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Abstract: In this work we prove a Brunn-Minkowski-type inequality in the context

of symplectic geometry and discuss some of its applications.

1 Introduction and Results

In this note we examine the classical Brunn-Minkowski inequality in the context of

symplectic geometry. Instead of considering volume, as in the original inequality, the

quantity we are interested in is a symplectic capacity, given by the minimal symplectic

area of a closed characteristic on the boundary of a convex domain. To explain the

setting, the main results, and their significance, we start with an introduction.

1.1 The Brunn-Minkowski inequality

Denote by Kn the class of convex bodies in Rn, that is, compact convex sets with

non-empty interior. The Brunn-Minkowski inequality, in its classical formulation,

states that if K and T are in Kn, then

(Vol(K + T ))
1

n ≥ (Vol(K))
1

n + (Vol(T ))
1

n ,

where Vol denotes the n-dimensional volume (i.e, the Lebesgue measure) and the

Minkowski sum of two bodies is defined by

K + T = {x+ y : x ∈ K, y ∈ T}.
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Moreover, equality holds if and only if K and T are homothetic, or in other words,

coincide up to translation and dilation.

The Brunn-Minkowski inequality is a fundamental result in convex geometry and

has innumerable applications, the most famous of which is probably a simple proof

of the isoperimetric inequality. We recall that in fact it is known that the Brunn-

Minkowski inequality holds for any two measurable sets (while the equality condition

requires convexity, or some special form of non-degeneracy). The inequality is con-

nected with many other important inequalities such as the isoperimetric inequality,

the Sobolev and the Log-Sobolev inequalities, and the Prékopa-Leindler inequality.

Moreover, the Brunn-Minkowski inequality has diverse applications in analysis, ge-

ometry, probability theory, information theory, combinatorics, physics and more. We

refer the reader to [15] for a detailed survey on this topic.

Once the importance of the Brunn-Minkowski inequality was realized, much effort

was invested in looking for analogous inequalities in other areas of mathematics.

Recently, inequalities of Brunn-Minkowski type were proved for various well known

functionals other than volume. Two examples of these functionals, which are related

with calculus of variation and with elliptic partial differential equations, are the first

eigenvalue of the Laplace operator [6] and the electrostatic capacity [5]. In this note

we concentrate on a symplectic analogue of the inequality. To explain it, we turn now

to the framework of symplectic geometry.

1.2 Symplectic Capacities

Consider the 2n-dimensional Euclidean space R2n with the standard linear coordinates

(x1, y1, . . . , xn, yn). One equips this space with the standard symplectic structure

ωst =
∑n

j=1 dxj∧dyj, and with the standard inner product gst = 〈·, ·〉. Note that under

the identification between R
2n and C

n, these two structures are the real and the imag-

inary parts of the standard Hermitian inner product in Cn, and ωst(v, Jv) = 〈v, v〉,

where J is the standard complex structure on R2n. Recall that a symplectomorphism

of R2n is a diffeomorphism which preserves the symplectic structure i.e., ψ ∈ Diff(R2n)

such that ψ∗ωst = ωst. In what follows we denote by Symp(R2n) the group of all the

symplectomorphisms of R
2n.

Symplectic capacities are symplectic invariants which, roughly speaking, measure

the symplectic size of subsets of R2n. More precisely,

Definition 1.1. A symplectic capacity on (R2n, ωst) associates to each subset U ⊂ R2n

a number c(U) ∈ [0,∞] such that the following three properties hold:

(P1) c(U) ≤ c(V ) for U ⊆ V (monotonicity)

(P2) c
(

ψ(U)
)

= |α| c(U) for ψ ∈ Diff(R2n) such that ψ∗ωst = αωst (conformality)
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(P3) c
(

B2n(r)
)

= c
(

B2(r) × Cn−1
)

= πr2 (nontriviality and normalization),

where B2k(r) is the open 2k-dimensional Euclidean ball of radius r. Note that the

third property disqualifies any volume-related invariant, while the first two properties

imply that for two sets U, V ⊂ R2n, a necessary condition for the existence of a

symplectomorphism ψ such that ψ(U1) = U2 is that c(U1) = c(U2) for each symplectic

capacity c.

A priori, it is unclear that symplectic capacities exist. The first example of a

symplectic capacity is due to Gromov [16]. His celebrated non-squeezing theorem

states that for R > r the ball B2n(R) does not admit a symplectic embedding into

the symplectic cylinder Z2n(r) := B2(r) × Cn−1. This theorem led to the following

definitions:

Definition 1.2. The symplectic radius of a non-empty set U ⊂ R2n is

cB(U) := sup
{

πr2 | There exists ψ ∈ Symp(R2n) with ψ
(

B2n(r)
)

⊂ U
}

.

The cylindrical capacity of U is

cZ(U) := inf
{

πr2 | There exists ψ ∈ Symp(R2n) with ψ(U) ⊂ Z2n(r)
}

.

Note that both the symplectic radius and the cylindrical capacity satisfy the

axioms of Definition 1.1 by the non-squeezing theorem. Moreover, it follows from

Definition 1.1 that for every symplectic capacity c and every open set U ⊂ R2n we

have cB(U) ≤ c(U) ≤ cZ(U).

The above axiomatic definition of symplectic capacities is originally due to Ekeland

and Hofer [12]. Nowadays, a variety of symplectic capacities are known to exist. For

detailed discussions on symplectic capacities and their properties we refer the reader

to [7], [17], [18], [20], [22] and [29].

In this note we mainly concentrate on two important examples of symplectic

capacities which arose from the study of periodic solutions of Hamiltonian systems.

These are the Ekeland-Hofer capacity cEH introduced in [12], [13] and the Hofer-

Zehnder capacity cHZ introduced in [19]. These invariants have several applications,

among them are a new proof of Gromov’s non-squeezing theorem, and a proof of

the existence of closed characteristics on or near an energy surface (see e.g [18]).

They also have an important role when studying the Hofer geometry on the group

of Hamiltonian diffeomorphisms (see e.g [18]). Moreover, it is known that on the

class of convex bodies in R2n, these two capacities coincide, and can be represented

by the minimal symplectic area of a closed characteristic on the boundary of the

convex domain. Since in this note we are concerned only with convex sets, we omit

the general definitions of these two capacities, and give a definition which coincides

with the standard ones on the class of convex domains. This is done in Theorem 1.3

below. Next we turn to some background on Hamiltonian dynamics.
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1.3 Hamiltonian Dynamics on Convex Domains

Let U be a bounded, connected, open set in R2n with smooth boundary containing

the origin. A nonnegative function F : R2n → R is said to be a defining function for

U if ∂U = F−1(1), U = F−1([0, 1]), and 1 is a regular value of F . Next, let F be a

defining function for U , and denote by XF = J∇F the corresponding Hamiltonian

vector field defined by iXF
ω = −dF . Note that XF is always tangent to ∂U since

dF (x) ·XF (x) = −ω(XF (x), XF (x)) = 0 for all x ∈ ∂U , and hence it defines a non-

vanishing vector field on ∂U . It is well known (see e.g [18]) that the orbits of this

vector field, that is, the solutions of the classical Hamiltonian equation ẋ = XF (x),

do not depend, up to parametrization, on the choice of the Hamiltonian function F

representing ∂U . Indeed, if H is another defining function for ∂U i.e.,

∂U = {x ; H(x) = 1} = {x ; F (x) = 1} with dH, dF 6= 0 on ∂U,

then dF (x) = λ(x)dH(x) at every point x ∈ ∂U , with λ(x) 6= 0, and therefore XF =

λXH on ∂U where λ 6= 0. Thus, the two vector fields have, up to reparametrization,

the same solutions on ∂U .

