A Comparison of Hofer's Metrics on Hamiltonian Diffeomorphisms and Lagrangian Submanifolds

Yaron Ostrover* School of Mathematical Sciences Tel Aviv University 69978 Tel Aviv, Israel yaronost@post.tau.ac.il

Abstract

We compare Hofer's geometries on two spaces associated with a closed symplectic manifold (M, ω) . The first space is the group of Hamiltonian diffeomorphisms. The second space \mathcal{L} consists of all Lagrangian submanifolds of $M \times M$ which are exact Lagrangian isotopic to the diagonal. We show that in the case of a closed symplectic manifold with $\pi_2(M) = 0$, the canonical embedding of $\operatorname{Ham}(M)$ into $\mathcal{L}, f \mapsto \operatorname{graph}(f)$ is not an isometric embedding, although it preserves Hofer's length of smooth paths.

1 Introduction and Main Results

In this paper we compare Hofer's geometries on two remarkable spaces associated with a closed symplectic manifold (M, ω) . The first space $\operatorname{Ham}(M, \omega)$ is the group of Hamiltonian diffeomorphisms. The second consists of all Lagrangian submanifolds of $(M \times M, -\omega \oplus \omega)$ which are exact Lagrangian isotopic to the diagonal $\Delta \subset M \times M$. Let us denote this second space by \mathcal{L} . The canonical embedding

$$j: \operatorname{Ham}(M, \omega) \to \mathcal{L}, \quad f \mapsto \operatorname{graph}(f)$$

preserves Hofer's length of smooth paths. Thus, it naturally follows to ask whether j is an isometric embedding with respect to Hofer's distance. Here,

^{*}This paper is a part of the author's Ph.D. thesis, being carried out under the supervision of Prof. Leonid Polterovich, at Tel-Aviv university.

we provide a negative answer to this question for the case of a closed symplectic manifold with $\pi_2(M) = 0$. In fact, our main result shows that the image of $\operatorname{Ham}(M, \omega)$ inside \mathcal{L} is "strongly distorted" (see Theorem 1.1 below).

Let us proceed with precise formulations. Given a path $\alpha = \{f_t\}, t \in [0, 1]$ of Hamiltonian diffeomorphisms of (M, ω) , define its Hofer's length (see [H]) as

$$\operatorname{length}(\alpha) = \int_0^1 \left\{ \max_{x \in M} F(x, t) - \min_{x \in M} F(x, t) \right\} \, dt$$

where F(x, t) is the Hamiltonian function generating $\{f_t\}$. For two Hamiltonian diffeomorphisms ϕ and ψ , define the Hofer distance $d(\phi, \psi) = \inf \text{ length}(\alpha)$ where the infimum is taken over all smooth paths α connecting ϕ and ψ . For further discussion see e.g. [LM1],[MS], and [P1].

Hofer's metric can be defined in a more general context of Lagrangian submanifolds (see [C]). Let (P, σ) be a closed symplectic manifold, and let $\Delta \subset P$ be a closed Lagrangian submanifold. Consider a smooth family $\alpha = \{L_t\}, t \in [0, 1]$ of Lagrangian submanifolds, such that each L_t is diffeomorphic to Δ . We call α an *exact path* connecting L_0 and L_1 , if there exists a smooth map $\Psi : \Delta \times [0, 1] \to P$ such that for every $t, \Psi(\Delta \times \{t\}) = L_t$, and in addition $\Psi^*\sigma = dH_t \wedge dt$ for some smooth function $H : \Delta \times [0, 1] \to \mathbb{R}$. The Hofer length of an exact path is defined by

$$\operatorname{length}(\alpha) = \int_0^1 \left\{ \max_{x \in \Delta} H(x, t) - \min_{x \in \Delta} H(x, t) \right\} \, dt.$$

It is easy to check that the above notion of length is well-defined. Denote by $\mathcal{L}(P, \Delta)$ the space of all Lagrangian submanifolds of P which can be connected to Δ by an exact path. For two Lagrangian submanifolds L_1 and L_2 in $\mathcal{L}(P, \Delta)$, define the Hofer distance ρ on $\mathcal{L}(P, \Delta)$ as follows: $\rho(L_1, L_2) =$ inf length(α), where the infimum is taken over all exact paths on $\mathcal{L}(P, \Delta)$ that connect L_1 and L_2 .

