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Abstract

In this note we prove certain inequalities for mixed discriminants of posi-

tive semi-definite matrices, and mixed volumes of compact convex sets in Rn.

Moreover, we discuss how the latter are related to the monotonicity of an infor-

mation functional on the class of convex bodies, which is a geometric analogue

of the classical Fisher information.

1 Introduction and Results

Starting from the seminal works of A. D. Aleksandrov, the theory of mixed discrimi-

nants and volumes serves as a powerful tool for studying various quantities associated

with convex bodies, such as volume, surface area, and mean width. In addition to

their significant role in convex geometry, inequalities emanating from this theory - the

most famous of which is probably the Alexandrov–Fenchel inequality - have numerous

applications and deep connections to various fields, such as differential and algebraic

geometry, probability theory, combinatorics, and more. We refer the reader to [7, 13],

and the references therein, for a more detailed exposition of this subject.

In this paper we prove some inequalities for mixed discriminants of positive semi-

definite matrices, and mixed volumes of compact convex sets in Rn, denoted by

D(A1, . . . , An) and V (K1, . . . , Kn) respectively (the precise definitions will be given

in the following sections). Our work is partially motivated by a result of Hug and

Schneider regarding a certain inequality for mixed volumes of zonoids (Theorem 2

in [10]), which is conjectured to hold (ibid., page 2643) for arbitrary convex bod-

ies (cf. inequality (16) in [2]). Our first result is the following simple observation

regarding mixed discriminants which seems to have been overlooked in the literature.

Theorem 1.1. For any positive semi-definite n× n matrices A1, A2, A3 one has:

D(A1, A3[n− 1])D(A2, A3[n− 1]) ≥ n− 1

n
D(A1, A2, A3[n− 2])D(A3[n]). (1)

Moreover, equality holds if and only if one of the following three cases occurs: (i) A3

is invertible and A1A
−1
3 A2 = 0, (ii) A3 is of rank at most n − 2, (iii) A3 is of rank

n− 1 and either A1 or A2 satisfies Im(Ai) ⊂ Im(A3).
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Here, and in the following, the abbreviation A[i] stands for i copies of the object

A. The analogue of inequality (1) for mixed volumes of convex bodies is

V (K,A[n− 1])V (T,A[n− 1]) ≥ n− 1

n
V (K,T,A[n− 2])V (A[n]). (2)

Note that if two of the bodies coincide, this inequality holds even without the n−1
n

factor due to Alexandrov–Fenchel inequality for K = T , or trivially for A = K or

A = T . Inequality (2) fails in general for n ≥ 3 (see, e.g., Subsection 4.1 below).

However, in the case where A = Bn
2 is the Euclidean unit ball and T is a zonoid,

not only does inequality (2) hold, but actually a slightly stronger inequality is valid.

Namely,

Theorem 1.2. For every convex body K ⊂ Rn and every zonoid Z ⊂ Rn

V (K,Bn
2 [n− 1])V (Z,Bn

2 [n− 1]) ≥ n− 1

n

κ2
n−1

κnκn−2

V (K,Z,Bn
2 [n− 2])V (Bn

2 [n]), (3)

where κn stands for the volume of the n-dimensional Euclidean unit ball. Moreover,

equality holds if and only if K and Z lie in orthogonal (affine) subspaces of Rn.

When both K and Z are zonoids, inequality (3) was proved by Hug and Schneider

in [10], (cf. [2]), and was conjectured to hold for arbitrary convex bodies K and Z.

Note that the constant
κ2n−1

κnκn−2
in (3) is strictly greater than one, and approaches one

as n tends to infinity. More precisely 1 <
κ2n−1

κnκn−2
< 1 + 1

n−1
.

It turns out that inequality (2) fails for some triples (K,T,A), even in the case

where K = Bn
2 is the Euclidean unit ball and T is an interval. This case is equivalent

to an inequality which was conjectured by Giannopoulos, Hartzoulaki, and Paouris

in [8], and then disproved by Fradelizi, Giannopoulos, and Meyer in [6], where also a

positive result was proven which gives a special case of (2) with different constants.