The images of the periodic solutions of the above mentioned Hamiltonian equation

are called the “closed characteristics” of ∂U (where periodic means T -periodic for

some positive T ). The breakthrough in the global existence of closed characteristics

was achieved by Weinstein [30] and Rabinowitz [25] who established the existence

of a closed characteristic on every convex (and in fact also on every star-shaped)

hypersurface in R2n.

We recall the following definition. The action of a T -periodic solution l(t) is

defined by (see e.g. [18] Page 7):

A(l) =

∫

l

λ =
1

2

∫ T

0

〈−Jl̇(t), l(t)〉dt, (1.3.1)

where λ =
∑n

1 xidyi is the Liouville 1-form whose differential is dλ = ω. This action

of a periodic orbit l(t) is the symplectic area of a disc spanned by the loop l(t).

In particular, it is a symplectic invariant i.e., A(ψ(l)) = A(l), for any ψ ∈

Symp(R2n).

We next introduce the Ekeland-Hofer and the Hofer-Zehnder capacities, denoted

by cEH and cHZ respectively. As stated above, instead of presenting the general

definitions of these two capacities we present a definition sufficient for our purpose

which coincides with the standard ones on the class of convex domains. This definition

follows from the theorem below, which is a combination of results from [12] and [18].

Theorem 1.3. Let K ⊂ R2n be a convex bounded domain with smooth boundary ∂K.

Then there exists at least one closed characteristic γ∗ ⊂ ∂K satisfying

cEH(K) = cHZ(K) = A(γ∗) = min{|A(l)| : l is a closed characteristic on ∂K}
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Such a closed characteristic, which minimizes the action (note that there might be

more than one), is called throughout this text a “capacity carrier” for K. In addition,

we refer to the coinciding Ekeland-Hofer and Hofer-Zehnder capacities on the class

of convex domains as the Ekeland-Hofer-Zehnder capacity, and denote it from here

onwards, when there is no possibility for confusion with a general capacity, by c.

1.4 Main Results

A natural question following from the discussion above is whether a Brunn-Minkowski

type inequality holds for the symplectic-size of sets, which is given by their symplectic

capacities. In this paper we restrict ourselves to the class of convex domains and to

the Ekeland-Hofer-Zehnder capacity. However, we do not exclude the possibility that

the Brunn-Minkowski inequality holds for other symplectic capacities or other, more

general classes of bodies in R2n. For example, in dimension 2, any symplectic capacity

agrees with the volume for a large class of sets in R2 (see [27]), and hence the Brunn-

Minkowski inequality holds for this class. Also, it is not difficult to verify that for the

linearized ball capacity (for a definition see [3], [2]) the Brunn-Minkowski inequality

holds.

The main result in this paper is the following: Denote by K2n the class of compact

convex bodies in R2n which has non-empty interior.

Theorem 1.4. Let c be the Ekeland-Hofer-Zehnder capacity. Then for any n, and

any K, T ∈ K2n, one has

c(K + T )
1

2 ≥ c(K)
1

2 + c(T )
1

2 . (1.4.2)

Moreover, equality holds if and only if K and T have a pair of homothetic capacity

carriers.

In fact, Theorem 1.4 is a special case of a slightly more general result which we

now describe. For a convex body K, denote by ‖x‖K := inf{r : x/r ∈ K} the

corresponding gauge function. Moreover, we uniquely associate with K its support

function hK given by:

hK(u) = sup{〈x, u〉 : x ∈ K}, for all u ∈ R
2n.

Note that this is none other than the gauge function of the polar body

K◦ = {x ∈ R
2n : 〈x, y〉 ≤ 1, for every y ∈ K},

or, in the centrally symmetric case, simply the dual norm hK(u) = ‖u‖∗K = ‖u‖K◦.

In [14], Firey introduced a new operation for convex bodies, called the “p-sum”,

which depends on a parameter p ≥ 1 and extends the classical Minkowski sum. For

5



two convex bodies K, T ∈ R2n, both containing the origin, the p-sum of K and T ,

denoted K +p T , is defined via its support function in the following way:

hK+pT (u) =
(

hp
K(u) + hp

T (u)
)

1

p , u ∈ R
2n. (1.4.3)

The convexity of hK+pT follows easily from Minkowski’s inequality. The case p = 1

corresponds to the classical Minkowski sum. (For example, the 2-sum of two gen-

eral ellipsoids is again an ellipsoid, contrary to the usual Minkowski-sum.) Thus,

Theorem 1.4 is a special case of the following:

Theorem 1.5. Let c be the Ekeland-Hofer-Zehnder capacity. Then for any n, any

p ≥ 1, and any K, T ∈ K2n one has

c(K +p T )
p

2 ≥ c(K)
p

2 + c(T )
p

2 . (1.4.4)

Moreover, equality holds if and only if K and T have a pair of homothetic capacity

carriers.

An interesting corollary of Theorem 1.4 is a symplectic analogue of the classical

isoperimetric inequality comparing volume and surface area which we now present.

For a curve γ : [0, T ] → R
2n and a convex body K containing 0 in its interior we

denote by lengthK(γ) =
∫ T

0
‖γ̇(t)‖Kdt the length of γ with respect to the body K.

The following corollary is proven in Section 4.

Corollary 1.6. For any K, T ∈ K2n, and c as above,

4c(K)c(T ) ≤ (lengthJT ◦(γ))2, (1.4.5)

where γ is any capacity carrier of K.

In Section 4 we explain why Corollary 1.6 can be thought of as a consequence of

an isoperimetric-type inequality for capacities. Note that in the special case where T

is the Euclidean unit ball, Equation (1.4.5) becomes

4πc(K) ≤ (length(γ))2,

where γ is any capacity carrier for K and where length stands for the standard

Euclidean length. This last consequence is known, and can be deduced from the

standard isoperimetric inequality in R2n combined with the well known fact that the

symplectic area is always less than or equal to the Euclidean area.

Another special case of Corollary 1.6 which can be useful is the following: let K be

a symplectic ellipsoid E =
∑n

i=1
x2

i
+y2

i

r2
i

, where 1 = r1 ≤ r2, . . . ≤ rn. Equation (1.4.5)

implies that for any T ∈ K2n

4πc(T ) ≤ (lengthJT ◦(S1))2,
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where S1 is the capacity carrier of E given by x2
1 + y2

1 = 1. Moreover, since the same

is true for any symplectic image of E, we get that

4πc(T ) ≤ inf
ϕ∈Symp(R2n)

(lengthJT ◦(ϕ(S1)))2. (1.4.6)

This estimate is sometimes strictly better than other available estimates, such as

volume radius (see [28], [2], [3]).

Next we state another corollary of Theorem 1.4, which improves a result previously

proved in [3] by other methods. Define the “mean-width” of a centrally symmetric

convex body K to be

M∗(K) :=

∫

S2n−1

max
y∈K

〈x, y〉σ(dx),

where σ is the rotationally invariant probability measure on the unit sphere S2n−1.

