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Abstract

In this paper we study convex caustics in Minkowski billiards. We show that for the

Euclidean billiard dynamics in a planar smooth, centrally symmetric, strictly convex

body K, for every convex caustic which K possesses, the “dual” billiard dynamics in

which the table is the Euclidean unit ball and the geometry that governs the motion is

induced by the body K, possesses a dual convex caustic. Such a pair of caustics are dual

in a strong sense, and in particular they have the same perimeter, Lazutkin parameter

(both measured with respect to the corresponding geometries), and rotation number.

We show moreover that for general Minkowski billiards this phenomenon fails, and one

can construct a smooth caustic in a Minkowski billiard table which possesses no dual

convex caustic.

1 Introduction and Main Results

Mathematical billiard models have been studied in various contexts, including dynamical

systems, ergodic theory, statistical mechanics, and geometry. Euclidean billiard dynamics

concern the propagation of a point particle with no mass in some domain in Rn, called

the “billiard table”. The particle moves in straight lines until it encounters the boundary.

There, it reflects specularly, and bounces off according to the classical reflection law: the

angle of incidence equals the angle of reflection. This law is the consequence of the following

variational principle: for two points a, b in the interior of the billiard table, the reflection

point x on the boundary which is part of the billiard orbit between a and b, is a critical

point for the Euclidean length of the broken line axb (see e.g., [20] and [28]).

The notion of “Minkowski billiard” was introduced by Gutkin and Tabachnikov in [14],

as an important special case of the natural extension of Euclidean billiard dynamics to the

Finsler setting. In the Minkowski case, the geometry that governs the billiard dynamics is

determined by a norm on Rn. The reflection law for the associated Minkowski billiard follows

from a variational principle analogous to the one mentioned above, where the Euclidean

length is replaced by this norm. It is sometimes useful to think of the Minkowski billiard

dynamics as a dynamical system associated with a pair of convex bodies K ⊂ Rnq , and

T ⊂ Rnp , where the ambient space Rnq × Rnp is the classical phase space. Here, one of the

bodies, say K, plays the role of the billiard table, and the other body T determines a norm,

given by the so-called support function hT , which controls the billiard dynamics in K (see

Section 2.2 below for the precise formulation). The (K,T )-billiard dynamics takes place on

the boundary ∂(K × T ), and the projections of the associated orbits to Rnq (respectively
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to Rnp ) are called T -billiard trajectories in K (respectively K-billiard trajectories in T ).

When T = B is the Euclidean unit ball, the B-billiard trajectories in K are the classical

billiard orbits in K. With this description, it follows immediately that there is a one-to-one

correspondence between T -billiard trajectories in K, and K-billiard trajectories in T . In

what follows we call such a pair of trajectories “dual billiard trajectories” (see Section 2.2.1).

Motivated by this orbit-to-orbit duality, in this paper we study a certain caustic-to-

caustic duality for planar Minkowski billiards. Recall that for Euclidean billiards, a convex

caustic is a convex body with the property that once a billiard trajectory is tangent to it,

it remains tangent after every reflection at the boundary. Caustics play an important role

in the study of Euclidean billiard dynamics, and their existence has an essential impact on

the dynamics (see Section 2.1 below for more details). The definition of a convex caustic

in the Minkowski billiard setting, at least when the body T which induces the geometry is

smooth, centrally symmetric, and strictly convex, is the same as in the Euclidean case, i.e.,

a T -caustic in K is a convex body in Rnq such that every T -billiard trajectory once tangent

to it, stays tangent after every reflection at ∂K. Similarly, a K-caustic in T is a convex

body in Rnp with the property that every T -billiard trajectory once tangent to it, remains

tangent to it after every reflection with ∂T . In the non-centrally symmetric case, one must

distinguish between ‘left’ and ‘right’ caustics, which for simplicity we wish to avoid in this

text. Thus, we introduce the following terminology for planar Minkowski billiards.

Definition 1.1. A “symmetric billiard configuration” is a pair (K,T ) of C1-smooth cen-

trally symmetric strictly convex bodies, where K ⊂ R2
q, and T ⊂ R2

p.

