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Abstract

We compare Hofer’s geometries on two spaces associated with a
closed symplectic manifold (M,ω). The first space is the group of
Hamiltonian diffeomorphisms. The second space L consists of all La-
grangian submanifolds of M ×M which are exact Lagrangian isotopic
to the diagonal. We show that in the case of a closed symplectic
manifold with π2(M) = 0, the canonical embedding of Ham(M) into
L, f 7→ graph(f) is not an isometric embedding, although it preserves
Hofer’s length of smooth paths.

1 Introduction and Main Results

In this paper we compare Hofer’s geometries on two remarkable spaces asso-
ciated with a closed symplectic manifold (M,ω). The first space Ham(M,ω)
is the group of Hamiltonian diffeomorphisms. The second consists of all La-
grangian submanifolds of (M × M,−ω ⊕ ω) which are exact Lagrangian
isotopic to the diagonal △ ⊂ M ×M . Let us denote this second space by
L. The canonical embedding

j : Ham(M,ω) → L, f 7→ graph(f)

preserves Hofer’s length of smooth paths. Thus, it naturally follows to ask
whether j is an isometric embedding with respect to Hofer’s distance. Here,
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we provide a negative answer to this question for the case of a closed sym-
plectic manifold with π2(M) = 0. In fact, our main result shows that the
image of Ham(M,ω) inside L is “strongly distorted” (see Theorem 1.1 be-
low).

Let us proceed with precise formulations. Given a path α = {ft}, t ∈
[0, 1] of Hamiltonian diffeomorphisms of (M,ω), define its Hofer’s length
(see [H]) as

length(α) =

∫ 1

0

{
max
x∈M

F (x, t) − min
x∈M

F (x, t)
}
dt

where F (x, t) is the Hamiltonian function generating {ft}. For two Hamilto-
nian diffeomorphisms φ and ψ, define the Hofer distance d(φ, ψ) = inf length(α)
where the infimum is taken over all smooth paths α connecting φ and ψ.
For further discussion see e.g. [LM1],[MS], and [P1].

Hofer’s metric can be defined in a more general context of Lagrangian
submanifolds (see [C]). Let (P, σ) be a closed symplectic manifold, and let
△ ⊂ P be a closed Lagrangian submanifold. Consider a smooth family
α = {Lt}, t ∈ [0, 1] of Lagrangian submanifolds, such that each Lt is diffeo-
morphic to △. We call α an exact path connecting L0 and L1, if there exists
a smooth map Ψ : △×[0, 1] → P such that for every t, Ψ(△×{t}) = Lt, and
in addition Ψ∗σ = dHt ∧ dt for some smooth function H : △× [0, 1] → R.
The Hofer length of an exact path is defined by

length(α) =

∫ 1

0

{
max
x∈△

H(x, t) − min
x∈△

H(x, t)
}
dt.

It is easy to check that the above notion of length is well-defined. Denote
by L(P,△) the space of all Lagrangian submanifolds of P which can be
connected to △ by an exact path. For two Lagrangian submanifolds L1 and
L2 in L(P,△), define the Hofer distance ρ on L(P,△) as follows: ρ(L1, L2) =
inf length(α), where the infimum is taken over all exact paths on L(P,△)
that connect L1 and L2.

In what follows we choose P = M×M , σ = −ω⊕ω and take △ to be the
diagonal of M ×M . We abbreviate L = L(P,△) as in the beginning of the
paper. Based on a result by Banyaga [B], it can be shown that every smooth
path on L(P,△) is necessarily exact. Our main result is the following:

Theorem 1.1. Let (M,ω) be a closed symplectic manifold with π2(M) = 0.
Then there exist a family {ϕt}, t ∈ [0,∞) in Ham(M,ω) and a constant c
such that:
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1. d(1l, ϕt) → ∞ as t→ ∞.

2. ρ(graph(1l), graph(ϕt)) = c.

In fact, we construct the above family {ϕt} explicitly:

Example 1.2. Consider an open set B ⊂ M . Suppose that there exists
a Hamiltonian diffeomorphism h such that h(B) ∩ Closure (B) = ∅. By
perturbing h slightly, we may assume that all the fixed points of h are non-
degenerate. Let F (x, t), where x ∈ M , t ∈ [0, 1] be a Hamiltonian function
such that F (x, t) = c0 < 0 for all x ∈M \B, t ∈ [0, 1]. Assume that F (t, x)
is normalized such that for every t,

∫
M
F (t, ·)ωn = 0. We define the family

{ϕt}, t ∈ [0,∞) by ϕt = hft, where {ft} is the Hamiltonian flow generated
by F (t, x). As we’ll see below, the family {ϕt} satisfies the requirements of
Theorem 1.1.