In other words, we integrate over all unit directions x half of the distance between

two parallel hyperplanes touching K and perpendicular to the vector x. Mean-width

is an important parameter in Asymptotic Geometric Analysis, and is the geometric

version of a central probabilistic parameter, see e.g. [24]. We show in Section 4 below

that:

Corollary 1.7. For every centrally symmetric convex body K ⊂ K2n, one has

c(K) ≤ π(M∗(K))2

Moreover, equality holds if and only if K is a Euclidean ball.

In fact, as the proof will demonstrate, this corollary follows from standard argu-

ments once we have a Brunn-Minkowski-type inequality. The same is true for the

following result.

Corollary 1.8. For any two symmetric convex bodies K, T ⊂ K2n, one has for every

x ∈ R2n that

c(K ∩ (x+ T )) ≤ c(K ∩ T ).

More generally, for any K, T ∈ calK2n any x, y ∈ R2n and any 0 ≤ λ ≤ 1, we have

that

λc1/2(K ∩ (x+ T )) + (1 − λ)c1/2(K ∩ (y + T )) ≤ c1/2(K ∩ (λx + (1 − λ)y + T )).

We wish to remark that this note can be considered as a continuation of the line

of work which was presented in [2] and [3], in which we used methods and intuition

coming from the field of asymptotic geometric analysis to obtain results in symplectic

geometry.
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Structure of the paper: The paper is organized as follows. In Section 2 we intro-

duce the main ingredient in the proof of our main theorem. In Section 3 we prove

the Brunn-Minkowski inequality for the Ekeland-Hofer-Zehnder capacity c and char-

acterize the equality case. In Section 4 we prove the above mentioned applications of

the inequality, and in the last section we prove a technical lemma.

Acknowledgment: We cordially thank Leonid Polterovich for very helpful remarks.

2 The Main Ingredient

In this section we introduce the main ingredient in the proof of Theorem 1.5.

We note that there is no loss of generality in assuming, from here onwards, that in

addition to being compact and with non-empty interior, all convex bodies considered

also have a smooth boundary and contain the origin in the interior. Indeed, affine

translations in R2n are symplectomorphisms, which accounts for the assumption that

the origin is in the interior. Secondly, once we know the Brunn-Minkowski inequal-

ity for smooth convex domains, the general case follows by standard approximation

arguments, since symplectic capacities are continuous on the class of convex bodies

with respect to the Hausdorff distance (see e.g. [23], Page 376).

The main ingredient in the proof of Theorem 1.5, is the following proposition

which is another characterization of the Ekeland-Hofer-Zehnder capacity, valid for

smooth convex sets. Let W 1,p(S1,R2n) be the Banach space of absolutely continuous

2π-periodic functions whose derivatives belong to Lp(S
1,R2n).

Proposition 2.1. Let c be the Ekeland-Hofer-Zehnder capacity. For any convex body

K ⊂ R2n with smooth boundary, and any two parameters p1 > 1, p2 ≥ 1

c(K)
p2
2 = πp2 min

z∈Ep1

1

2π

∫ 2π

0

hp2

K (ż(t))dt, (2.1)

where

Ep1
=

{

z ∈ W 1,p1(S1,R2n) :

∫ 2π

0

z(t)dt = 0,
1

2

∫ 2π

0

〈Jz(t), ż(t)〉dt = 1

}

.

In the case where p1 = p2 = 2, a proof of the above proposition can be found

in [18] and [21]. There the authors use the idea of dual action principle by Clarke [8]

in order to prove the existence of a closed characteristic for convex surfaces, a result

originally due to Rabinowitz [25] and Weinstein [30]. For further discussions on

Clarke’s dual action principle, and in particular its use for the proof of existence of

closed characteristics, see e.g. [11] and the references within.
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It turns out that the special case p1 = p2 > 1 implies the more general case of

possibly different p1 > 1, p2 ≥ 1. That is, we claim that the following Proposition

formally implies Proposition 2.1:

Proposition 2.2. For any convex body K ⊂ R2n with smooth boundary, and p > 1

c(K)
p

2 = πp min
z∈Ep

1

2π

∫ 2π

0

hp
K(ż(t))dt. (2.2)

Proof of the implication Proposition 2.2 ⇒ Proposition 2.1. Note that for

1 < p2 ≤ p1, one has Ep1
⊂ Ep2

. Moreover, from Hölder’s inequality it follows that

( 1

2π

∫ 2π

0

hp2

K (ż(t))dt
)

1

p2 ≤
( 1

2π

∫ 2π

0

hp1

K (ż(t))dt
)

1

p1 .

Therefore, from Proposition 2.2 it follows that for 1 < p2 ≤ p1

c(K)
1

2 = π min
z∈Ep1

( 1

2π

∫ 2π

0

hp1

K (ż(t))dt
)

1

p1

≥ π min
z∈Ep1

( 1

2π

∫ 2π

0

hp2

K (ż(t))dt
)

1

p2

≥ π min
z∈Ep2

( 1

2π

∫ 2π

0

hp2

K (ż(t))dt
)

1

p2 = c(K)
1

2 .

In particular, we have equality throughout. Similarly,

c(K)
1

2 = π min
z∈Ep1

( 1

2π

∫ 2π

0

hp1

K (ż(t))dt
)

1

p1

≥ π min
z∈Ep2

( 1

2π

∫ 2π

0

hp1

K (ż(t))dt
)

1

p1

≥ π min
z∈Ep2

( 1

2π

∫ 2π

0

hp2

K (ż(t))dt
)

1

p2 = c(K)
1

2 .

Thus, we conclude that for any 1 < p1, p2

c(K)
1

2 = π min
z∈Ep1

(

1

2π

∫ 2π

0

hp2

K (ż(t))dt

)

1

p2

. (2.3)

To complete the proof we need only to explain the case of p2 = 1. On the one

hand, Hölder’s inequality implies that

c(K)
1

2 = π min
z∈Ep1

( 1

2π

∫ 2π

0

hp1

K (ż(t))dt
)

1

p1 ≥ π min
z∈Ep1

1

2π

∫ 2π

0

hK(ż(t))dt.
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On the other hand, using the fact that lim(min) ≤ min(lim), we can let 1 < p2 → 1

in equation (2.3). By Lebesgue’s dominated convergence theorem we can also insert

the limit into the integral and get that

c(K)
1

2 ≤ π min
z∈Ep1

1

2π

∫ 2π

0

hK(ż(t))dt,

which completes the proof of Proposition 2.1 in the case of p2 = 1. �

Before turning to the proof of Proposition 2.2, which will be our main objective

throughout the rest of this section, let us point out an important consequence of

the above argument which will be helpful for us later (especially in the proof of the

equality case for the Brunn-Minkowski inequality).

Fix p1 > 1 and let z̃ be any path in Ep1
for which the minimum is attained in

equation (2.3). Letting 1 ≤ p2 < p1 we get that

c(K)
1

2 = π
( 1

2π

∫ 2π

0

hp1

K ( ˙̃z(t))dt
)

1

p1

≥ π
( 1

2π

∫ 2π

0

hp2

K ( ˙̃z(t))dt
)

1

p2

≥ π min
z∈Ep1

( 1

2π

∫ 2π

0

hp2

K (ż(t))dt
)

1

p2 = c(K)
1

2 .

In particular, there is equality in the first inequality so that the Lp1
and Lp2

norms

of the function hK( ˙̃z(t)) coincide. This clearly implies that this function is constant

in t. Another fact which easily follows from the line of inequalities above is that the

minimum is attained on the same paths z for all p2 ≥ 1 (in particular, on a function

which belongs to
⋂

p>1 Ep).