In what follows we choose $P = M \times M$, $\sigma = -\omega \oplus \omega$ and take Δ to be the diagonal of $M \times M$. We abbreviate $\mathcal{L} = \mathcal{L}(P, \Delta)$ as in the beginning of the paper. Based on a result by Banyaga [B], it can be shown that every smooth path on $\mathcal{L}(P, \Delta)$ is necessarily exact. Our main result is the following:

Theorem 1.1. Let (M, ω) be a closed symplectic manifold with $\pi_2(M) = 0$. Then there exist a family $\{\varphi_t\}, t \in [0, \infty)$ in $Ham(M, \omega)$ and a constant c such that:

- 1. $d(\mathbb{1}, \varphi_t) \to \infty \ as \ t \to \infty$.
- 2. $\rho(\operatorname{graph}(1), \operatorname{graph}(\varphi_t)) = c.$

In fact, we construct the above family $\{\varphi_t\}$ explicitly:

Example 1.2. Consider an open set $B \subset M$. Suppose that there exists a Hamiltonian diffeomorphism h such that $h(B) \cap$ Closure $(B) = \emptyset$. By perturbing h slightly, we may assume that all the fixed points of h are nondegenerate. Let F(x,t), where $x \in M, t \in [0,1]$ be a Hamiltonian function such that $F(x,t) = c_0 < 0$ for all $x \in M \setminus B$, $t \in [0,1]$. Assume that F(t,x)is normalized such that for every t, $\int_M F(t,\cdot)\omega^n = 0$. We define the family $\{\varphi_t\}, t \in [0,\infty)$ by $\varphi_t = hf_t$, where $\{f_t\}$ is the Hamiltonian flow generated by F(t,x). As we'll see below, the family $\{\varphi_t\}$ satisfies the requirements of Theorem 1.1.

Theorem 1.1 has some corollaries:

- 1. The embedding of $\operatorname{Ham}(M, \omega)$ in \mathcal{L} is not isometric, rather, the image of $\operatorname{Ham}(M, \omega)$ in \mathcal{L} is highly distorted. The minimal path between two graphs of Hamiltonian diffeomorphisms in \mathcal{L} , might pass through exact Lagrangian submanifolds which are not the graphs of any Hamiltonian diffeomorphisms. Compare with the situation described in [M], where it was proven that in the case of a compact manifold, the space of Hamiltonian deformations of the zero section in the cotangent bundle is locally flat in the Hofer metric.
- 2. The group of Hamiltonian diffeomorphisms of a closed symplectic manifold with $\pi_2(M) = 0$ has an infinite diameter with respect to Hofer's metric.
- 3. Hofer's metric d on $\operatorname{Ham}(M, \omega)$ does not coincide with the Viterbotype metric on $\operatorname{Ham}(M, \omega)$ defined by Schwarz in [S].

As a by-product of our method we obtain the following result (see Section 3 below):

Theorem 1.3. Let (M, ω) be a closed symplectic manifold with $\pi_2(M) = 0$. Then there exists an element φ in $(\text{Ham}(M, \omega), d)$ which cannot be joined to the identity by a minimal geodesic. The first example of this kind was established by Lalonde and McDuff [LM2] for the case of S^2 .

Acknowledgment. I would like to express my deep gratitude to my supervisor, Professor Leonid Polterovich, for his encouragement and for many hours of extremely useful conversations. I would also like to thank Paul Biran and Felix Schlenk for many fruitful discussions.