For a symmetric billiard configuration (K,T ) we denote by C(K,T ) the set of all the

convex T -caustics in the billiard table K. The set C(T,K) is defined in a similar manner.

Definition 1.2 (Caustic Duality). Let (K,T ) be a symmetric billiard configuration. Two

convex caustics C ∈ C(K,T ) and C ′ ∈ C(T,K) are called “dual caustics” if for every T -

billiard trajectory in K which is tangent to C, the dual K-billiard trajectory in T is tangent

to C ′, and vice versa.

Remark 1.3. We emphasize that the dual convex caustic to C ∈ C(K,T ), if exists, is

unique (see Section 2.3.3). Moreover, we shall see below that several parameters naturally

associated with a convex caustic C ∈ C(K,T ), such as its rotation number, perimeter,

and the so-called Lazutkin parameter (where the last two quantities are defined via the

corresponding support function hT ), are the same for any pair of smooth strictly convex

dual caustics (see Section 2.3.4 below for the definitions and more details).

Our main result, concerning dual caustics for Euclidean billiards, is the following.

Theorem 1.4. Let K ⊂ R2
q be a C1-smooth centrally symmetric strictly convex body, and

B ⊂ R2
p be the Euclidean unit disk. Then for every convex B-caustic in K there exists a

dual convex K-caustic in B. Moreover, the two caustics have the same perimeter, Lazutkin

parameter (both measured with respect to the corresponding geometries), and rotation num-

ber.
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Remark 1.5. The dual caustic mentioned in Theorem 1.4 has a simple geometric descrip-

tion. More precisely, let C be a B-caustic in K. For q ∈ ∂K, denote by e(q) and b(q)

the positive and negative tangency points to C from q, respectively (see Figure 8 below).

Moreover, let L(q) = |q− e(q)|+ |q− b(q)|. Then, the dual caustic C ′ ∈ C(B,K) is given by

C ′ = Conv

{
e(q)− b(q)

L(q)
: q ∈ ∂K

}
.

In particular, if C is a polygon, then so is C ′. On the other hand, if C is sufficiently smooth,

then C ′ is smooth, and its boundary is parametrized by q 7→ e(q)−b(q)
L(q) , where q ∈ ∂K.

The notion of caustics for planar convex billiard tables is closely related with the notion

of an ‘invariant circle’ of the associated monotone twist map (see Section 2.3.3 below). In

particular, any convex caustic gives rise to such an invariant circle. It follows immediately

from the definition that for any symmetric billiard configuration (K,T ), there is a natu-

ral bijection between the invariant circles of the twist map associated with the T -billiard

dynamics in K, and the invariant circles of the twist map associated with the K-billiard

dynamics in T . However, in general, not every invariant circle corresponds to a convex

caustic (see e.g., [13] and [19]). Thus, the existence of a convex dual caustic in Theorem 1.4

above is not obvious. Moreover, as Theorem 1.6 below demonstrates, this result fails in

general if one replaces the Euclidean ball B with an arbitrary convex body.

Theorem 1.6. There exists a symmetric billiard configuration (K,T ) and a smooth strictly

convex T -caustic in K which possesses no dual convex caustic, that is, there exists no K-

caustic in T which is dual to it in the sense of Definition 1.2 above.

Notations: Throughout the paper the word “smooth” means C1-smooth, unless explicitly

stated otherwise. For a smooth function F : Rn → R we write ∇F for its gradient. A convex

body K in Rn is a compact convex set with non-empty interior. It is said to be ‘strictly

convex’ if its boundary contains no line segment, and ‘centrally symmetric’ if it is symmetric

with respect to the origin, i.e., K = −K. For a centrally symmetric convex body K ⊂ Rn,

the gauge function gK : Rn → R given by gK(x) = inf{r ≥ 0 : x ∈ rK} defines a norm in

Rn, denoted by ‖ · ‖K . The support function hK : Rn → R of a convex body K is defined

by hK(u) = sup{〈x, u〉 : x ∈ K}. If K is centrally symmetric, then one has hK(u) = ‖u‖K◦ ,
where K◦ = {y ∈ Rn : hK(y) ≤ 1} is the dual (polar) body of K. The Euclidean unit ball

is denoted by Bn (when there is no risk of confusion, we sometimes drop the superscript

n to simplify notation). We denote by dH(·, ·) the Hausdorff distance between compact

sets in Rn. The convex hull of the sets {Ai}mi=1 in Rn is denoted by Conv(A1, A2, . . . , Am).