Thus, we have shown that Proposition 2.2 implies the following

Corollary 2.3. Fix p1 > 1 and p2 ≥ 1. Any path z̃ which minimizes
∫ 2π

0
hp2

K (ż(t))dt

over Ep1
satisfies that the function hK(ż(t)) is the constant function c(K)/π, and in

particular all the Lp norms of the function hK(ż(t)) coincide.

After the proof of Proposition 2.2, we will give a geometrical explanation for this

fact, see Remark 2.7 below.

We now turn to the proof of Proposition 2.2. We follow closely the arguments,

valid for p = 2, in [18] and [21]. Fix p > 1 and consider the functional

Ip(z) =

∫ 2π

0

hp
K(ż(t))dt

defined on the space Ep, which was defined in the statement of Proposition 2.1. A

key ingredient in the proof is Lemma 2.5 below, which we will prove in Section 5,
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and which gives a one-to-one correspondence between the so called “critical points”

of the functional Ip and closed characteristics on ∂K. Before stating the lemma, we

must define what we mean by a critical point of Ip, since Ep is not closed under all

perturbations.

Definition 2.4. An element z ∈ Ep is called a critical point of Ip if the following holds:

For every ξ ∈ W 1,p(S1,R2n) satisfying
∫ 2π

0
ξ(t)dt = 0 and

∫ 2π

0
〈ξ(t), Jż(t)〉dt = 0, one

has
∫ 2π

0

〈∇hp
K(ż(t)), ξ̇(t)〉 = 0

To understand why this definition is natural, first notice that the above condi-

tion
∫ 2π

0
〈ξ(t), Jż(t)〉dt = 0 implies that

∫

〈ξ̇(t), Jz(t)〉dt = 0 by integration by parts.

Next, consider the element zε = z + εξ. It belongs to W 1,p(S1,R2n) and satisfies the

normalization condition
∫ 2π

0
zε(t)dt = 0, but its action is not normalized to be 1, thus

it is not necessarily in Ep. However, its action is close to 1 with difference being of

order o(ε2). Indeed,

|A(zε)| =
1

2

∫ 2π

0

〈Jzε(t), żε(t)〉dt = 1 +
ε2

2

∫ 2π

0

〈Jξ(t), ξ̇(t)〉dt

Denote by z′ε the normalized path:

z′ε =
zε

1 + ε2

2

∫

〈Jξ(t), ξ̇(t)〉dt

Note that now z′ε ∈ Ep. For a critical point, it is natural to require that the difference

between Ip(z) and Ip(z
′
ε) will be of order o(ε). Taking the first order approximation

we have

Ip(z
′
ε) =

∫ 2π

0

hp
K(ż′ε)(t))dt =

∫ 2π

0

hp
K(ż(t))dt + ε

∫ 2π

0

〈∇hp
K(ż(t)), ξ̇(t)〉 + o(ε),

and for the second term on the right hand side to disappear we need exactly the

condition in the definition of a critical point above. In particular, we emphasize that

the minimum of Ip over Ep is attained at a critical point according to our definition,

a fact which will be important in the proof. With the definition in hand, we may

formulate the following lemma, which for p = 2 appears in [18], Pages 26-30. For the

sake of completeness we include its proof for general p > 1 in Section 5.

Lemma 2.5. Let K ⊂ R
2n be a convex body with smooth boundary, and fix p > 1.

Each critical point of the functional Ip(z) satisfies the Euler equation

∇hp
K(ż) =

p

2
λJ z + α, where λ = Ip(z), (2.4)

11



for some fixed vector α (which may be different for different critical points), and vice

versa: each point z satisfying Equation (2.4) is a critical point of Ip. Moreover, the

functional Ip(z) achieves its minimum i.e., there is z̃ ∈ Ep such that

Ip(z̃) = inf
z∈Ep

I(z) =

∫ 2π

0

hp
K( ˙̃z(t))dt = λ̃ 6= 0,

and in particular, z̃ satisfies Equation (2.4).

Proof of Proposition 2.2 The idea is as follows: we define an invertible mapping

F between critical points z of Ip(z) and closed characteristics l on the boundary

of K. Moreover, we will show that the action of l = F(z) is a simple monotone

increasing function of Ip(z). In particular, the critical point z for which the minimum

of Ip(z) is attained is mapped to the closed characteristic minimizing the action. Since

the minimal action of a closed characteristic is exactly the Ekeland-Hofer-Zehnder

capacity, the result will follow.

To define the mapping F , let z : S1 → R2n be a critical point of Ip. In particular

from Lemma 2.5 we have that

∇hp
K(ż) =

p

2
λJ z + α, (2.5)

for some vector α and λ = Ip(z). We will use the Legendre transform in order to

define an affine linear image of z which is a closed characteristic on the boundary

∂K of K, which we will then define as F(z). Recall that the Legendre transform is

defined as follows: For f : Rn → R, one defines

Lf(y) = sup
x∈Rn

[〈y, x〉 − f(x)], ∀y ∈ R
n.

It is not hard to check that

(L(hp
K))(v) =

p1−q

q
hq

K◦(v),

where p−1 + q−1 = 1 and K◦ is, as before, the polar body of K. Note that hq
K◦ is a

defining function of K (that is, K is its 1-level set) which is homogeneous of degree

q. After applying the Legendre transform and using the fact that v = ∇hp
K(u) is

inverted point-wise by u = ∇Lhp
K(v) equation (2.4) becomes:

ż =
p1−q

q
∇hq

K◦

(p

2
λJ z̃ + α

)

= ∇hq
K◦

(q
1

1−q

2
λJ z +

αq
1

1−q

p

)

.

Next, let

l = κ
(q

1

1−q

2
λJ z +

αq
1

1−q

p

)

, (2.6)

12



where κ is a positive normalization constant which we will readily choose. Differen-

tiating (2.6) we see that l satisfies the following Hamiltonian equation.

l̇ =
κ

2
q

1

1−q λ J∇hq
K◦(l/κ) =

κ2−q

2
q

1

1−q λJ∇hq
K◦(l). (2.7)

Note that l is a periodic trajectory of the Hamiltonian equation corresponding to the

Hamiltonian function hq
K◦. Since we ask l ∈ ∂K we need to choose κ such that l will

lie in the energy level hq
K◦ = 1. For this purpose, note that since hq

K◦ is homogeneous

of degree q we obtain from Euler’s formula that

1

2π

∫ 2π

0

hq
K◦(l(t))dt =

1

2πq

∫ 2π

0

〈∇hq
K◦(l(t)), l(t)〉dt = −

κq−2q
1

q−1

πλq

∫ 2π

0

〈Jl̇(t), l(t)〉dt

=
q

1

1−q κq

4πqλ

∫ 2π

0

〈λż(t), λJz(t) +
2α

p
〉dt =

κqλq
q

1−q

2π

which is equal to 1 if we choose κ = (2π/λ)
1

q q
1

q−1 . Therefore, for this value of κ we

have that

l =
(2π

λ

)
1

q
(λ

2
Jz +

α

p

)

, (2.8)

is a closed trajectory of the Hamiltonian equation corresponding to the Hamiltonian

hq
K◦ on ∂K. This l we denote by F(z). (To be completely formal, to agree with the

way closed characteristics were defined, we let F(z) be the image of l in R2n.) Below

we will show that this mapping is invertible, and compute F−1.