In Subsection 4.1 we give yet another example of the failure of (2) when K = Bn
2 , T is

an interval, and A is a certain truncated box. Any case where (2) fails with K = Bn
2

gives a negative answer to the question of the monotonicity of a certain geometric

analogue of the Fisher information functional on the class of convex domains which

was introduced in [4]. More precisely, denote by Kn the class of compact convex sets

in Rn, and for K ∈ Kn set I(K) = |K|/|∂K|, where |K| stands for the volume of K

and |∂K| for its surface area.

The functional I, which can be considered as a dual analogue of the Fisher in-

formation, was introduced by Dembo, Cover, and Thomas in [4]. In the same paper

it was asked whether I satisfies a Brunn–Minkowski type inequality i.e., whether for

any K1, K2 ∈ Kn one has I(K1 + K2) ≥ I(K1) + I(K2), or at least whether I is

monotone with respect to Minkowski addition, namely, satisfies I(K1 +K2) ≥ I(K1)
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for every K1, K2 ∈ Kn. In [4] it was verified that I is monotone with respect to the

addition of a Euclidean ball. This is a simple consequence of the Alexandrov–Fenchel

inequality. It was also noted that without convexity the above mentioned Brunn–

Minkowski type inequality cannot hold. In [6] it was shown that even for convex

bodies, a counterexample to this inequality exists. In fact, the example given in [6]

is also a counterexample for the monotonicity question above, although this was not

pointed out explicitly in [6].

Our next observation regarding mixed volumes is the equivalence of the mono-

tonicity property of I with a certain inequality for mixed volumes. More precisely,

Proposition 1.3. Let T ∈ Kn. The following two inequalities are equivalent:

(i) ∀A ∈ Kn : V (Bn
2 , A[n− 1])V (T,A[n− 1]) ≥ n−1

n
V (Bn

2 , T, A[n− 2])V (A[n]);

(ii) ∀A ∈ Kn : I(A+ T ) ≥ I(A).

In Section 5 we shall prove that in dimension 2 the information functional I is

monotone with respect to Minkowski addition. In fact, inequality (2) holds for all

K,T and A. As noted above, in any other dimension n ≥ 3 both inequalities in

Proposition 1.3 fail in general. In Subsection 4.1 we give for any n ≥ 3 an explicit

example of a pair of convex bodies T,A ∈ Kn for which the two inequalities in

Proposition 1.3 fail to hold. It remains an interesting question to determine for which

convex bodies T the inequality in Proposition 1.3 does hold, and monotonicity is

satisfied (for example, the ball Bn
2 is such a body).

The rest of the paper is organized as follows: in Sections 2 and 3 we prove The-

orems 1.1 and 1.2, respectively. In Section 4 we discuss the relation between the

information functional I and inequality (2), and prove Proposition 1.3. Finally, in

Section 5 we prove inequality (2) in the two-dimensional case.

Notations: Throughout the text we shall use the following notations: By a convex

body we shall mean a compact convex set with non-empty interior. The class of convex

bodies in Rn is denoted by Kn. Given K ∈ Kn, we denote by hK : Rn → R its support

function, given by hK(u) = sup{〈x, u〉 ; x ∈ K}. We set σ to be the normalized Haar

measure on the sphere Sn−1 ⊂ Rn, and λn the standard n-dimensional Lebesgue

measure. The volume of the n-dimensional Euclidean unit ball is denoted by κn.

Finally, we denote M∗(K) :=
∫
Sn−1 hK dσ.
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2 Mixed Discriminants

Mixed discriminants were introduced by A. D. Aleksandrov as a tool to study mixed

volumes of convex sets (see e.g., §25.4 in [3] and the references therein). They are

the coefficients in the polynomial expansion of the determinant of a sum of matrices.

More precisely, let A1, . . . , Am be symmetric real n× n matrices .The determinant of

the sum
∑m

i=1 λiAi is a homogeneous polynomial of degree n in λ1, . . . , λm, and can

be written as

det

(
m∑
i=1

λiAi

)
=

m∑
i1,...,in=1

λi1 · · ·λinD(Ai1 , . . . , Ain) (4)

(see [3], or §2.5 in [13]). The quantity D(A1, . . . , An) is called the mixed discriminant

of A1, . . . , An.

