16q that

inf
w : xJv,wy“1

}w}K˝
v

“ sup
uPspantJvu, }u}Kv

ď1

xu, Jvy ď xJv, Jvy
}Jv}Kv

“ 1

}Jv}K
. (17)

From the combination of p14q and p17q we obtain that

clinpKq ď 4 inf
v‰0

}v}K˝

}Jv}K
“ 4

}J}
K˝ÑK

, (18)

which completes the proof of the proposition.
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Remark 2.7. For a general convex body K in R
2n (not necessarily centrally symmetric),

the same proof as the one above will give the following bound:

1

4
clinpK ´Kq ď clinpKq ď 1

}J}
pK´Kq˝ÑpK´Kq

. (19)

On the other hand, from Proposition 2.2 it follows that

c
EHZ

pKq ě sup
v

1

}J}pK´vq˝ÑpK´vq
, (20)

where the supremum is taken over all v P R
2n such that v P IntpKq. We remark that

although the upper bound for clinpKq in p19q, and the lower bound for c
EHZ

pKq in p20q
seem not too far away, we do not expect them to be asymptotically equivalent in general.

Proof of Theorem 1.6. For a smooth symmetric convex body K, the proof follows im-

mediately from Propositions 2.2 and 2.5. The general case (i.e., without the smoothness

assumption) follows by a standard approximation argument, as indicated at the beginning

of this section.

3 Linearized Symplectic Capacities

In this section we prove Theorem 1.8. We recall first the following definition.

Definition 3.1. The linearized Gromov width clin of a set U Ă R
2n is defined as

clinpUq “ sup
S

tπr2 |SB2nprq Ă Uu,

where the supremum is taken over all affine symplectic maps S P ISpp2nq.

The following is the main ingredient in the proof of Theorem 1.8.

Proposition 3.2. Let Q “ r´1, 1s2n be the standard cube in R
2n. Then, for every or-

thogonal transformation O P Op2nq one has clinpOQq ď π. Moreover, there is a rotation
rO P Op2nq for which cp rOQq ě

a
n{2.

Proof of Proposition 3.2. Note first that for every orthogonal transformation O P Op2nq,

clinpOQq ď sup
L

tπr2 |LB2nprq Ď Qu, (21)

where the supremum is taken over all affine volume-preserving linear maps L of R2n. It is

straightforward to check that the largest ellipsoid contained in the cube Q is the unit-ball

B2np1q, and hence clinpOQq ď π for every orthogonal transformation O P Op2nq.

For the second part of the proposition, consider the Lagrangian splitting R
npqq ˆR

nppq
of R2n, and the following configuration: Bn

8pαq ˆBn
1 pβq Ă R

2n, where

Bn
8pαq “ tpq1, . . . , xqq P R

npqq | maxt|q1|, . . . , |qn|u ă αu ,

Bn
1 pβq “ tpp1, . . . , pnq P R

nppq |
nÿ

i“1

|pi| ă βu.
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Note that Bn
8p1q ˆ Bn

1 p1q is the product of a hypercube and its dual body, the cross-

polytope. It is known (see e.g., §4 of [16]) that for every ε ą 0, the ball B2nprq symplectically

embeds (via a non-linear symplectomorphism) into the product Bn
8p1q ˆBn

1 pβp1`εqq, for a
parameter β such that VolpBn

8p1q ˆBn
1 pβqq “ VolpB2nprqq. In particular, this implies that

for an orthogonal transformation O of R2n, one has the following lower bound

cpOQq ě supt4r |Bn
8p1q ˆBn

1 prq Ď OQu.

Thus, to complete the proof of the proposition it is enough to find an orthogonal transfor-

mation O P Op2nq such that

OpBn
8p1q ˆBn

1 prrqq Ď Q,

where rr ą
a
n{2. In particular, it is enough to find an orthogonal transformation O1 of

R
nppq such that O1pBn

1 prrqq Ď r´1, 1sn Ă R
nppq, with rr as above. The fact that such a

transformation exists is well known to experts. For completeness we will give an explicit

construction;. We define the elements O1
kj of the matrix O1 by

?
nO1

kj “

$
’’’’&
’’’’%

?
2 sin

´
kj
n
2π

¯
for 1 ď k ă n

2
and 1 ď j ď n,

p´1qj for k “ n
2
and 1 ď j ď n,?

2 cos
´
kj
n
2π

¯
for n

2
ă k ă n and 1 ď j ď n,

1 for k “ n and 1 ď j ď n.

(22)

It is a straightforward computation (based on the orthonormality of the standard Fourier

basis) to check that the matrix O1 defined by p22q is indeed an orthogonal transformation.

Moreover, denote by teiuni“1 the standard basis of Rnppq. Note that Bn
1 p1q “ Convt˘eiu.

It follows immediately from the definition of the matrix O’ that

}O1ei}8 :“ max
1ďjďn

|pO1eiqj | ď
?
2?
n
,

where pO1eiqj stands for the j-th component of the vector O1ei P R
nppq. This implies in

particular that

O1pBn
1 p

?
nqq “ O1pConvt˘

?
neiuq “ Convt˘O1?neiu Ď r´

?
2,

?
2sn,

which completes the proof of Proposition 3.2.

Proof of Theorem 1.8. Note that an immediate corollary from Propositions 2.2 and 2.5

is that the cylindrical capacity c is asymptotically equivalent to its linearized version clin

for symmetric convex domains in R
2n, i.e., for every symmetric convex body K P K2n,

cpKq ď clinpKq ď 4c
EHZ

pKq ď 4cpKq.

This establishes the first part of Theorem 1.8. The second part follows from Proposition 3.2.

;The first named author learned this example from R.S. Ismagilov around 1976.
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