Next we derive the relation between A(l) and λ = Ip(z). Using Euler’s formula

again, and the above value of κ we conclude that

A(l) =
1

2

∫ 2π

0

〈−Jl̇(t), l(t)〉dt =
κ2

8
q

2

1−qλ2

∫ 2π

0

〈ż(t), Jz(t) +
2α

λp
〉dt = 4−

1

p (π)
2

q λ
2

p

Equivalently,

A
p

2 (l) = 1/2(π)
p

q λ. (2.9)

In order to show that the map F (we should actually write Fp as it depends on

p, but we omit this index so as not to overload notation) is indeed one-to-one and

onto, we now define F−1. Starting now with a closed characteristic Γ on ∂K, it is not

difficult to check that we may assume using a standard re-parametrization argument

that it is the image of a loop l with l : [0, 2π] → R2n and l̇ = dJ∇hq
K◦(l), for some

constant d. Next, we define

F−1(l) = J−1
(

(πdq)−1/2
(

l −
1

2π

∫ 2π

0

l(t)dt
))

.

We will show that this map is mapping closed characteristics to critical points. Set

z = F−1(l). It is easy to check that
∫ 2π

0
z(t)dt = 0. The fact that z ∈ W 1,p(S1,R2n)
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follows from the boundedness of l (as Image(l) ∈ ∂K is bounded) and the following

argument: since ż = C1 ·∇h
q
K◦(l) for some constant C1 and, ∇hq

K◦, being homogenous

of degree q− 1, satisfy |∇hq
K◦(x)| ≤ C2|x|

q−1 for some constant C2, we conclude that

for some constants C3 and C4,
∫ 2π

0

|ż(t)|pdt = C3

∫ 2π

0

|∇hq
K◦(l(t))|

q

q−1dt ≤ C4

∫ 2π

0

|l(t)|qdt <∞.

Moreover

A(z) =
1

2

∫ 2π

0

〈ż(t), Jz(t)〉dt =
1

2
(πdq)−1

∫ 2π

0

〈J−1l̇(t), l(t)〉dt

=
1

2
(πdq)−1

∫ 2π

0

〈d∇hq
K◦(l(t)), l(t)〉dt =

1

2π

∫ 2π

0

hq
K◦(l(t)) = 1,

where the next to last inequality follows from Euler’s formula. Finally, note that

ż = (πdq)−
1

2J−1 l̇ = (πdq)−
1

2d∇hq
K◦(l) = (πdq)−

1

2d∇hq
K◦

(

(πdq)
1

2Jz +

∫ 2π

0

l(t)dt
)

Using the Legendre transform as before we get that

∇hp
K(ż) = αJz + β,

where α and β are constants (depending on d and q). Moreover,

Ip(z) =

∫ 2π

0

hp
K(ż(t))dt =

1

p

∫ 2π

0

〈∇hp
K(ż(t)), ż(t)〉dt =

α

p

∫ 2π

0

〈Jz(t), ż(t)〉dt =
2α

p

From Lemma 2.5 it now follows that z is a critical point of Ip and hence the map F−1

is well defined. It is not difficult to show that for every critical point, F−1F(z) = z

and that for every closed characteristic, FF−1(l) = l, and we omit this computation.

This one-to-one correspondence, and the monotone relation between A(F(z)) and

Ip(z), implies that the for z̃, a critical point for which the minimum of I(z) is attained,

its “dual” l̃ = F(z̃) has minimal action among all closed characteristics l. This fact

together with Theorem 1.3 (which we consider, for the purpose of this note, as the

definition of Ekeland-Hofer-Zehnder capacity of convex domains) implies that

c(K)
p

2 = A
p

2 (l̃) = (1/2)p(2π)
p

q λ = πp 1

2π

∫ 2π

0

hp
K( ˙̃z(t))dt. (2.10)

The proof of the proposition is now complete. �

Remark 2.6. In the proof we have shown the following fact, which we will use later

in the note once again: For every p, there exists an invertible mapping F(= Fp),

mapping critical points of I (which by Lemma 2.5 are exactly the loops satisfying

equation (2.4)), to closed characteristics on ∂K, and moreover, satisfying

A
p

2 (F(z)) = (1/2)p(2π)
p

q Ip(z). (2.11)
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Remark 2.7. The fact exhibited in Corollary 2.3, which might seem surprising at

first, can be geometrically explained (for the case p > 1) after the above construction

has been made. Indeed, recall that (fixing some p > 1) for every path z ∈ Ep which

is a critical point of Ip there corresponds a path l ∈ ∂K, l = Fp(z), which is a linear

image of z. Moreover, by the above formulae, putting all the constants together and

naming them A1, A2, A3, we have (using that hK◦(l) = 1)

ż = A1J
−1 l̇ = A2∇h

q
K◦(l) = A3∇hK◦(l).

Thus, we have hK(ż) = A3hK(∇hK◦(l)). However, a simple fact from convexity

theory (See [26], Corollary 1.7.3. Page 40) is that for a convex body T and a vector

0 6= u ∈ Rn, the gradient of the dual norm in a certain direction is exactly the support

of the body in this direction. More formally:

∇hT (u) = {x ∈ T : hT (u) = 〈x, u〉},

which in our case, by smoothness, is simply one point (on the boundary of T , of

course). Thus, in particular, hK(∇hK◦(u)) = hK◦(u), and we see that

hK(ż) = A3hK◦(l) = A3,

is constant and does not depend on t, as claimed in Corollary 2.3 and proven there

by other means.

3 Proof of the Main result

In this section we use Proposition 2.1 to prove our main theorem.

Proof of Theorem 1.5. Fix p1 > 1. It follows from equation (1.4.3) that for every

z ∈ Ep1
and p ≥ 1

1

2π

∫ 2π

0

hp
K+pT (ż(t))dt =

1

2π

∫ 2π

0

hp
K(ż(t))dt +

1

2π

∫ 2π

0

hp
T (ż(t))dt (3.1)

By multiplying both sides of the above equation by πp, taking the minimum over all

z ∈ Ep1
, and applying Proposition 2.1 above, we conclude that for every p ≥ 1

c(K +p T )
p

2 ≥ c(K)
p

2 + c(T )
p

2 . (3.2)

In particular, for p = 1 we get the Brunn-Minkowski inequality for the Ekeland-Hofer-

Zehnder capacity.

We turn now to prove the equality case. We start by proving that if K and T

have homothetic capacity carriers, then equality holds in (3.2) for every p ≥ 1.
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Let ΓK ⊂ ∂K be a capacity carrier for K. As in the proof of Proposition 2.2

above, we can choose a parameterized curve representing ΓK via ΓK = Image lK ,

where l̇K = dKJ∇h
2
K◦(lK) and lK(0) = lK(2π). Moreover, it follows from the proof of

Proposition 2.2 (say in the case p = 2) that for every such lK there is corresponding

minimizer zk ∈ E2 of the functional I2:

zK := F−1(lK) = J−1
(

(2πdK)−1/2
(

lK −
1

2π

∫ 2π

0

lK(t)dt
))

,

such that

c(K)
1

2 = πmin
z∈E2

( 1

2π

∫ 2π

0

h2
K(ż(t))dt

)
1

2

= π
( 1

2π

∫ 2π

0

h2
K(żK(t))dt

)
1

2

Moreover, combining this with Proposition 2.1 and Corollary 2.3 we conclude that

for every p ≥ 1:

c(K)
p

2 = πp min
z∈E2

1

2π

∫ 2π

0

hp
K(ż(t))dt = πp 1

2π

∫ 2π

0

hp
K(żK(t))dt.