2 Proof of The Main Theorem

In this section we prove Theorem 1.1. Throughout this section let (M, ω) be a closed symplectic manifold with $\pi_2(M) = 0$. Let $\{\varphi_t\}, t \in [0, \infty)$ the family of Hamiltonian diffeomorphisms defined in Example 1.2. We begin with the following lemma which states that Hamiltonian diffeomorphisms act as isometries on the space (\mathcal{L}, ρ) . The proof of the lemma follows immediately from the definitions.

Lemma 2.1. Let $\Gamma : \triangle \times [0,1] \to M \times M$ be an exact Lagrangian isotopy in \mathcal{L} and let $\Phi : M \times M \to M \times M$ be a Hamiltonian diffeomorphism. Then

 $length{\Gamma} = length{\Phi \circ \Gamma}.$

In particular, $\rho(L_1, L_2) = \rho(\Phi(L_1), \Phi(L_2))$ for every $L_1, L_2 \in \mathcal{L}$.

Next, consider the following exact isotopy of the Lagrangian embeddings $\Psi : \triangle \times [0, \infty) \to M \times M$, $\Psi(x, t) = (x, \varphi_t(x))$. We denote by $L_t = \Psi(\triangle \times \{t\})$ the graph of $\varphi_t = hf_t$ in $M \times M$. The following proposition will be proved in Section 5 below.

Proposition 2.2. For every $t \in [0, \infty)$ there exists a Hamiltonian isotopy $\{\Phi_s\}, s \in [0,t]$ of $M \times M$, such that $\Phi_s(L_0) = L_s$ and such that for every $s, \Phi_s(\Delta) = \Delta$.

Hence, it follows from Proposition 2.2 and Lemma 2.1, that the family $\{\varphi_t\}, t \in [0, \infty)$ satisfies the second conclusion of Theorem 1.1 with constant $c = \rho(\Delta, L_0)$.

Let us now verify the first statement of Theorem 1.1. For this purpose we will use a theorem by Schwarz [S] stated below. First, recall the definitions of the action functional and the action spectrum. Consider a closed symplectic manifold (M, ω) with $\pi_2(M) = 0$. Let $\{f_t\}$ be a Hamiltonian path generated by a Hamiltonian function $F : [0,1] \times M \to \mathbb{R}$. We denote by $\operatorname{Fix}^{\circ}(f_1)$ the set of fixed points, x, of the time-1-map f_1 whose orbits $\gamma = \{f_t(x)\}, t \in [0,1]$ are contractible. For $x \in \operatorname{Fix}^{\circ}(f_1)$, take any 2-disc $\Sigma \subset M$ with $\partial \Sigma = \gamma$, and define the symplectic action functional by

$$\mathcal{A}(F,x) = \int_{\Sigma} \omega - \int_{0}^{1} F(t, f_{t}(x)) dt.$$

The assumption $\pi_2(M) = 0$ ensures that the integral $\int_{\Sigma} \omega$ does not depend on the choice of Σ .

Remark 2.3. In the case of a closed symplectic manifold with $\pi_2(M) = 0$, a result by Schwarz [S], implies that for a Hamiltonian path $\{f_t\}$ with $f_1 \neq 1$ there exist two fixed points $x, y \in \operatorname{Fix}^{\circ}(f_1)$ with $\mathcal{A}(F, x) \neq \mathcal{A}(F, y)$. Moreover, the action functional does not depend on the choice of the Hamiltonian path generating f_1 . Therefore, we can speak about the action of a fixed point of a Hamiltonian diffeomorphism, regardless of the Hamiltonian function used to define it.

Definition 2.4. For each f in $Ham(M, \omega)$ we define the action spectrum

$$\Sigma_f = \{ \mathcal{A}(f, x) \mid x \in \operatorname{Fix}^\circ(f) \} \subset \mathbb{R}.$$

The action spectrum Σ_f is a compact subset of \mathbb{R} (see e.g. [S],[HZ]).