Theorem 1.1 has some corollaries:

1. The embedding of Ham(M,ω) in L is not isometric, rather, the image
of Ham(M,ω) in L is highly distorted. The minimal path between two
graphs of Hamiltonian diffeomorphisms in L, might pass through exact
Lagrangian submanifolds which are not the graphs of any Hamiltonian
diffeomorphisms. Compare with the situation described in [M], where
it was proven that in the case of a compact manifold, the space of
Hamiltonian deformations of the zero section in the cotangent bundle
is locally flat in the Hofer metric.

2. The group of Hamiltonian diffeomorphisms of a closed symplectic man-
ifold with π2(M) = 0 has an infinite diameter with respect to Hofer’s
metric.

3. Hofer’s metric d on Ham(M,ω) does not coincide with the Viterbo-
type metric on Ham(M,ω) defined by Schwarz in [S].

As a by-product of our method we obtain the following result (see Section
3 below):

Theorem 1.3. Let (M,ω) be a closed symplectic manifold with π2(M) = 0.
Then there exists an element ϕ in (Ham(M,ω), d) which cannot be joined to
the identity by a minimal geodesic.
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The first example of this kind was established by Lalonde and McDuff
[LM2] for the case of S2.
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2 Proof of The Main Theorem

In this section we prove Theorem 1.1. Throughout this section let (M,ω) be
a closed symplectic manifold with π2(M) = 0. Let {ϕt}, t ∈ [0,∞) the fam-
ily of Hamiltonian diffeomorphisms defined in Example 1.2. We begin with
the following lemma which states that Hamiltonian diffeomorphisms act as
isometries on the space (L, ρ). The proof of the lemma follows immediately
from the definitions.

Lemma 2.1. Let Γ : △× [0, 1] → M ×M be an exact Lagrangian isotopy
in L and let Φ : M ×M →M ×M be a Hamiltonian diffeomorphism. Then

length{Γ} = length{Φ ◦ Γ}.

In particular, ρ(L1, L2) = ρ(Φ(L1),Φ(L2)) for every L1, L2 ∈ L.

Next, consider the following exact isotopy of the Lagrangian embeddings
Ψ : △×[0,∞) →M×M, Ψ(x, t) = (x, ϕt(x)).We denote by Lt = Ψ(△×{t})
the graph of ϕt = hft in M ×M . The following proposition will be proved
in Section 5 below.

Proposition 2.2. For every t ∈ [0,∞) there exists a Hamiltonian isotopy
{Φs}, s ∈ [0, t] of M ×M , such that Φs(L0) = Ls and such that for every
s, Φs(△) = △.

Hence, it follows from Proposition 2.2 and Lemma 2.1, that the family
{ϕt}, t ∈ [0,∞) satisfies the second conclusion of Theorem 1.1 with constant
c = ρ(△, L0).

Let us now verify the first statement of Theorem 1.1. For this purpose
we will use a theorem by Schwarz [S] stated below. First, recall the defini-
tions of the action functional and the action spectrum. Consider a closed
symplectic manifold (M,ω) with π2(M) = 0. Let {ft} be a Hamiltonian
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path generated by a Hamiltonian function F : [0, 1] ×M → R. We denote
by Fix◦(f1) the set of fixed points, x, of the time-1-map f1 whose orbits
γ = {ft(x)}, t ∈ [0, 1] are contractible. For x ∈ Fix◦(f1), take any 2-disc
Σ ⊂M with ∂Σ = γ, and define the symplectic action functional by

A(F, x) =

∫

Σ
ω −

∫ 1

0
F (t, ft(x))dt.

The assumption π2(M) = 0 ensures that the integral
∫
Σ ω does not depend

on the choice of Σ.

Remark 2.3. In the case of a closed symplectic manifold with π2(M) = 0,
a result by Schwarz [S], implies that for a Hamiltonian path {ft} with f1 6= 1l
there exist two fixed points x, y ∈ Fix◦(f1) with A(F, x) 6= A(F, y). More-
over, the action functional does not depend on the choice of the Hamilto-
nian path generating f1. Therefore, we can speak about the action of a
fixed point of a Hamiltonian diffeomorphism, regardless of the Hamiltonian
function used to define it.

Definition 2.4. For each f in Ham(M,ω) we define the action spectrum

Σf = {A(f, x) | x ∈ Fix◦(f)} ⊂ R.

The action spectrum Σf is a compact subset of R (see e.g. [S],[HZ]).

Theorem 2.5. [S]. Let (M,ω) be a closed symplectic manifold with π2(M) =
0. Then, for every f in Ham(M,ω)

d(1l, f) ≥ minΣf .