An oriented line ` in Rn is denoted by (x, v), where x ∈ ` and v is the orientation of `.

We denote by ¯̀ := (x,−v) the same line with the reversed orientation. Given a planar

convex body C ⊂ R2, an oriented line ` = (x, v) is said to be positively tangent to C if

` and C intersect, and C is contained in the closed left half-plane determined by `, i.e.,

C ⊂ {y ∈ R2 : det(v, y − x) ≥ 0}. The oriented line ` = (x, v) is said to be negatively

tangent to C if the oriented line ¯̀ is positively tangent to C. For a centrally symmetric

convex body K ⊂ R2 and a (rectifiable) curve γ ⊂ R2, we write LengthhK (γ) for the length
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of γ measured with respect to hK (see e.g., [30]), and Length(γ) for the Euclidean length.

Finally, we denote the perimeter of a planar convex set C with respect to hK by PerhK (C),

and the Euclidean perimeter by Per(C).

Organization of the paper: In Section 2 we provide the necessary background on

Minkowski billiards, and present two models for the dynamics: a continuous one via the

characteristic foliation in the classical phase space, and a discrete-time model via a Poincaré

surface of section. Then, confining ourselves to the planar case, we discuss Minkowski caus-

tics and their relations with invariant circles of the corresponding monotone twist map, and

introduce some natural invariants associated with them. In Section 3 we prove Theorem 1.4

on the existence of dual caustics for Euclidean billiard dynamics. This is done first for

sufficiently regular caustics, and then, using an approximation argument, for the general

case. In Section 4 we show that the situation is radically different for arbitrary Minkowski

billiards, and prove Theorem 1.6. Finally, in the Appendix we sketch an alternative proof

of Theorem 1.4 in the case where the caustic C is a convex polygon.
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665/15. The third named author is partially supported by the European Research Council

(ERC) under the European Union Horizon 2020 research and innovation programme, start-

ing grant No. 637386, and by the ISF grant No. 1274/14. The fourth named author is

partially supported by the European Research Council advanced grant 338809.

2 Preliminaries and Background

2.1 Some Historical Background

As mentioned in the introduction, for a Euclidean billiard table, a convex caustic† is a convex

body with the property that every billiard trajectory once tangent to it, remains tangent

after every reflection at the boundary. For example, it follows from elementary geometrical

considerations that elliptical planar billiard tables have a 1-parameter family of convex

caustics given by confocal ellipses. This phenomenon is closely related to the classical fact

that the billiard dynamics inside an ellipse is an integrable dynamical system (see e.g., [20]

and [28]). For convex billiard tables of dimension at least three, Berger [4] and Gruber [11]

proved that for Euclidean billiards only ellipsoids have convex caustics. On the other hand,

convex caustics do play an important role in the study of planar Euclidean billiards. For

example, the presence of a convex caustic implies that the dynamics cannot be ergodic, as

the corresponding invariant curve (family of rays tangent to a caustic – see Section 2.3.3

below) separates the phase space into invariant components. Caustics are also closely related

with the integrability of the billiard dynamics (see e.g., [5] and [12]). Finally, in the theory

of semiclassical approximations, convex caustics can be used to estimate eigenvalues, and

to construct quasimodes for the corresponding Dirichlet problem (see [22]).