Theorem 2.5. [S]. Let (M, ω) be a closed symplectic manifold with $\pi_2(M) = 0$. Then, for every f in Ham (M, ω)

$$d(1,f) \geq \min \Sigma_f.$$

Next, consider the family $\{\varphi_t\} = \{hf_t\}, t \in [0, \infty)$. Note that $\operatorname{Fix}^{\circ}(h) = \operatorname{Fix}^{\circ}(\varphi_t)$ for every t. The following proposition shows that the action spectrum of φ_t is a linear translation of the action spectrum of h. Its proof is carried out in Section 4.

Proposition 2.6. For every $t \in [0, \infty)$, and for every fixed point $z \in \operatorname{Fix}^{\circ}(\varphi_t) = \operatorname{Fix}^{\circ}(h)$,

$$\mathcal{A}(\varphi_t, z) = \mathcal{A}(h, z) - tc_0$$

where c_0 is the negative (constant) value that F attains on $M \setminus B$ (see Example 1.2).

We are now in a position to complete the proof of Theorem 1.1. Indeed, the action spectrum is a compact subset of \mathbb{R} , hence its minimum is finite. By proposition 2.6 the minimum of Σ_{φ_t} tends to infinity as $t \to \infty$. Thus,

$$d(1, \varphi_t) \to \infty \ as \ t \to \infty$$

as follows from Theorem 2.5. This completes the proof of Theorem 1.1. \Box

3 Geodesics in $Ham(M, \omega)$ and Proof of Theorem **1.3**

In this section we describe our result about geodesics in the group of Hamiltonian diffeomorphisms endowed with the Hofer metric d. We refer the reader to [BP], [LM1], [LM2], and [P2] for further details on this subject.

Let $\gamma = \{\phi_t\}, t \in [0, 1]$ be a smooth regular path in $\operatorname{Ham}(M, \omega)$, i.e. $\frac{d}{dt}\phi_t \neq 0$ for every $t \in [0, 1]$. The path γ is called a *minimal geodesic* if it minimizes the distance between its end-points:

length
$$(\gamma) = d(\phi_0, \phi_1).$$

The graph of a Hamiltonian path $\gamma = \{\phi_t\}$ is the family of embedded images of M in $M \times M$ defined by the map $\Gamma : M \times [0,1] \to M \times M$, $(x,t) \mapsto (x,\phi_t(x))$. Next, consider the family $\{\varphi_t\}, t \in [0,\infty)$ that was constructed in Example 1.2. We will show that there exists no minimal geodesic joining the identity and φ_{t_0} , for some t_0 .

Proof of Theorem 1.3. Assume (by contradiction) that for every t, there exists a minimal geodesic in $\operatorname{Ham}(M, \omega)$ joining the identity with φ_t . Fix $t_0 \in [0, \infty)$. There exists a Hamiltonian path $\alpha = \{g_s\}, s \in [0, 1]$ in $\operatorname{Ham}(M, \omega)$ such that

$$d_{t_0} := d(\mathbb{1}, \varphi_{t_0}) = \operatorname{length}(\alpha).$$

Expressed in Lagrangian submanifolds terms, $\Psi = \{\operatorname{graph}(g_s)\}, s \in [0, 1]$ is an exact path in $M \times M$ joining the diagonal with $\operatorname{graph}(\varphi_{t_0})$. By Proposition 2.2, there exists a Hamiltonian isotopy Φ such that for every t, $\Phi_t(\operatorname{graph}(\varphi_{t_0})) = \operatorname{graph}(\varphi_t)$, and $\Phi_t(\Delta) = \Delta$. We choose t_1 to be sufficiently close to t_0 so as to ensure that $\{\Phi_{t_1}(\operatorname{graph}(g_s))\}, s \in [0, 1]$ is the graph of some Hamiltonian path γ in $\operatorname{Ham}(M, \omega)$. Indeed, this can be done since it follows from the proof of Proposition 2.2, that the Hamiltonian diffeomorphism Φ is C^1 -close to the identity in a small neighborhood of graph(φ_{t_0}). Moreover, using a compactness argument, we can choose a finite number of points $S = \{s_1 < \ldots < s_n\}$ in [0, 1], and repeat the construction of Φ in a small neighborhood of graph(g_{s_i}) for $i = 1, \ldots, n$. Then, by smoothly patching together those Hamiltonian flows, we conclude that for every $s \in [0, 1]$, $\Phi_{t_1}(\operatorname{graph}(g_s))$ is the graph of some Hamiltonian diffeomorphism. Next, we claim the following