In the following lemma we gather some basic well known facts regarding mixed

discriminants (see e.g. [1]). Here, Ai stands for the i-th column of the matrix A, the

notation A ≥ 0 means that A is symmetric and positive semi-definite, and Πn stands

for the permutation group of n elements.

Lemma 2.1. Let A1, . . . , An be symmetric real n× n matrices.

(i) If Ai ≥ 0 for all i, then D(A1, . . . , An) ≥ 0;

(ii) D(BA1, . . . , BAn) = det(B)D(A1, . . . , An), for any n× n matrix B;

(iii) D(A1, . . . , An) = 1
n!

∑
σ∈Πn

det(A1
σ(1), . . . , A

n
σ(n)).

Note that if Ai = A for all i, then D(A1, . . . , An) = det(A). We are now in a

position to prove Theorem 1.1.

Proof of Theorem 1.1. From property (i) of Lemma 2.1 it follows that inequal-

ity (1) holds trivially when det(A3) = 0. Thus, we can assume without loss of gen-

erality that A3 is invertible. Hence, using property (ii) of Lemma 2.1, we conclude

that in order to prove inequality (1) it suffices to show that:

D(X, I[n− 1])D(Y, I[n− 1]) ≥ n− 1

n
D(X, Y, I[n− 2]), (5)

where X = A−1
3 A1, Y = A−1

3 A2, and I is the n×n identity matrix. By property (iii)

of Lemma 2.1 we have:

D(X, I[n− 1]) =
1

n

n∑
i=1

det(e1, . . . , ei−1, X
i, ei+1, . . . , en) =

1

n

n∑
i=1

xii =
tr(X)

n
,
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where {ei}ni=1 stands for the i-th column of the identity matrix I, and

D(X, Y, I[n− 2]) =
1

n(n− 1)

∑
i 6=j

det(Z(i, j)).

where Z(i, j) denotes the identity matrix with the ith column replaced by X i and the

jth column replaced by Y j. Separating into two sums we get

D(X, Y, I[n− 2]) =
1

n(n− 1)

∑
i<j

det(e1, . . . , X
i, . . . , Y j, . . . , en) +

1

n(n− 1)

∑
j<i

det(e1, . . . , Y
j, . . . , X i, . . . , en) (6)

=
1

n(n− 1)

∑
i 6=j

(xiiyjj − xjiyij) =
1

n(n− 1)

n∑
i,j=1

(xiiyjj − xjiyij).

Combining these relations we conclude that

D(X, I[n− 1])D(Y, I[n− 1])− n− 1

n
D(X, Y, I[n− 2])

=

(
1

n

n∑
i=1

xii

)(
1

n

n∑
j=1

yjj

)
− n− 1

n
· 1

n(n− 1)

n∑
i,j=1

(xiiyjj − xjiyij)

=
1

n2

n∑
i,j=1

(xiiyjj − xiiyjj + xjiyij) =
1

n2

n∑
i,j=1

xjiyij =
tr(XY )

n2
.

Note that tr(XY ) = tr(A−1
3 A1A

−1
3 A2). Moreover, it is not hard to check that the

matrix A−1
3 A1A

−1
3 is also symmetric and positive semi-definite. Inequality (5) now

immediately follows since the trace of the product of two symmetric positive semi-

definite matrices is always non-negative1. Moreover, under the assumption that A3 is

invertible, equality in (5) holds if and only if tr(A−1
3 A1A

−1
3 A2) = 0, or equivalently (as

it is the product of two positive definite matrices), A1A
−1
3 A2 = 0. Moreover, it follows

from [12] that for singular A3 equality in (1) holds if and only if either A3 is of rank

at most n− 2, or A3 is of rank n− 1 and either A1 or A2 satisfies Im(Ai) ⊂ Im(A3).

This completes the proof of Theorem 1.1.

3 Mixed Volumes

Arising from the classical works of Minkowski, Aleksandrov, Hadwiger, and many

others, mixed volumes have been studied in a variety of contexts. In addition to having

1Indeed, for any two symmetric positive semi-definite matrices A and B one has tr(AB) =

tr(
√
A
√
A
√
B
√
B) = tr(

√
B
√
A
√
A
√
B) = tr((

√
A
√
B)∗
√
A
√
B), which is a sum of squares.
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vast applications to convex geometry, mixed volumes provide geometric techniques to

study sparse systems of polynomial equations - and thus serve as a bridge between

algebraic and convex geometry, appear as intersection numbers in tropical geometry,

and can be used as a powerful tool in combinatorics and computational geometry.