†The term “caustic” (which means burning in Greek) is borrowed from optics, where it means a curve

on which light rays focus after being reflected off a mirror.
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For 2-dimensional Euclidean billiards, the existence of (uncountably many) caustics

near the boundary of a sufficiently smooth convex billiard table with positive curvature

was first proved by Lazutkin [21] using KAM theory. Lazutkin’s original proof assumes

the existence of 553 continuous derivatives of the billiard table. Later, Douady [9] reduced

the degree of differentiability to six. In contrast, Mather [23] showed that if the curvature

of the boundary vanishes at one point, then the billiard possesses no caustics at all. A

quantitative version of this result was given by Gutkin and Katok in [13]. Hubacher [16]

proved that no caustics exist near a boundary whose curvature is discontinuous at some

point. For further information on caustics of Euclidean planar billiard tables we refer the

reader to [12,13,19,22,28,29].

In [14], Gutkin and Tabachnikov made a first step in investigating caustics of Minkowski

billiards. In particular, they extended the above mentioned result of Mather to this setting.

More precisely, they showed that planar convex billiard tables whose Minkowski curvature

is not strictly positive do not have caustics. To the best of our knowledge, analogous results

in the Minkowski setting to the works of Lazutkin [21] on the existence of caustics near the

boundary, of Gutkin-Katok [13] on caustic-free regions, and of Berger [4] and Gruber [11]

regarding the non-existence of caustics in higher dimensions, are yet to be explored.

2.2 The Minkowski (K,T )-Billiard Dynamics

Minkowski billiards model, for example, the propagation of light in an anisotropic homoge-

neous medium, i.e., where the velocity depends on the direction, but is independent of the

position (see [14], and also [17] for a motivation coming from the study of light patterns

observed in liquid crystal layers). Below we present two models for Minkowski billiards.

The first is a continuous description given by characteristic foliations on non-smooth con-

vex hypersurfaces in the classical phase space R2n = Rnq ×Rnp as described in [2]. The second

model, which essentially goes back to Birkhoff [7] (and is somewhat more common in the

study of billiard dynamics) is a time-discrete dynamical system which can be derived from

the first one using Poincaré sections. Before we turn to the precise formulation, we give

first a non-formal geometric description of the (K,T )-billiard dynamics.

As mentioned in the introduction, the Minkowski (K,T )-billiard is a dynamical system

associated with a pair of convex bodies, K ⊂ Rnq and T ⊂ Rnp . We shall assume for simplicity

that K and T are C1-smooth convex bodies. The (K,T )-billiard dynamics takes place on

the boundary ∂(K × T ), and can geometrically be described as follows (see Section 2.2.1

below): suppose we start at some point (q0, p0) ∈ K × ∂T . The dynamics is defined so that

we move in K × ∂T from (q0, p0) to a point (q1, p0) ∈ ∂K × ∂T , following the inner normal

to the boundary ∂T at the point p0. When we hit the boundary ∂K at the point q1 we start

to move in ∂K × T from (q1, p0) to (q1, p1) ∈ ∂K × ∂T following the outer normal to ∂K

at the point q1 (see Figure 1). Next, we move from (q1, p1) to (q2, p1) following the inner

normal to ∂T at p1, and so on and so forth. Similarly to the classical Euclidean case, T -

billiard trajectories in K correspond to critical points of a length functional defined on the

(infinite) cross product of the boundary ∂K, where the distances between two consecutive
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q2

q1

q0K

p0

p2 p1

T

Figure 1. A (K,T )-billiard trajectory.

points are measured with respect to the support function hT . In the case where T = Bn

is the Euclidean unit ball, these trajectories are the classical billiard orbits in the billiard

table K. Hence, the above reflection law is a natural variation of the classical one when the

Euclidean structure is replaced by a Minkowski norm. We proceed with a formal description

2.2.1 A Continuous Model

In this section we provide a continuous-time model for the Minkowski billiard dynamics,

which is motivated by the natural correspondence between geodesics in a Riemannian man-

ifold and characteristics of its unit cotangent bundle (see [2]).

Consider R2n with position-momentum coordinates (q, p), and equipped with the stan-

dard symplectic form ω = dq ∧ dp. Recall that the restriction of ω to a smooth closed

connected hypersurface S ⊂ R2n defines the canonical line bundle SS := ker(ω|S), whose

integral curves are called the characteristics of S. Moreover, recall that the symplectic

action of a closed curve γ is defined by A(γ) =
∫
γ λ, where λ = pdq is the Liouville 1-form.