 $d_{t_1} \leq \text{length}(\gamma) = \text{length}\{\text{graph}(\gamma)\} = \text{length}\{\text{graph}(\alpha)\} = \text{length}\{\alpha\} = d_{t_0}.$

Indeed, a straightforward computation yields that the embedding $f \mapsto graph(f)$ preserves Hofer's length, and from Lemma 2.1, length{graph(\alpha)} = length{graph(\gamma)}. We have shown that for every t_0 there exists $\varepsilon > 0$ such that if $|t - t_0| \leq \varepsilon$ then $d_t \leq d_{t_0}$. Since d_t is a continuous function, we conclude that d_t is a constant function. On the other hand, by Theorem 1.1, $d_t = d(\mathbb{1}, \varphi_t) \to \infty$ as $t \to \infty$. Hence there is a contradiction. \Box

4 Proof of Proposition 2.6

We investigate the expression $\mathcal{A}(\varphi_t, z)$ for some fixed t. Since the action functional does not depend on the choice of the Hamiltonian path generating the time-1-map (see Remark 2.3), we consider the following path generating φ_t .

$$\gamma(s) = \begin{cases} f_{2st} & , & s \in [0, \frac{1}{2}] \\ h_{2s-1}f_t & , & s \in (\frac{1}{2}, 1] \end{cases}$$

Note that since $h(B) \cap B = \emptyset$ and f_t is supported in B, then for $z \in Fix^{\circ}(\varphi_t) = Fix^{\circ}(h)$ the path $\{\gamma_s(z)\}, s \in [0,1]$ coincides with the path $\{h_s(z)\}, s \in [0,1]$. Denote by α the loop $\{\gamma_s(z)\}, s \in [0,1]$ and let Σ be any 2-disc with $\partial \Sigma = \alpha$. The details of the calculation of $\mathcal{A}(\varphi_t, z)$ are as follows:

$$\mathcal{A}(\varphi_t, z) = \int_{\Sigma} \omega - \int_0^1 t F(s, z) ds - \int_0^1 H(s, h_s(z)) ds,$$

where F and H are the Hamiltonian functions generating $\{h_t\}$ and $\{f_t\}$ respectively. Recall that by definition, F is equal to a constant c_0 in $M \setminus B$. This implies that

$$\mathcal{A}(\varphi_t, z) = \int_{\Sigma} \omega - \int_0^1 H(s, h_s(z)) ds - tc_0.$$

The right hand side is exactly $\mathcal{A}(h, z) - tc_0$. Hence, the proof is complete.

5 Extending the Hamiltonian Isotopy

In this section we prove Proposition 2.2. Let us first recall some relevant notations. Let $\{\varphi_t\}, t \in [0, \infty)$ the family of Hamiltonian diffeomorphisms defined in Example 1.2. Consider the following exact isotopy of Lagrangian embeddings $\Psi : \triangle \times [0, \infty) \to M \times M, \ \Psi(x, t) = (x, \varphi_t(x))$. We denote by $L_t = \Psi(\triangle \times \{t\})$ the graph of $\varphi_t = hf_t$ in $M \times M$, and by \triangle the diagonal in $M \times M$. It follows from the construction of the family $\{\varphi_t\}$, that for every t, Fix $(\varphi_t) =$ Fix(h). Hence, L_t intersects the diagonal at the same set of points for every t. Moreover, we assumed that all the fixed points of h are non-degenerate, therefore for every t, L_t transversely intersect the diagonal. In order to prove Proposition 2.2, we first need the following lemma.