For a detailed exposition and further information on the properties of mixed volumes

we refer the reader to Chapter 5 of [13].

A classical result due to Minkowski states that the volume of a linear combination∑m
i=1 λiKi of convex bodies Ki is a homogeneous polynomial of degree n in λi ≥ 0,

where A+B stands for Minkowski addition, A+B = {a+ b : a ∈ A, b ∈ B}. Mixed

volumes are the coefficients in this polynomial expansion. More precisely

Vol

(
m∑
i=1

λiKi

)
=

m∑
i1,...,in=1

λi1 · · ·λinV (Ki1 , . . . , Kin), (7)

where Ki ⊂ Rn are compact convex sets and λi ≥ 0. The coefficient V (Ki1 , . . . , Kin)

of the monomial λi1 · · ·λin is called the mixed volume of Ki1 , . . . , Kin , and it depends

only on Ki1 , . . . , Kin and not on any of the other bodies. One may assume that the

coefficients are symmetric with respect to permutations of the bodies. Mixed volumes

are known to be non-negative, and are clearly translation invariant. Moreover, they

are monotone with respect to set inclusion, additive in each argument with respect to

Minkowski addition, continuous with respect to the Hausdorff topology, and positively

homogeneous in each argument (see e.g. Section §5.1 of [13], and [5], Chapter 5). We

now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. Since mixed volumes are continuous with respect to the

Hausdorff topology on Kn, in order to prove inequality (3) it suffices to assume that

Z is a zonotope, i.e., a Minkowski sum of intervals. Moreover, using the additivity,

translation invariance, and positive homogeneity of mixed volumes, we may further

assume that Z is the interval Z = [0, u], for some u ∈ Sn−1.

Let u ∈ Sn−1. We denote by σ′ the normalized Haar measure on the sphere

Sn−2 which we identify with Sn−1 ∩ u⊥, by ν the (n− 1)-dimensional mixed volume

functional in Rn−1, and by K|u the orthogonal projection of K onto u⊥. It is well

known (see e.g., equation (A.43) in [7]) that:

V ([0, u], K2, . . . , Kn) =
1

n
ν(K2|u, . . . , Kn|u).

Combining this with the standard integral representation of quermassintegrals (that

is, mixed volumes where only two bodies are mixed - some body K and the Euclidean

ball Bn
2 ), see (5.1.18) in §5.3 of [13], we conclude that

V (K,Bn[n− 1]) = κn

∫
Sn−1

hK dσ, V (Z,Bn[n− 1]) =
κn−1

n
,
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V (K,Z,Bn[n− 2]) =
1

n
ν(K|u, Bn−1[n− 2]) =

κn−1

n

∫
Sn−1∩u⊥

hK dσ
′,

where in the last equality we have used the fact that hK = hK|u on u⊥. With these

equalities at our disposal, inequality (3) reduces to showing

M∗(K) :=

∫
Sn−1

hK dσ ≥ Cn

∫
Sn−1∩u⊥

hK dσ
′, (8)

where the constant Cn is the same as in (3), i.e., Cn = n−1
n

κ2n−1

κnκn−2
.

Denote by Πu the reflection operator with respect to the hyperplane u⊥, that is,

Πu(x) = x− 2u〈x, u〉. Clearly M∗(K) = M∗(K+ΠuK
2

). The body K+ΠuK
2

is called the

Minkowski symmetrization of K in direction u. It is also clear that K+ΠuK
2

⊇ K|u.
Thus we get that M∗(K) = M∗(K+ΠuK

2
) ≥ M∗(K|u), where the second inequality is

due to inclusion. Moreover, since hK = hK|u on u⊥, the right-hand side of (8) is the

same for K and for K|u. Therefore, to prove inequality (8) it suffices to assume that

K ⊂ u⊥. On the other hand, in the case where K ⊂ u⊥, the left and right-hand side

of equation (8) are equal. Indeed, it is well known (see e.g. [7], page 404, equation