Similarly, let ΓT be a capacity carrier for T , set lT the corresponding parameterized

curve which represents ΓT , and let zT = F−1(lT ) ∈ E2 be the corresponding critical

point of I2 which satisfies

c(T )
p

2 = πp min
z∈E2

1

2π

∫ 2π

0

hp
T (ż(t))dt = πp 1

2π

∫ 2π

0

hp
T (żT (t))dt.

Note that in order to have equality in (3.2), it is enough to show that zK = zT . To

this end we observe that since ΓK and ΓT are homothetic, there exist two constants

α and β such that lT = αlK + β. This implies that zT = (dK

dT
)1/2αzK and that

A(lT ) = α2A(lK). Moreover, since ΓK and ΓT are capacity carriers of K and T

respectively, it follows that A(lK) = c(K) and A(lT ) = c(T ). Hence, we conclude

that α = ( c(T )
c(K)

)1/2. On the other hand

c(K) = A(lK) =
1

2π

∫ 2π

0

〈lK(t), JlK(t)〉dt =
1

2π

∫ 2π

0

〈lK(t), dK∇h2
K◦(lK(t))〉dt

=
2dK

2π

∫ 2π

0

h2
K◦(lK(t))dt = 2dK,

and similarly c(T ) = 2dT . This implies that zK = zT and hence we have an equality

in (3.2) for every p ≥ 1 as required.

Next, we assume that equality holds in (3.2) for some p ≥ 1 and prove that K

and T have homothetic capacity carriers.

Let p1 > 1 and p ≥ 1. Note that equality in (3.2) implies that

min
z∈Ep1

∫ 2π

0

hp
K+pT (ż(t))dt = min

z∈Ep1

∫ 2π

0

hp
K(ż(t))dt+ min

z∈Ep1

∫ 2π

0

hp
T (ż(t))dt

16



This in turn implies that there exists z̃ ∈ Ep1
such that

min
z∈Ep1

∫ 2π

0

hp
K(ż(t))dt =

∫ 2π

0

hp
K( ˙̃z(t))dt and min

z∈Ep1

∫ 2π

0

hp
T (ż(t))dt =

∫ 2π

0

hp
T ( ˙̃z(t))dt

Combining this fact with Proposition 2.1, we conclude that

min
z∈Ep1

(

∫ 2π

0

hp1

K (ż(t))dt
)

1

p1 = min
z∈Ep1

(

∫ 2π

0

hp
K(ż(t))dt

)
1

p

=
(

∫ 2π

0

hp
K( ˙̃z(t))

)
1

p

In other words, z̃ ∈ Ep1
is a critical point of the functional IK

p1
=
∫ 2π

0
hp1

K (ż(t))dt

defined on the space Ep1
, where p1 > 1. It follows from the proof of Proposition 2.2

together with (2.8) and (2.9), that for such z̃ their is a corresponding l̃K which satisfies

l̃K =
( 2π

λK

)
1

q1

(λ

2
Jz̃ +

αK

p1

)

= c(K)
1

2Jz̃ + AK,

where AK is a constant which depends on K, p1, and q−1
1 + p−1

1 = 1. Similarly, since

z̃ is also a critical point of IT
p1

, we have that l̃T = c(T )
1

2Jz̃ + AT . We conclude that

l̃T = αl̃K + β where α = c(T )
1

2 /c(K)
1

2 . This implies that K and T have homothetic

capacity carriers and the proof of Theorem 1.5 is now complete.

4 Corollaries of the Main Theorem

In this section we prove Corollaries 1.6, 1.7 and 1.8. We start with the proof of

Corollary 1.6. As in the case of the classical isoperimetric inequality, which connects

the surface area of a body and its volume, the Brunn-Minkowski inequality is useful in

obtaining a lower bound for the derivative of the volume-type function. This follows

directly from Theorem 1.4 above and the following computation: for any convex

bodies K and T in R2n and any ε > 0,

c(K + εT )
1

2 − c(K)
1

2

ε
≥

c(K)
1

2 + εc(T )
1

2 − c(K)
1

2

ε
= c(T )

1

2 . (4.1)

The limit on the left hand side as ε→ 0+ can be thought of as a “directional deriva-

tive” of c1/2 in the “direction” T . Note that this argument holds for any symplectic

capacity for which one is able to show that the Brunn-Minkowski inequality holds.

However, to get a meaningful result, one must find a geometric interpretation for

the so-called derivative which one arrives at. To be more precise, let us define, for a

convex body T , the functional dT (K) by

dT (K) = lim
ε→0+

c(K + εT ) − c(K)

ε
.

Inequality (4.1) implies the following easy corollary:
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Corollary 4.1. For every convex body K ⊂ R2n, one has

dT (K) = 2c(K)
1

2

d

dε
c(K + εT )

1

2 |ε=0+ ≥ 2c(K)
1

2 c(T )
1

2 .

The only part which requires justification is the existence of the limit. Let us

show that c1/2(K + εT ) has derivative at ε = 0+ (which is, since c(K) 6= 0, the same

as showing that c(K + εT ) has a derivative): Let s < t, note that

c(K + tT )
1

2 − c(K)
1

2

t
≤
c(K + sT )

1

2 − c(K)
1

2

s
,

is equivalent to

(s/t)(c(K + tT )
1

2 ) + (1 − s/t)c(K)
1

2 ≤ c(K + sT )
1

2 ,

which follows from the Brunn-Minkowski inequality. Hence, the expression in the

limit is a decreasing function of ε > 0, and converges to its supremum as ε → 0+,

provided it is bounded. Showing that it is bounded is simple, since T ⊂ RK for some

R > 0 (which can be huge, and may depend on the dimension) and thus

c(K + tT )
1

2 − c(K)
1

2

t
≤
c(K + tRK)

1

2 − c(K)
1

2

t
= R.

This completes the proof of Corollary 4.1. �

One way to use Corollary 4.1 is to find a geometric interpretation of the derivative

of the capacity, d. Roughly speaking, if c is a symplectic “volume”, d should be a

kind of symplectic “surface-area”. Instead, what we do below is to bound d from

above by an expression with a clear geometric meaning: minimal length of loops in

a certain norm (as in the statement of Corollary 1.6), and then Corollary 4.1 gives a

lower bound, in terms of capacity, of this expression.

We fix ε > 0, p1 > 1 and p2 = 1, and denote by z̃ ∈ Ep1
any path on which the

minimum in Equation (2.1) is attained for c(K)
1

2 . We compute:

c(K + εT )
1

2 = π min
z∈Ep1

1

2π

∫ 2π

0

hK+εT (ż(t))dt

= π min
z∈Ep1

1

2π

∫ 2π

0

hK(ż(t))dt+ εhT (ż(t))dt

≤ π
1

2π

∫ 2π

0

hK( ˙̃z(t))dt+ εhT ( ˙̃z(t))dt

= c(K)
1

2 +
ε

2

∫ 2π

0

hT ( ˙̃z(t))dt.

Rearranging (for fixed ε > 0 and p > 1), and applying equation (1.4.2), one gets that

for any such z̃

c(T )
1

2 ≤
c(K + εT )

1

2 − c(K)
1

2

ε
≤

1

2

∫ 2π

0

hT ( ˙̃z(t))dt.
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Note that the middle expression is a decreasing function of ε, which as ε → ∞

converges to the left hand side, and as ε→ 0+ converges to dT (K)/2
√

c(T ).