Lemma 5.1. Let $x, y \in Fix^{\circ}(\varphi_t) = Fix^{\circ}(h)$, i.e., intersection points of the family $\{L_t\}$ and the diagonal in $M \times M$. Take a smooth curve $\alpha : [0,1] \to M$ with $\alpha(0) = x$ and $\alpha(1) = y$ and let $\Sigma : [0,1] \times [0,1] \to M$, $\Sigma(t,s) = \varphi_t(\alpha(s))$ be a 2-disc with $\partial \Sigma([0,t] \times [0,1]) = \varphi_t \alpha - \varphi_0 \alpha = \varphi_t \alpha - h\alpha$. Then the symplectic area of $\Sigma_t = \Sigma([0,t] \times [0,1])$ vanishes for all t.

Proof. By a direct computation of the symplectic area of Σ_t , we obtain that

$$\int_{\Sigma_t} \omega = \int_{[0,t]\times[0,1]} \Sigma_t^* \omega = -\int_0^t dt \int_0^1 d\widehat{F}_t(\frac{\partial}{\partial s}\varphi_t \alpha(s)) \, ds = \int_0^t \widehat{F}_t(\varphi_t(x)) dt - \int_0^t \widehat{F}_t(\varphi_t(y)) dt$$

where \widehat{F} is the Hamiltonian function generating the flow $\{\varphi_t\}$. A straightforward computation shows that $\widehat{F}(t,x) = F(t,h^{-1}x)$, where F is the Hamiltonian function generating the flow $\{f_t\}$. Recall that by definition, F(x,t) is equal to a constant c_0 outside the ball B. Moreover, since $x, y \in Fix^{\circ}(h)$ and $h(B) \cap B = \emptyset$, then $x, y \notin B$. Therefore, $\widehat{F}_t(\varphi_t(x)) = \widehat{F}_t(\varphi_t(y)) = c_0$ for every t. Thus, we conclude that for every t, the symplectic area of Σ_t vanishes as required.

Proof of Proposition 2.2. We shall proceed along the following lines. By the Lagrangian tubular neighborhood theorem (see [W]), there exists a symplectic identification between a small tubular neighborhood U_s of L_s in $M \times M$ and a tubular neighborhood V_s of the zero section in the cotangent bundle T^*L_s . Moreover, it follows from a standard compactness argument that there exists $\delta_s = \delta(s, U_s) > 0$ such that $L_{s'} \subset U_s$ for every s' with

 $|s'-s| \leq \delta_s$. Next, denote $I_s = (s - \delta_s, s + \delta_s) \cap [0, t]$, and consider an open cover of the interval [0, t] by the family $\{I_s\}$, that is $[0, t] = \bigcup_{s \in [0, t]} I_s$. By compactness we can choose a finite number of points $S = \{s_1 < \ldots < s_n\}$ such that $[0, t] = \bigcup_{i=1}^n I_{s_i}$. Without loss of generality we may assume that $I_{s_j} \cap I_{s_{j+2}} = \emptyset$. Now, for every $s \in S$, we will construct a Hamiltonian function $\widetilde{H}_s : U_s \to \mathbb{R}$ such that the corresponding Hamiltonian flow sends L_s to $L_{s'}$ for $s' \in I_s$, and leave the diagonal invariant. Next, by smoothly patching together those Hamiltonian flows on the intersections $U_{s_i} \cap U_{s_{i+1}}$, we will achieve the required Hamiltonian isotopy Φ .