(A.29)) that for a k-dimensional convex body in Rn with k < n one has for any

0 ≤ i ≤ k that

1

ci,k
V (K[i], Bk

2 [k − i]) =
1

ci,n
V (K[i], Bn

2 [n− i]), where ci,k =
κk−i(
k
i

) ,
where the mixed volume functional on the left-hand side is k-dimensional. Thus, we

conclude that∫
Sn−1

hKdσ =
1

κn
V (K,Bn

2 [n− 1]) =
1

κn

c1,n

c1,n−1

V (K,Bn−1
2 [n− 2])

=
κ2
n−1

κnκn−2

n− 1

n

∫
Sn−1∩u⊥

hKdσ
′.

Next we characterize the equality case. For Z = [0, u], equality in M∗(K) ≥M∗(K|u),
and hence in (3), holds if and only if K ⊂ x0 + u⊥ for some x0 ∈ Rn. Using the

additivity of inequality (3) in the parameter Z, we conclude that for a zonotope Z

(i.e., a finite Minkowski sum of line segments), equality in (3) holds if and only if, up

to translations, K ⊂ E and Z ⊂ E⊥ for some linear subspace E ⊂ Rn. Finally, for a

general zonoid Z we argue as follows. Let K ∈ Kn, and consider the function

IK(Z) := V (K,Bn[n−1])V (Z,Bn[n−1])− n− 1

n

κ2
n−1

κnκn−2

V (K,Z,Bn[n−2])V (Bn[n]),

defined on the class of zonoids in Rn. Set EK to be the subspace of Rn parallel

to the minimal affine space containing K. In these notations the above argument

implies that IK([−u, u]) = 0 only if u ∈ E⊥K . Moreover, since any zonoid Z is given
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by Z =
∫
Sn−1 [−u, u]dµZ , where µZ is an even measure on Sn−1 (see §3.5 in [13]),

it follows from the properties of mixed volume that IK(Z) =
∫
Sn−1 I([−u, u])dµZ .

Hence, using the fact that Z ⊂ E⊥K if and only if µZ is supported on Sn−1 ∩ E⊥K , we

conclude that IK(Z) > 0 if and only if Z 6⊂ E⊥K , and the proof is now complete.

Remark 3.1. Note that if K = Z in Theorem 1.2, even without the assumption

that Z is a zonoid (i.e., for any Z ∈ Kn), inequality (3) holds without the n−1
n

κ2n−1

κnκn−2

factor, thanks to Minkowski’s first inequality (see Equation (6.2.3) in [13]).

Remark 3.2. As mentioned in the introduction, inequality (3) is conjectured to hold

for arbitrary convex bodies K,T ∈ Kn (see [10]). This conjecture can be reformu-

lated in the language of harmonic analysis, or, more precisely, as a conjecture on

the rate of decay of the coefficients of a convex function with respect to its spherical

harmonic decomposition. More precisely, consider the following integral formula for

V (K,T,B[n− 2]) (see (5.3.17) in [13]):

V (K,T,B[n− 2]) = κn

∫
Sn−1

hK(u)
(
hT (u) +

1

n− 1
4ShT (u)

)
dσ(u),

where 4S stands for the spherical Laplace operator on Sn−1. Combining this with

the fact that V (K,B, . . . , B) = κn
∫
Sn−1 hKdσ (see (5.3.12) in [13]), we conclude that

for K,T ∈ Kn inequality (3) can be written as:∫
Sn−1

hK dσ

∫
Sn−1

hT dσ ≥ Cn

∫
Sn−1

hK(u)
(
hT (u) +

1

n− 1
4ShT (u)