Next, let K ⊂ Rnq , and T ⊂ Rnp be two smooth convex bodies, and consider the gT -unit

cotangent bundle

U∗TK := {(q, p) : q ∈ K, and gT (p) ≤ 1} ' K × T,

where gT is the gauge function of T , and the standard inner product identifies T ∗Rnq with

Rnq × Rnp . Note that the boundary of the product K × T ⊂ Rnq × Rnp is a non-smooth

hypersurface. However, away from the singular strata ∂K × ∂T the canonical line bundle

S∂(K×T ) is well defined, and is generated by the (Hamiltonian) vector field

X(q, p) =

{
(−∇gT (p), 0), (q, p) ∈ int(K)× ∂T,
(0,∇gK(q)), (q, p) ∈ ∂K × int(T ).

The convexity of K×T allows one to naturally extend the notion of characteristic directions

to ∂K × ∂T , which leads to the following definition of billiard dynamics (see [2]).
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Definition 2.1. A (K,T )-billiard trajectory is the image of a piecewise smooth map∗

γ : R→ ∂(K×T ), γ(t) = (q(t), p(t)), such that for every t /∈ Bγ := {t ∈ R : γ(t) ∈ ∂K×∂T}
one has

γ̇(t) = aX(γ(t)), for some constant a ∈ (0,∞).

Moreover, for any t ∈ Bγ, the left and right derivatives γ̇±(t) of γ(t) exist, and

γ̇±(t) ∈ {α(−∇gT (p(t)), 0) + β(0,∇gK(q(t))) : α, β ≥ 0, (α, β) 6= (0, 0)}.

Remark 2.2. For a (K,T )-billiard trajectory γ, the curve πq(γ), where πq : R2n → Rnq is

the projection onto Rnq , is called a T -billiard trajectory in K, and the curve πp(γ) (which

is the corresponding projection to Rnp ), is called a K-billiard trajectory in T . Thus, there

is a natural one-to-one correspondence between T -billiard trajectories in K and K-billiard

trajectories in T . We refer to such a pair of trajectories as “dual billiard trajectories”.

Furthermore, for a pair of periodic dual trajectories, the length with respect to the support

function hT of the T -billiard trajectory in K equals the length with respect to hK of

the corresponding K-billiard trajectory in T , and also equals the symplectic action of the

corresponding closed characteristic in R2n traversed once (see Section 7 of [14], and Section

2.4 of [2]).

Remark 2.3. The trajectories described geometrically in the beginning of this section (see

Figure 1) are (K,T )-billiard trajectories in the sense of Definition 2.1. Their projections

to Rnq are Minkowski T -billiard trajectories in K in the sense of [14] (which include the

case of classical Euclidean billiards where T = B). Note also that Definition 2.1 allows

also the so-called “gliding trajectories” which move solely on ∂K × ∂T (see [2] for more

details). However, these trajectories will play no role in what follows. Finally, we remark

that our notion of T -billiard dynamics in K includes “strange billiard orbits” in the sense of

Halpern [15]. Such an orbit, when it exists, can be realized, say, as the image of a piecewise

smooth map which in finite time converges to a point, and continues as a gliding trajectory.

These trajectories demonstrate the following phenomenon: on the singular strata ∂K×∂T ,

the differential relation in Definition 2.1 might have non-unique solutions. As we shall see,

this will not influence our discussion below, as away from the singular strata the differential

relation has a unique solution, which, moreover, can be extended uniquely up to a time at

which the solution intersects the singular strata.

2.2.2 The Discrete Model

In the previous subsection we described a continuous-time model of Minkowski billiard

dynamics via the characteristic foliation in the phase space R2n. There exists another

natural description of the billiard motion as a discrete-time dynamical system, which for

Euclidean billiards goes back to Birkhoff [7] (cf. [14] for a similar approach in the Minkowski

case). Consider the T -billiard dynamics in K as a mapping of pairs: (q, v) 7→ (q′, v′), where

q ∈ ∂K, the vector v is the direction of propagation, q′ is the following impact point, that

is q′ is the point where the trajectory starting at q with velocity v hits the boundary ∂K