Next, consider the family {ϕt} = {hft}, t ∈ [0,∞). Note that Fix◦(h) =
Fix◦(ϕt) for every t. The following proposition shows that the action spec-
trum of ϕt is a linear translation of the action spectrum of h. Its proof is
carried out in Section 4.

Proposition 2.6. For every t ∈ [0,∞), and for every fixed point z ∈
Fix◦(ϕt) = Fix◦(h),

A(ϕt, z) = A(h, z) − tc0

where c0 is the negative (constant) value that F attains on M \ B (see
Example 1.2).
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We are now in a position to complete the proof of Theorem 1.1. Indeed,
the action spectrum is a compact subset of R, hence its minimum is finite.
By proposition 2.6 the minimum of Σϕt

tends to infinity as t→ ∞. Thus,

d(1l, ϕt) → ∞ as t→ ∞

as follows from Theorem 2.5. This completes the proof of Theorem 1.1. �

3 Geodesics in Ham(M, ω) and Proof of Theorem

1.3

In this section we describe our result about geodesics in the group of Hamil-
tonian diffeomorphisms endowed with the Hofer metric d. We refer the
reader to [BP], [LM1], [LM2], and [P2] for further details on this subject.

Let γ = {φt}, t ∈ [0, 1] be a smooth regular path in Ham(M,ω), i.e. d
dt
φt 6= 0

for every t ∈ [0, 1]. The path γ is called a minimal geodesic if it minimizes
the distance between its end-points:

length(γ) = d(φ0, φ1).

The graph of a Hamiltonian path γ = {φt} is the family of embedded images
of M in M ×M defined by the map Γ : M × [0, 1] → M ×M, (x, t) 7→
(x, φt(x)). Next, consider the family {ϕt}, t ∈ [0,∞) that was constructed
in Example 1.2. We will show that there exists no minimal geodesic joining
the identity and ϕt0 , for some t0.

Proof of Theorem 1.3. Assume (by contradiction) that for every t, there ex-
ists a minimal geodesic in Ham(M,ω) joining the identity with ϕt. Fix
t0 ∈ [0,∞). There exists a Hamiltonian path α = {gs}, s ∈ [0, 1] in
Ham(M,ω) such that

dt0 := d(1l, ϕt0) = length(α).

Expressed in Lagrangian submanifolds terms, Ψ = {graph(gs)}, s ∈ [0, 1]
is an exact path in M × M joining the diagonal with graph(ϕt0). By
Proposition 2.2, there exists a Hamiltonian isotopy Φ such that for every t,
Φt(graph(ϕt0)) = graph(ϕt), and Φt(△) = △. We choose t1 to be sufficiently
close to t0 so as to ensure that {Φt1(graph(gs))}, s ∈ [0, 1] is the graph of
some Hamiltonian path γ in Ham(M,ω). Indeed, this can be done since it
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follows from the proof of Proposition 2.2, that the Hamiltonian diffeomor-
phism Φ is C1-close to the identity in a small neighborhood of graph(ϕt0).
Moreover, using a compactness argument, we can choose a finite number of
points S = {s1 < . . . < sn} in [0, 1], and repeat the construction of Φ in a
small neighborhood of graph(gsi

) for i = 1, . . . , n. Then, by smoothly patch-
ing together those Hamiltonian flows, we conclude that for every s ∈ [0, 1],
Φt1(graph(gs)) is the graph of some Hamiltonian diffeomorphism. Next, we
claim the following

dt1 ≤ length(γ) = length{graph(γ)} = length{graph(α)} = length{α} = dt0 .

Indeed, a straightforward computation yields that the embedding f 7→
graph(f) preserves Hofer’s length, and from Lemma 2.1, length{graph(α)} =
length{graph(γ)}. We have shown that for every t0 there exists ε > 0 such
that if |t − t0| ≤ ε then dt ≤ dt0 . Since dt is a continuous function, we
conclude that dt is a constant function. On the other hand, by Theorem
1.1, dt = d(1l, ϕt) → ∞ as t→ ∞. Hence there is a contradiction.

4 Proof of Proposition 2.6

We investigate the expression A(ϕt, z) for some fixed t. Since the action
functional does not depend on the choice of the Hamiltonian path generating
the time-1-map (see Remark 2.3), we consider the following path generating
ϕt.

γ(s) =

{
f2st , s ∈ [0,12 ]
h2s−1ft , s ∈ ( 1

2 ,1].