)
dσ(u), (9)

where Cn = n−1
n

κ2n−1

κnκn−2
. Next, consider the harmonic expansion of the support func-

tions hK and hT , given by

hK =
∞∑
m=0

N(m,n)∑
l=0

km,lY
l
m, and hT =

∞∑
m=0

N(m,n)∑
l=0

tm,lY
l
m,

where {Y l
m}

N(m,n)
l=0 stands for a basis for the m-eigenspace of the spherical Laplace

operator 4S on the space L2(Sn−1) with eigenvalue 4SY
l
m = −m(m+ n− 2)Y l

m (see

the Appendix of [13] for more details). It is well known that k0,0 =
∫
Sn−1 hKdσ, and

similarly t0,0 =
∫
Sn−1 hTdσ. Thus, we conclude that inequality (3) is equivalent to

k0,0t0,0 ≥ Cn

∞∑
m=0

(1−m)(n+m− 1)

n− 1

N(m,n)∑
l=0

km,ltm,l, (10)

which after a suitable rearrangement can be written as

k0,0t0,0 ≥
Cn

1− Cn

∞∑
m=1

(1−m)(n+m− 1)

n− 1

N(m,n)∑
l=0

km,ltm,l. (11)

We thus arrive at the following conjecture
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Conjecture 3.3. Let h1, h2 : Sn−1 → R be two convex functions (that is, their

homogeneous extension to Rn is assumed convex). Let their decomposition in the

basis of spherical harmonics be given by

h1 =
∞∑
m=0

N(m,n)∑
l=0

am,lY
l
m, and h2 =

∞∑
m=0

N(m,n)∑
l=0

bm,lY
l
m.

Then

a0,0b0,0 ≥ Dn

∞∑
m=1

(1−m)(n+m− 1)

n− 1

N(m,n)∑
l=0

am,lbm,l, (12)

where Dn =
(n−1)κ2n−1

nκnκn−2−(n−1)κ2n−1
.

4 Mixed Volumes and the Information Functional

Let K ∈ Kn. Recall that the information functional I is defined by I(K) = |K|/|∂K|,
where |K| stands for the volume of K, and |∂K| for its surface area. As mentioned in

the introduction, the functional I was introduced and studied in [4]. In the same

paper, it was asked whether I satisfies a Brunn–Minkowski type inequality, i.e.,

whether for any K1, K2 ∈ Kn one has I(K1 + K2) ≥ I(K1) + I(K2), or a weaker

property, whether I is monotone with respect to Minkowski addition, namely, satis-

fies I(K1 + K2) ≥ I(K1), for every K1, K2 ∈ Kn. A counterexample to the above

Brunn–Minkowski type inequality was given in [6]. Although this was not pointed

out explicitly in [6], this example is also a counterexample for the monotonicity of

the information functional I on the class Kn.

We next turn to the proof of Proposition 1.3, and in the next subsection we shall

give another example where both inequalities in Proposition 1.3 fail to hold.

Proof of Proposition 1.3. Let T ∈ Kn. Both directions of the equivalence follow

from the fact that inequality (i) is in a sense the “linearization” of inequality (ii).

Indeed, assume (i) holds. For every A ∈ Kn and λ ∈ [0, 1], set Aλ = A + λT and

fA(λ) = I(Aλ). We wish to show that fA(0) ≤ fA(1). To this end we shall prove

that f ′A ≥ 0 in the interval [0, 1]. In fact, since fA(λ + h) = fAλ(h), and A is an

arbitrary convex body, it is enough to prove f ′A(0) ≥ 0 for every A ∈ Kn. Denote

Vi = V (T [i], A[n−i]) for 1 ≤ i ≤ n, andWi = V (T [i], A[n−1−i], Bn
2 ) for 1 ≤ i ≤ n−1.

In particular V0 = |A|, and nW0 = |∂A|. With these notation one has

|Aλ| = V (Aλ, . . . , Aλ) =
n∑
i=0

(
n

i

)
λiVi = |A|+ nV1λ+ o(λ),
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and similarly

|∂Aλ| = nV (Aλ, . . . , Aλ, B
n
2 ) = n

n−1∑
i=0

(
n− 1

i

)
λiWi = |∂A|+ n(n− 1)W1λ+ o(λ).

Combining these relations one has

I(Aλ) = I(A)
1 + nV1V0λ+ o(λ)

1 + (n− 1)W1

W0
λ+ o(λ)

= I(A)

(
1 +

(
n
V1

V0

− (n− 1)
W1

W0

)
λ+ o(λ)

)
.