Next, note that z̃ is a critical point of the functional IK
p1

(z) =
∫ 2π

0
hp1

K (ż(t))dt

defined on the space Ep1
as well (see Corollary 2.3 above and the reasoning before it).

Hence, we can use the transformation F defined in the proof of Proposition 2.2, to

map z̃ to the corresponding capacity carrier l̃ of K. Moreover, from equalities (2.8)

and (2.9) it follows that
˙̃l = c(K)

1

2J ˙̃z.

Thus, the above inequality takes the form

c(T )
1

2 ≤
c(K + εT )

1

2 − c(K)
1

2

ε
≤

1

2
c(K)−

1

2

∫ 2π

0

hT (J−1 ˙̃
l(t))dt.

Since there is a one-to-one correspondence between critical points z̃ of the func-

tional IK
p1

and closed characteristics l̃ on ∂K, we may in fact write the above inequality

as

c(T )
1

2 ≤
c(K + εT )

1

2 − c(K)
1

2

ε
≤

1

2
c(K)−

1

2 inf
l̃

∫ 2π

0

hT (J−1 ˙̃l(t))dt, (4.2)

where the infimum runs over all the loops l which are images under F of z̃ minimizing

equation (2.1) for c(K)
1

2 i.e., all the capacity carriers of K.

Thus, we arrive at

4c(K)c(T ) ≤ (lengthJT ◦(l))2,

for any capacity carrier l on ∂K, proving Corollary 1.6. We may also take the limit

in (4.2) as ε→ 0+ to see that

Corollary 4.2. For any n, any K, T ∈ K2n, and any capacity carrier on ∂K, we

have that

dT (K) ≤ inf
l̃

∫ 2π

0

hT (J−1 ˙̃l(t))dt = lengthJT ◦(l).

Next we turn to the relation between the capacity and the Mean-Width of a body.

Proof of Corollary 1.7. We denote by U(n) the group of unitary transformations

in Cn ' R2n. Note that c(UK) = c(K) for any unitary operator U ∈ U(n). The

Brunn-Minkowski inequality thus implies that for U1, U2 ∈ U(n)

c(K) ≤ c

(

U1K + U2K

2

)

,

and by induction also

c(K) ≤ c

(

1

N

N
∑

i=1

UiK

)

.
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Further, this is true also if we integrate (with respect to Minkowski addition) along

the unitary group with respect to the uniform Haar measure dµ on this group:

c(K) ≤ c

(
∫

UKdµ(U)

)

.

However, it is not hard to see that the integral on the left hand side is simply a

Euclidean ball of some radius, since it is invariant under rotations U ∈ U(n), and

further, it is easy to determine its radius since M ∗(K) = M∗(UK), for U ∈ U(n),

and M∗ is an additive function with respect to Minkowski addition (for more details

see [24]). Thus we have
∫

UKdµ(U) = M∗(K)B2n
2 , where B2n

2 is the Euclidean unit

ball, and the inequality above translates to

c(K) ≤ c(M∗(K)B2n
2 ) = π(M∗(K))2. (4.3)

Next, we turn to the characterization of the equality case. Let L denote the family

of all capacity carriers on ∂K. Since we assume equality between the left and right

hand side, we get equality throughout the following

c(K) ≤
1

N2
c(U1K + · · ·+ UNK) ≤ c(M∗B2n

2 ),

for any N and U1, . . . , UN ∈ U(n).

Applying the same argument as in the proof of Brunn-Minkowski for two sum-

mands (Theorem 1.4), this time to N summands K1, . . .KN for arbitrary N , we get

that the equality conditions becomes the following: there exists N homothetic capac-

ity carriers li ⊂ ∂Ki. Since in this case Ki = UiK, we know that capacity carriers

on Ki are images by Ui of capacity carriers on K. Moreover, since K and UiK have

the same capacity and are centrally symmetric, we see that if li is a capacity carrier

of UiK and is homothetic to a capacity carrier lj of UjK, then they must actually

be identical. We thus conclude that equality in Corollary 1.7 implies in fact that for

every N and U1, . . . , UN ∈ U(n) we have that

U1L ∩ · · · ∩ UNL 6= ∅. (4.4)

For any K satisfying that K 6= RB2n
2 for any R > 0 there exists some δ > 0 such

that for every δ-net N on S2n−1 we have that the restriction of ‖ · ‖K on N is not

constant. Assume by contradiction that K satisfies the equality in Corollary 1.7 but

is not a Euclidean ball. Fix δ as above, and fix C such that C−1|x| ≤ ‖x‖K ≤ C|x| for

all x. Take U1, . . . , UN to be a δ-net on U(n) with respect to, say, the operator norm.

The finiteness of N follows from compactness on U(n). Thus for every U ∈ U(n)

there is some j such that |Ujx− Ux| ≤ δ|x| for all x.

It follows from (4.4) that there exists l ∈ U−1
1 L ∩ · · · ∩ U−1

N L. In particular,

Uil ⊂ ∂K, and so {Uil(0)}N
i=1 ⊂ ∂K. Consider the set N = { Uil(0)

|Uil(0)|}
N
i=1 ⊂ S2n−1.
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Note that N is a δ-net of S2n−1. However, on this set the norm is constant and

equals 1/|l(0)| ( since Ui(l(0)) ∈ ∂K so ‖Ui(l(0))‖K = 1). This is a contradiction

to the choice of δ, and we conclude that the norm ‖ · ‖K must have been Euclidean,

completing the proof of Corollary 1.7. �

Proof of Corollary 1.8. Let K, T ⊂ K2n be general convex bodies, x, y ∈ R2n and

0 ≤ λ ≤ 1. It is easy to verify that

λ(K ∩ (x+ T )) + (1 − λ)(K ∩ (y + T )) ⊂ (K ∩ (λx + (1 − λ)y + T )).

Therefore, by monotonicity, we have that

c1/2 (λ(K ∩ (x + T )) + (1 − λ)(K ∩ (y + T ))) ≤ c1/2 (K ∩ (λx+ (1 − λ)y + T )) .

The Brunn-Minkowski inequality then implies that

c1/2(λ(K ∩ (x+ T ))) + c1/2((1 − λ)(K ∩ (y + T ))) ≤ c1/2(K ∩ (λx + (1 − λ)y + T )),

and using homogeneity of capacity the proof of the general case is complete:

λc1/2(K ∩ (x+ T )) + (1 − λ)c1/2(K ∩ (y + T )) ≤ c1/2(K ∩ (λx + (1 − λ)y + T )).

For the symmetric case, let y = −x and λ = 1/2, we get

(1/2)c1/2(K ∩ (x + T )) + (1/2)c1/2(K ∩ (−x + T )) ≤ c1/2(K ∩ T ).

The second term on the left hand side equals to c1/2(−K ∩ (x − T )) (since −Id is a

symplectic map), which, by the symmetry assumptions on K and T , is the same as

c1/2(K ∩ (x+ T )), the first term, and the inequality

c1/2(K ∩ (x + T )) ≤ c1/2(K ∩ T )

is established, �

5 Proof of Lemma 2.5

The proof is divided into three steps. We follow closely the arguments in [18] and [21].