∗Here by piecewise smooth we mean a continuous map which is C1 except at a discrete subset of R.
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next, and v′ is the reflected velocity, i.e., the direction of propagation after the reflection at

the point q′. More precisely, let K ⊂ Rnq and T ⊂ Rnp be two smooth centrally symmetric

strictly convex bodies. Let nK(q) be the unit outer normal to K at the point q ∈ ∂K, and

similarly for nT (p). Note that nK(q) = ∇gK(q)/|∇gK(q)|. Denote

(∂K × ∂T )+ = {(q, p) ∈ ∂K × ∂T : 〈nK(q), nT (p)〉 > 0},
(∂K × ∂T )− = {(q, p) ∈ ∂K × ∂T : 〈nK(q), nT (p)〉 < 0},
(∂K × ∂T ) 0 = {(q, p) ∈ ∂K × ∂T : 〈nK(q), nT (p)〉 = 0},

and consider the decomposition

∂K × ∂T = (∂K × ∂T )+ ∪ ∂(K × ∂T )0 ∪ (∂K × ∂T )−.

It follows from Definition 2.1 (see also [2]) that a (K,T )-billiard trajectory (q(t), p(t)) for

which (q(t0), p(t0)) ∈ (∂K × ∂T )− will continue to a point in ∂K × int(T ), i.e., one has

(q(t0 + ε), p(t0 + ε)) ∈ ∂K × int(T ), for small enough ε > 0, and was in int(K)× ∂T before

the collision with the singular set ∂K × ∂T , i.e., (q(t0 − ε), p(t0 − ε)) ∈ int(K) × ∂T , for

small enough ε > 0. In a similar manner, a (K,T )-billiard trajectory (q(t), p(t)) for which

(q(t0), p(t0)) ∈ (∂K × ∂T )+ arrives to this point from ∂K × int(T ), and continues to move

in int(K)× ∂T . On the other hand, trajectories for which (q(t0), p(t0)) ∈ (∂K × ∂T )0 may

exhibit a more complicated behavior. They can move in the singular strata ∂K × ∂T as

gliding trajectories, or, as the example of “strange (Euclidean) billiards” (see [15]) shows,

the point (q(t0), p(t0)) might be the accumulation point of the collision points of a billiard

trajectory which has an infinite number of collisions in finite time. We remark that under

sufficient smoothness conditions on the boundaries ∂K and ∂T , strange billiards cannot

occur, as shown in Proposition 2.12 in [2].

Next, consider the Poincaré return map associated with the subset

Σ := (∂K × ∂T )+ ∪ (∂K × ∂T )−,

which the (K,T )-billiard trajectories cross transversally. By the above discussion, the return

map is indeed well defined. We shall denote this map by Ψ = ΨK,T . One can check directly

that Ψ interchanges the two sets (∂K × ∂T )+ and (∂K × ∂T )−, i.e.,

Ψ : (∂K × ∂T )+ → (∂K × ∂T )− and Ψ : (∂K × ∂T )− → (∂K × ∂T )+.

We observe that Σ is a symplectic submanifold of R2n, and since the vector field X generates

the null direction of ω on Σ, the Poincaré map Ψ is symplectic, i.e.,

Ψ∗(dq ∧ dp) = dq ∧ dp. (1)

Considering the dynamics of the (K,T )-billiard trajectories given in Definition 2.1 above,

one sees that for (q, p) ∈ (∂K × ∂T )+ one has Ψ(q, p) = (q′, p), where q′ is the next

impact point of the ray in K emanating from q in direction −nT (p) with the boundary ∂K.

Note that this point exists, as nT (p) points outside of K at q by the definition of the set

(∂K × ∂T )+. Similarly, for (q, p) ∈ (∂K × ∂T )−, one has Ψ(q, p) = (q, p′), where p′ is the

next impact point of the ray in T emanating from p in the direction nK(q).
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v

q
K

nT (p) = −v

p

T

Figure 2. The isomorphism P(K) ' (∂K × ∂T )+, (q, v) 7→ (q, p).

Definition 2.4. In the following we refer to Ψ2 as the “discrete (K,T )-billiard map”.