Note that since h(B) ∩ B = ∅ and ft is supported in B, then for z ∈
Fix◦(ϕt) = Fix◦(h) the path {γs(z)}, s ∈ [0, 1] coincides with the path
{hs(z)}, s ∈ [0, 1]. Denote by α the loop {γs(z)}, s ∈ [0, 1] and let Σ be
any 2-disc with ∂Σ = α. The details of the calculation of A(ϕt, z) are as
follows:

A(ϕt, z) =

∫

Σ
ω −

∫ 1

0
tF (s, z)ds−

∫ 1

0
H(s, hs(z))ds,

where F and H are the Hamiltonian functions generating {ht} and {ft}
respectively. Recall that by definition, F is equal to a constant c0 in M \B.
This implies that

A(ϕt, z) =

∫

Σ
ω −

∫ 1

0
H(s, hs(z))ds− tc0.
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The right hand side is exactly A(h, z) − tc0. Hence, the proof is complete.

5 Extending the Hamiltonian Isotopy

In this section we prove Proposition 2.2. Let us first recall some relevant
notations. Let {ϕt}, t ∈ [0,∞) the family of Hamiltonian diffeomorphisms
defined in Example 1.2. Consider the following exact isotopy of Lagrangian
embeddings Ψ : △× [0,∞) → M ×M, Ψ(x, t) = (x, ϕt(x)). We denote by
Lt = Ψ(△×{t}) the graph of ϕt = hft in M ×M , and by △ the diagonal in
M ×M . It follows from the construction of the family {ϕt}, that for every
t, Fix(ϕt) = Fix(h). Hence, Lt intersects the diagonal at the same set of
points for every t. Moreover, we assumed that all the fixed points of h are
non-degenerate, therefore for every t, Lt transversely intersect the diagonal.
In order to prove Proposition 2.2, we first need the following lemma.

Lemma 5.1. Let x, y ∈ Fix◦(ϕt) = Fix◦(h), i.e., intersection points of the
family {Lt} and the diagonal in M×M . Take a smooth curve α : [0, 1] →M
with α(0) = x and α(1) = y and let Σ : [0, 1]×[0, 1] →M, Σ(t, s) = ϕt(α(s))
be a 2-disc with ∂Σ([0, t] × [0, 1]) = ϕtα − ϕ0α = ϕtα − hα. Then the
symplectic area of Σt = Σ([0, t] × [0, 1]) vanishes for all t.

Proof. By a direct computation of the symplectic area of Σt, we obtain that

∫

Σt

ω =

∫

[0,t]×[0,1]
Σ∗

tω = −

∫ t

0
dt

∫ 1

0
dF̂t(

∂

∂s
ϕtα(s)) ds =

∫ t

0
F̂t(ϕt(x))dt−

∫ t

0
F̂t(ϕt(y))dt,

where F̂ is the Hamiltonian function generating the flow {ϕt}. A straightfor-
ward computation shows that F̂ (t, x) = F (t, h−1x), where F is the Hamil-
tonian function generating the flow {ft}. Recall that by definition, F (x, t)
is equal to a constant c0 outside the ball B. Moreover, since x, y ∈ Fix◦(h)
and h(B) ∩ B = ∅, then x, y /∈ B. Therefore, F̂t(ϕt(x)) = F̂t(ϕt(y)) = c0
for every t. Thus, we conclude that for every t, the symplectic area of Σt

vanishes as required.

Proof of Proposition 2.2. We shall proceed along the following lines. By the
Lagrangian tubular neighborhood theorem (see [W]), there exists a symplec-
tic identification between a small tubular neighborhood Us of Ls in M ×M
and a tubular neighborhood Vs of the zero section in the cotangent bun-
dle T ∗Ls. Moreover, it follows from a standard compactness argument
that there exists δs = δ(s, Us) > 0 such that Ls′ ⊂ Us for every s′ with
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|s′ − s| ≤ δs. Next, denote Is = (s− δs, s+ δs)∩ [0, t], and consider an open
cover of the interval [0, t] by the family {Is}, that is [0, t] =

⋃
s∈[0,t] Is. By

compactness we can choose a finite number of points S = {s1 < . . . < sn}
such that [0, t] =

⋃n
i=1 Isi

. Without loss of generality we may assume that
Isj

∩ Isj+2
= ∅. Now, for every s ∈ S, we will construct a Hamiltonian

function H̃s : Us → R such that the corresponding Hamiltonian flow sends
Ls to Ls′ for s′ ∈ Is, and leave the diagonal invariant. Next, by smoothly
patching together those Hamiltonian flows on the intersections Usi

∩ Usi+1
,

we will achieve the required Hamiltonian isotopy Φ.