We fix $s_0 \in S$. Let (p,q) be canonical local coordinates on $T^*L_{s_0}$ (where q is the coordinate on L_{s_0} and p is the coordinate on the fiber). Moreover, we fix a Riemannian metric on L_{s_0} , and denote by $\|\cdot\|_{s_0}$ the induced fiber norm on $T^*L_{s_0}$. Consider the aforementioned tubular neighborhood U_{s_0} of L_{s_0} in $M \times M$. For every $x \in L_{s_0} \cap \Delta$ denote by $\sigma_{s_0}(x)$ the component of the intersection of U_{s_0} and Δ containing the point x. Note that we may choose U_{s_0} small enough such that the sets $\{\sigma_{s_0}(x)\}, x \in L_{s_0} \cap \Delta$, are mutually disjoint. In what follows we shall denote the image of $\sigma_{s_0}(x)$ under the above identification between U_{s_0} and V_{s_0} , by $\sigma_{s_0}(x)$ as well.

We first claim that there exists a Hamiltonian symplectomorphism $\tilde{\varphi}: V_{s_0} \to V_{s_0}$ which for every intersection point $x \in L_{s_0} \cap \Delta$ sends $\sigma_{s_0}(x)$ to the fiber over x and which leaves L_{s_0} invariant. Indeed, since L_{s_0} transversely intersects the diagonal, and since $\sigma_{s_0}(x)$ is a Lagrangian submanifold, $\sigma_{s_0}(x)$ is the graph of a closed 1-form of p-variable i.e, $\sigma_{s_0}(x) = \{(p, \alpha(p))\}$ where $\alpha(p)$ is locally defined near the intersection point x, and $\alpha(0) = 0$. Define a family of local diffeomorphisms by $\varphi_t(p,q) = (p,q-t\alpha(p))$. Since the 1-form $\alpha(p)$ is closed, $\{\varphi_t\}$ is a Hamiltonian flow. Denote by K(p,q) the Hamiltonian function generating $\{\varphi_t\}$. A simple computation shows that $K(p,q) = -\int \alpha(p)dp$. Hence K(p,q) is independent on the q-variable i.e, K(p,q) = K(p). Furthermore, we may assume that K(0) = 0. Next, we cut off the Hamiltonian function K(p) outside a neighborhood of the intersection point x. Let $\beta(r)$ be a smooth cut-off function that vanishes for $r \geq 2\varepsilon$ and equal to 1 when $r \leq \varepsilon$, for sufficiently small ε . Define

$$\widetilde{K}(p,q) = \beta(\|p\|) \cdot \beta(\|q\|) \cdot K(p).$$

A straightforward computation shows that, $\frac{\partial \tilde{K}}{\partial q}(0, \cdot) = \frac{\partial \tilde{K}}{\partial p}(0, \cdot) = 0$. Hence the time-1-map of the Hamiltonian flow corresponding to $\tilde{K}(p,q)$ is the required symplectomorphism. Therefore, we now can assume that $\sigma_{s_0}(x)$ coincide with the fiber over the point x.

Next, since Ψ is an exact Lagrangian isotopy, we have that for every $s \in I_{s_0}$, L_s is a graph of an exact 1-form dG_s in the symplectic tubular neighborhood V_{s_0} of L_{s_0} . Hence, in the above local coordinates (p,q) on $T^*L_{s_0}$, L_s takes the form $L_s = (dG_s(q), q)$. Moreover, note that $dG_s(0) = 0$.

Define

$$H_{s_0}(p,q) = \beta(\|p\|) \cdot G_s(q).$$

Consider the Hamiltonian vector field corresponding to H_{s_0} ,

$$\widetilde{\xi} = \begin{cases} \dot{p} = -\frac{\partial \widetilde{H}}{\partial q} = -\beta(\|p\|) \cdot \frac{\partial G_s(q)}{\partial q} \\ \dot{q} = \frac{\partial \widetilde{H}}{\partial p} = \frac{\partial}{\partial p} \{\beta(\|p\|)\} \cdot G_s(q) \end{cases}$$