Thus, we conclude that

f ′A(0) = I(A) ·
(
n
V1

V0

− (n− 1)
W1

W0

)
. (13)

Since inequality (i) states exactly thatW0V1 ≥ n−1
n
W1V0, we conclude that f ′A(0) ≥ 0,

and hence inequality (ii) holds. Conversely, assume that inequality (i) does not hold,

that is, there exists A ∈ Kn such that W0V1 <
n−1
n
W1V0. From (13) it follows that

f ′A(0) < 0. From the continuity property of mixed volumes we conclude that there

exists δ > 0 such that for all λ ∈ [0, δ], one has f ′A(δ) < 0, and hence fA is strictly

decreasing on [0, δ]. From this it follows that I(A + δT ) < I(A), or equivalently,

I(Ã+ T ) < I(Ã) for Ã = A/δ. This completes the proof of Proposition 1.3.

4.1 An example without monotonicity

Figure 1: A counterexample to the monotonicity of the information functional I

In this subsection we provide a simple counterexample to the monotonicity property

of the functional I for n ≥ 3. More precisely, we give an example of a pair of convex

bodies T,A ∈ Kn for which the two equivalent inequalities in Proposition 1.3 fail to

hold.

Proposition 4.1. If n ≥ 3, then there exist A, T ∈ Kn such that

I(A+ T ) < I(A).
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Proof of Proposition 4.1. It is enough to find A, T violating inequality (i) of

Proposition 1.3. To do that, we use an interval T = [0, u], say for u = en. In

that case, inequality (i) of Proposition 1.3 becomes:

I(A|u) ≥ I(A). (14)

Here, to ease notation, we use I to denote both the n-dimensional information of

A, and the (n − 1)-dimensional information of its projection to u⊥, denoted by

A|u. Indeed, inequality (14) holds because nV (B, T,A[n − 2]) = ν(B|u, A|u[n − 2]),

nV (T,A[n − 1]) = ν(A|u[n − 1]), and the (n − 2)-dimensional surface area of A|u is

given by Voln−2(∂A|u) = (n− 1)ν(B|u, A|u[n− 2]).

For A we shall take a long cylindrical body and cut out a small piece of it by

intersection with a half-space (see Figure 1), in such a way that the projection A|u is

unchanged, but the information of A will slightly increase.

More precisely, let 0 < ε < 1 < M , and denote by Q =
∑n−1

i=1 [0, ei] the (n − 1)-

dimensional unit cube. LetD be the (n+1)-simplex with vertices 0, εe1, . . . , εen−1,Men,

and opposite facets F0, . . . , Fn, respectively. Finally, set

A := (Q+M [0, en]) \D.

Note that A|u = Q and hence I(A|u) = 1
2(n−1)

. Moreover, a direct computation gives

|Fn| = εn−1

(n−1)!
, |Fi| = Mεn−2

(n−1)!
for 1 ≤ i ≤ n− 1, and

|F0| = | (diag{1, . . . , 1,M/ε}) conv{εei}ni=1| <
M

ε
|conv{εei}ni=1|

= Mεn−2|conv{ei}ni=1| =
Mεn−2

√
n

(n− 1)!
.

From this we conclude that

|∂(A)| = 2M(n− 1) + 2−
n∑
i=1

|Fi|+ |F0| < 2M(n− 1) + 2− Mεn−2

(n− 2)!

(
1−

√
n

n− 1

)
.

Since |D| = Mεn−1

n!
, one has

I(A)

I(A|u)
>

2M(n− 1)
(

1− εn−1

n!

)
2M(n− 1)

(
1 + 1

M(n−1)
− εn−2

2(n−1)!

(
1−

√
n

n−1

)) .
Thus, by choosing ε and M such that:

1

M(n− 1)
+
εn−1

n!
<

εn−2

2(n− 1)!

(
1−

√
n

n− 1

)
,

we have shown that I(A) > I(A|u). This choice is indeed possible since for n ≥ 3 the

εn−2 coefficient is positive. The proof of Proposition 4.1 is now complete.
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5 Mixed Volumes in the Plane

In this section we show that in the 2-dimensional case inequality (2) for mixed vol-

umes always holds (cf. [2] for a speical case). In particular, it follows from this and

Proposition 1.3 that for n = 2 the information functional I is monotone with respect

to Minkowski addition.