We fix s0 ∈ S. Let (p, q) be canonical local coordinates on T ∗Ls0
(where

q is the coordinate on Ls0
and p is the coordinate on the fiber). Moreover,

we fix a Riemannian metric on Ls0
, and denote by ‖ · ‖s0

the induced fiber
norm on T ∗Ls0

. Consider the aforementioned tubular neighborhood Us0
of

Ls0
in M ×M . For every x ∈ Ls0

∩ △ denote by σs0
(x) the component of

the intersection of Us0
and △ containing the point x. Note that we may

choose Us0
small enough such that the sets {σs0

(x)}, x ∈ Ls0
∩△, are mu-

tually disjoint. In what follows we shall denote the image of σs0
(x) under

the above identification between Us0
and Vs0

, by σs0
(x) as well.

We first claim that there exists a Hamiltonian symplectomorphism ϕ̃ : Vs0
→

Vs0
which for every intersection point x ∈ Ls0

∩△ sends σs0
(x) to the fiber

over x and which leaves Ls0
invariant. Indeed, since Ls0

transversely inter-
sects the diagonal, and since σs0

(x) is a Lagrangian submanifold, σs0
(x) is

the graph of a closed 1-form of p-variable i.e, σs0
(x) = {(p, α(p))} where

α(p) is locally defined near the intersection point x, and α(0) = 0. Define
a family of local diffeomorphisms by ϕt(p, q) = (p, q − tα(p)). Since the
1-form α(p) is closed, {ϕt} is a Hamiltonian flow. Denote by K(p, q) the
Hamiltonian function generating {ϕt}. A simple computation shows that
K(p, q) = −

∫
α(p)dp. Hence K(p, q) is independent on the q-variable i.e,

K(p, q) = K(p). Furthermore, we may assume that K(0) = 0. Next, we cut
off the Hamiltonian function K(p) outside a neighborhood of the intersec-
tion point x. Let β(r) be a smooth cut-off function that vanishes for r ≥ 2ε
and equal to 1 when r ≤ ε, for sufficiently small ε. Define

K̃(p, q) = β(‖p‖) · β(‖q‖) ·K(p).

A straightforward computation shows that, ∂ eK
∂q

(0, ·) = ∂ eK
∂p

(0, ·) = 0. Hence

the time-1-map of the Hamiltonian flow corresponding to K̃(p, q) is the
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required symplectomorphism. Therefore, we now can assume that σs0
(x)

coincide with the fiber over the point x.

Next, since Ψ is an exact Lagrangian isotopy, we have that for every s ∈ Is0
,

Ls is a graph of an exact 1-form dGs in the symplectic tubular neighborhood
Vs0

of Ls0
. Hence, in the above local coordinates (p, q) on T ∗Ls0

, Ls takes
the form Ls = (dGs(q), q). Moreover, note that dGs(0) = 0.

Define
H̃s0

(p, q) = β(‖p‖) ·Gs(q).

Consider the Hamiltonian vector field corresponding to H̃s0
,

ξ̃ =

{
ṗ = −∂ eH

∂q
= −β(‖p‖) · ∂Gs(q)

∂q

q̇ = ∂ eH
∂p

= ∂
∂p
{β(‖p‖)} ·Gs(q)

It follows that for every s ∈ Is0
such that Ls ⊂ {(p, q) | ‖p‖ < ε}, the

Hamiltonian flow is given by

(p, q) →

(
p+

∂Gs(q)

∂q
, q

)

Hence, locally, the Hamiltonian flow sends Ls0
to Ls as required. It remains

to prove that ξ̃ vanishes on the diagonal. First, since dGs(0) = 0, it follows
that ṗ = 0. Next, consider x and y, two intersection points of the family
{Ls} and the diagonal. It follows from Lemma 5.1 that the symplectic area
between Ls0

and Ls in Vs0
vanishes for every s ∈ Is0

. Hence, by the same
argument as in Lemma 5.1, for every such s we have

0 =

∫

Σs

ω =

∫

[0,s]×[0,1]
Σ∗

sω =

∫ s

0

(
Gs(x) −Gs(y)

)
ds

Thus, we get that Gs(x) −Gs(y) = 0. Note that by changing the functions
{Gs} by a summand depending only on s, we can assume that for every
s, Gs vanishes on Ls ∩ △. Hence, we obtain that ξ̃|△ = 0. Therefore, we
have that the diagonal is invariant under the Hamiltonian flow. Finally, by
smoothly patching together all the Hamiltonian flows corresponding to the
Hamiltonian functions H̃si

, for i = 1, . . . , n, we conclude that there exists
a Hamiltonian isotopy Φ such that Φs(L0) = Ls and Φs(△) = △. This
completes the proof of the proposition.
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