It follows that for every $s \in I_{s_0}$ such that $L_s \subset \{(p,q) \mid ||p|| < \varepsilon\}$, the Hamiltonian flow is given by

$$(p,q) \rightarrow \left(p + \frac{\partial G_s(q)}{\partial q}, q\right)$$

Hence, locally, the Hamiltonian flow sends L_{s_0} to L_s as required. It remains to prove that $\tilde{\xi}$ vanishes on the diagonal. First, since $dG_s(0) = 0$, it follows that $\dot{p} = 0$. Next, consider x and y, two intersection points of the family $\{L_s\}$ and the diagonal. It follows from Lemma 5.1 that the symplectic area between L_{s_0} and L_s in V_{s_0} vanishes for every $s \in I_{s_0}$. Hence, by the same argument as in Lemma 5.1, for every such s we have

$$0 = \int_{\Sigma_s} \omega = \int_{[0,s] \times [0,1]} \Sigma_s^* \omega = \int_0^s \Big(G_s(x) - G_s(y) \Big) ds$$

Thus, we get that $G_s(x) - G_s(y) = 0$. Note that by changing the functions $\{G_s\}$ by a summand depending only on s, we can assume that for every s, G_s vanishes on $L_s \cap \Delta$. Hence, we obtain that $\tilde{\xi}_{|\Delta|} = 0$. Therefore, we have that the diagonal is invariant under the Hamiltonian flow. Finally, by smoothly patching together all the Hamiltonian flows corresponding to the Hamiltonian functions \tilde{H}_{s_i} , for $i = 1, \ldots, n$, we conclude that there exists a Hamiltonian isotopy Φ such that $\Phi_s(L_0) = L_s$ and $\Phi_s(\Delta) = \Delta$. This completes the proof of the proposition.

References

- [B] Banyaga, A. (1978). Sur la structure du groupe des difféomorphisms qui préservent une forme symplectique. Comm. Math. Helv. 53, 174-227.
- [BP] Bialy, M. and Polterovich, L. Geodesics of Hofer's metric on the group of Hamiltonian diffeomorphisms, Duke Math. J., 76 (1994), 273–292.
- [C] Chekanov, Yu. Invariant Finsler metrics on the space of Lagrangian embeddings, Math. Z., 234 (2000), 605–619.
- [H] Hofer, H. On the topological properties of symplectic maps. Proceedings of the Royal Society of Edinburgh, 115 (1990), 25-38.
- [HZ] Hofer, H. and Zehnder, E. Symplectic invariants and Hamiltonian dynamics, Birkhauser Advanced Texts, Birkhauser Verlag, 1994.
- [LM1] Lalonde, F. and McDuff, D. The geometry of symplectic energy, Ann. of Math 141 (1995), 349-371.
- [LM2] Lalonde, F. and McDuff, D. Hofer's L[∞] geometry: energy and stability of Hamiltonian flows, parts 1 and 2, Invent. Math. 122 (1995), 1-33 and 35-69.
- [M] Milinković, D. Geodesics on the space of Lagrangian submanifolds in cotangent Bundles, Proc. Amer. Math. Soc. 129 (2001), no 6, 1843– 1851.
- [MS] McDuff, D. and Salamon, D. *Introduction to Symplectic Topology*, 2nd edition, Oxford University Press, Oxford, England (1998).
- [P1] Polterovich, L. (1993). Symplectic displacement energy for Lagrangian submanifolds. Ergodic Theory and Dynamical Systems, 13, 357-67.
- [P2] Polterovich, L. The Geometry of the group of Symplectic Diffeomorphisms, Lectures in Math, ETH, Birkhauser (2001).
- [P3] Polterovich, L. Growth of maps, distortion in groups and symplectic geometry, Preprint Math.DS/0111050.
- [S] Schwarz, M. On the action spectrum for closed symplectically aspherical manifolds, Pac. Journ. Math 193 (2000), 419–461.
- [W] Weinstein, A. (1971). Symplectic manifolds and their Lagrangian submanifolds. Advances in Mathematics, 6, 329-46.