Proposition 5.1. Let K,T,A ∈ K2. Then

V (K,A)V (T,A) ≥ 1

2
V (K,T )V (A,A). (15)

Moreover, equality holds if and only if one of the following cases holds: (i) K and T

are intervals, and A is a parallelogram whose edges are parallel to K and T (ii) K

and A, or T and A (or all) are contained in parallel intervals (iii) A is a singleton.

We start with some preparations. Denote the inner and outer radii of T with

respect to A by r = rA(T ), and R = RA(T ) respectively. These are the optimal

numbers satisfying that rA + x ⊂ T ⊂ RA + y for some x, y ∈ Rn. It is well known

that for A, T ∈ K2, the polynomial P (λ) = V (A,A)λ2 +2V (T,A)λ+V (T, T ) has only

real roots (e.g., by Minkowski’s inequality) which are clearly non-positive. Moreover,

a Bonnesen-type inequality (see pages 323-324 in [13]) states that

λ− ≤ −RA(T ) ≤ −rA(T ) ≤ λ+,

where λ± are the roots of P (λ). In particular

P (−R) ≤ 0, P (−r) ≤ 0.

We are now in a position to prove Proposition 5.1.

Proof of Proposition 5.1. If V (A,A) = 0, or T is a singleton, we are done. Oth-

erwise, we have 0 < RA(T ) <∞. Since the inequality is homogeneous in each of the

bodies, we may assume RA(T ) = 1. By the remark preceding the proof:

0 ≥ P (−1) = V (A,A)− 2V (T,A) + V (T, T ) ≥ V (A,A)− 2V (T,A),

and hence

V (T,A) ≥ 1

2
V (A,A). (16)

Combining the latter with V (K,A) ≥ V (K,T ) (which is due to inclusion), proves

(15). Next, we characterize the equality case. In the case where V (A,A) = 0, either

A is a singleton, and there is equality, or A is contained in an interval and at least

one of V (K,A),V (K,T ) must equal 0, that is, we are in equality case (ii). Assume

V (A,A) > 0. A necessary condition for equality in (16) is that V (T, T ) = 0, i.e. T
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is contained in an interval. By symmetry, K must be contained in an interval too.

Next, let P be the minimal parallelogram containing A, which has edges parallel to

K and T . Since V (K,A) = V (K,P ) and V (T,A) = V (T, P ), we have:

V (K,A)V (T,A) = V (K,P )V (T, P ) =
1

2
V (T,K)V (P, P ) ≥ 1

2
V (T,K)V (A,A).

Equality holds above only if V (P, P ) = V (A,A), which implies A = P .

Corollary 5.2. For every A, T ∈ K2, I(A+ T ) > I(A).

Proof of Corollary 5.2. Combining Proposition 1.3 with Proposition 5.1 proves

I(A + T ) ≥ I(A). To show strict inequality we only note that the derivative f ′A is

strictly positive, since K = B2 does not qualify for the equality case of Theorem

5.1.

Finally, still in the 2-dimensional case, we prove inequality (2) with an improved

constant in the case where A = B2
2 is the Euclidean disk. In fact, the following

theorem amounts to Theorem 1.2 in dimension 2 without the assumption that one of

the bodies is a zonoid.

Proposition 5.3. Let K,T ∈ K2. Then:

V (T,B2
2)V (K,B2

2) ≥ 2

π
V (T,K)V (B2

2 , B
2
2), (17)

with equality if and only if K and T are orthogonal intervals.

Proof of Proposition 5.3. Denote by R(T ) the circumradius of T i.e., the smallest

radius of a disc containing T , and by L(T ) its perimeter. Note that V (B2
2 , B

2
2) = π,

V (T,B2
2) = L(T )

2
, and from the monotonicity of mixed volume one has

V (T,B2
2)V (K,B2

2) ≥ L(T )V (K,T )

2R(T )
.

Inequality (17) now follows from that fact that L(T ) ≥ 4R(T ) (see [11]). Moreover,

L(T ) = 4R(T ) if and only if T is an interval. Since K and T play a symmetric role

in (17), a necessary condition for equality in (17) is that both K and T are intervals.

In that case, a direct computation shows that equality holds if and only if K and T

are orthogonal. The proof of Proposition 5.3 is now complete.
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