First step: The functional I is bounded from below on E . Indeed, the function hp
K

being continuous and homogeneous of degree p > 1 satisfies

1

α
|y|p ≤ hp

K(y) ≤ α|y|p,

for some constant α ≥ 1, and thus

I(z) =

∫ 2π

0

hp
K(ż(t))dt ≥

1

α
‖ż‖p

p,
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where ‖ · ‖p stands for the Lp norm on S1. From Hölder’s inequality it follows that

for z ∈ E

2 =

∫ 2π

0

〈Jz(t), ż(t)〉dt ≤ ‖z‖q‖ż‖p, where
1

p
+

1

q
= 1. (5.1)

Using the Poincaré inequality and the fact that
∫ 2π

0
z(t)dt = 0, we deduce that

‖z‖q ≤ ‖z‖∞ ≤ 2π‖ż‖1 ≤ 2π‖ż‖p, (5.2)

and hence 1√
π
≤ ‖ż‖p, which in turn implies that

I(z) =

∫ 2π

0

hp
K(ż(t))dt ≥

1

α
‖ż‖p

p ≥
π

−p

2

α
> 0. (5.3)

Second step: The functional I attains its minimum on E namely, there exists z̃ ∈ E

with
∫ 2π

0

hp
K( ˙̃z(t))dt = inf

z∈E

∫ 2π

0

hp
K(ż(t))dt = λ̃ > 0.

To show this, we pick a minimizing sequence zj ∈ E such that

lim
j→∞

∫ 2π

0

hp
K(żj(t))dt = λ̃.

It follows from (5.1), (5.2), and (5.3) that there exists some constant C > 0 such that

1

C
≤ ‖żj‖p ≤ C.

Moreover, from (5.2) it follows that

‖zj‖p ≤ ‖żj‖p ≤ C. (5.4)

In particular, zj is a bounded sequence in the Banach space W 1,p(S1,R2n) and there-

fore, a subsequence, also denoted by zj converges weakly in W 1,p(S1,R2n) to an

element z∗ ∈ W 1,p(S1,R2n). Indeed, the closed unit ball of a reflexive Banach space

is weakly compact and the space W 1,p(S1,R2n), where p > 1, is known to be reflexive

(see e.g., [1]). We will show below that z∗ ∈ E . First we claim that zj converges

uniformly to z∗ i.e.

sup
t

|zj(t) − z∗(t)| → 0. (5.5)

Indeed, the zj are uniformly continuous:

|zj(t) − zj(s)| ≤ |

∫ t

s

żj(τ)dτ | ≤ |t− s|1/qC,
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and the claim follows from the Arzelà-Ascoli theorem. Next we claim that z∗ ∈ E .

Indeed, even the weak convergence immediately implies that the mean value of z∗
vanishes. Moreover,

2 =

∫ 2π

0

〈Jzj(t), żj(t)〉dt =

∫ 2π

0

〈J(zj(t) − z∗(t)), żj(t)〉dt+

∫ 2π

0

〈Jz∗(t), żj(t)〉dt.

The first term on the right hand side tends to zero by equation (5.5), Hölder inequality,

and equation (5.4). The second term converges because of the weak convergence to
∫ 2π

0

〈Jz∗(t), ż∗(t)〉dt.

To see this, one must check that the linear functional f(w) =
∫ 2π

0
〈Jz∗(t), ẇ(t)〉dt is

bounded on W 1,p(S1,R2n). This follows from Hölder’s inequality as z∗ ∈ Lq(S
1,R2n)

(since z∗ ∈ W 1,p(S1,R2n)). Thus the equation above, taking limit j → ∞ takes the

form
∫ 2π

0

〈Jz∗(t), ż∗(t)〉dt = 2,

which implies that z∗ ∈ E . We now turn to show that z∗ ∈ E is indeed the required

minimum. We use the convexity of hp
K and deduce the point-wise estimate

〈∇hp
K(żj(t)), ż∗(t) − żj(t)〉 ≤ hp

K(ż∗(t)) − hp
K(żj(t)) ≤ 〈∇hp

K(ż∗(t)), ż∗(t) − żj(t)〉,

which gives
∫ 2π

0

hp
K(ż∗(t))dt−

∫ 2π

0

hp
K(żj(t))dt ≤

∫ 2π

0

〈∇hp
K(ż∗(t)), ż∗(t) − żj(t)〉dt. (5.6)

To see that the right hand side of inequality (5.6) tends to zero, it is enough as before

to check that ∇hp
K(ż∗) belongs to Lq(S

1,R2n). Indeed, since ∇hp
K is homogeneous of

degree p − 1 there exists some positive constant K for which |∇hp
K(x)| ≤ K|x|p−1,

and hence it follows from equation (5.4) that
∫ 2π

0

|∇hp
K(ż∗(t))|

qdt =

∫ 2π

0

|∇hp
K(ż∗(t))|

p

p−1dt ≤ K
p

p−1

∫ 2π

0

|ż∗(t)|
pdt <∞.

Thus the right hand side of inequality (5.6) tends to zero. Hence,

λ̃ ≤

∫ 2π

0

hp
K(ż∗(t))dt ≤ lim inf

j→∞

∫ 2π

0

hp
K(żj(t))dt = λ̃,

and we have proved that z∗ is the minimum of I(z) for z ∈ E .

Third step: First we show that the critical points of I satisfy the required Euler

equation (2.4). Let z be a critical point of I. Hence, according to Definition 2.4, for

every ξ ∈ W 1,p(S1,R2n) such that
∫ 2π

0
ξ(t)dt = 0,

∫ 2π

0
〈Jz(t), ξ̇(t)〉dt = 0 we have that

∫ 2π

0

〈∇hp
K(ż(t)), ξ̇(t)〉dt = 0.
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Next we choose a special ξ namely such that ξ̇ is of the form ξ̇ = ∇hp
K(ż) − βJz − α

where α is a vector and β is a constant. The vector α is chosen so that ξ(0) = ξ(2π)

namely

α =
1

2π

∫ 2π

0

∇hp
K(ż(t))dt.

In order to show that

x(t) =

∫ t

0

ξ̇(s)ds ∈ W 1,p(S1, R2n),

one uses a simple continuity properties of ξ̇. We choose β so that the condition

∫ 2π

0

〈Jz(t), ξ̇(t)〉dt = 0.

is satisfied. With this function ξ we compute

∫ 2π

0

|ξ̇(t)|2dt =

∫ 2π

0

〈∇hp
K(ż(t)), ξ̇(t)〉dt− β

∫ 2π

0

〈Jz(t), ξ̇(t)〉dt− 〈α,

∫ 2π

0

ξ̇(t)dt〉 = 0.

Thus, the critical point z satisfies the Euler equation ∇hp
K(ż) = βJz + α. Moreover,

it follows from Euler formula that

λ =

∫ 2π

0

hp
K(ż(t))dt =

1

p

∫ 2π

0

〈∇hp
K(ż(t)), ż(t)〉dt =

β

p

∫ 2π

0

〈Jz(t), ż(t)〉dt =
2β

p
,

and hence β = λp
2

.

For the other direction, namely that any loop z satisfying Euler equation (2.4) is

a critical point of I, we simply check that for ξ ∈ W 1,p(S1, R2n) with
∫ 2π

0
ξ(t)dt = 0

and
∫ 2π

0
〈Jz(t), ξ̇(t)〉dt = 0 we have

∫ 2π

0

〈∇hp
K(ż(t)), ξ̇(t)〉dt =

∫ 2π

0

〈
λp

2
Jz(t) + α, ξ̇(t)〉dt = 0,

as required. This concludes the proof of the Lemma.
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