To motivate this, consider the restriction of Ψ2 to, say, (∂K × ∂T )+. Note that the set

(∂K × ∂T )+ can be viewed as the phase space of the T -billiard dynamics in K. Indeed, a

natural description of the phase space associated with Minkowski billiards (see [14]) is the

set of inward pointing hT -unit tangent vectors with foot at ∂K, i.e.,

P(K) := {(q, v) : q ∈ ∂K, v ∈ TqK, hT (v) = 1, 〈v, nK(q)〉 < 0}.

There is a natural bijection P(K) → (∂K × ∂T )+ via (q, v) 7→ (q, p), where v = −nT (p)

(see Figure 2). Under this identification, the map Ψ2 takes the form of the usual billiard

ball map (q, v) 7→ (q′, v′), as described above. A similar identification as above holds for

the set (∂K × ∂T )− as the phase space P(T ) of the K-billiard dynamics in T .

2.3 Planar Minkowski Billiards

In this section we restrict attention to the case of convex bodies in the plane. In this case,

a convex set determines in a simple geometric way a 1-parameter family of convex billiard

tables for which it is a Minkowski caustic. This geometric construction will play a central

role in what follows, and will be described in Section 2.3.1. In Section 2.3.2 we recall the fact

that the Minkowski billiard map is a monotone twist map, and in Section 2.3.3 we discuss

the relation between invariant circles of this monotone twist map and convex caustics.

In particular, we rephrase the notion of caustic duality via duality of the corresponding

invariant circles. Finally, in Section 2.3.4 we discuss some classical invariants of caustics

and their behaviour under caustic duality.

2.3.1 The String Construction

It is well known that for Euclidean billiards, for every convex set C in the plane one can

associate a 1-parametric family of billiard tables (KL)L>Per(C) such that each table has

C as a caustic. Roughly speaking, ∂KL is obtained by the following procedure: wrap a

loop of inelastic string of length L around C. Then, pull the string tight away from C

to produce a point p on the boundary of the billiard table KL. Finally, move the point p

around C, keeping the string tight, to obtain the rest of ∂KL. This technique is known as

9
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the “gardener’s string construction” (see e.g., [8, 29]). Note that when this construction is

applied to a closed line segment one obtains an ellipse. For an illustration of a Euclidean

string construction over a triangle see Figure 10 in the Appendix.

This string construction can be naturally generalized to planar Minkowski billiards (see

Section 3 of [14]), where lengths are measured with respect to some Minkowski norm on

R2. More precisely, let C ⊂ R2
q be a convex set, and T ⊂ R2

p a centrally symmetric convex

body. The result of the hT -string construction over C with string length L > PerhT (C) is,

by definition,

K = {q ∈ R2 : PerhT (Conv(q, C)) ≤ L}.

Remark 2.5. The quantity L − PerhT (C) is called the “Lazutkin parameter” associated

with the above string construction over C (see e.g., Chapter 3 in [27] or [14]).

Note that the boundary ∂K is a level set of the function f(q) = PerhT (Conv(q, C)). The

following lemma (cf. the proof of Lemma 3.6 in [14]) shows that the function f is smooth.

For the proof we shall need some basic facts from the differential geometry of curves in

normed planes. We refer the reader to [3, 6, 24] for the relevant definitions and properties.

Lemma 2.6. Let C ⊂ R2
q be a compact convex set, and T ⊂ R2

p a centrally symmetric

strictly convex body. Then, the function f(q) = PerhT (Conv(q, C)) is C1-smooth on R2
q \C.

Moreover, one has

∇f(q) = nT ◦(u) + nT ◦(v),

where u and v are hT -unit vectors parallel to the tangent lines from q to C, pointing towards

the point q (see Figure 3).

Proof of Lemma 2.6. We first assume that T ◦ is C2-smooth, and that the convex set

C is C2-smooth, with non-vanishing Minkowski curvature with respect to the norm hT
(see [3, 6, 24]). We remark that the condition of “non-vanishing Minkowski curvature” is

independent of the choice of the Minkowski norm. Let q ∈ R2 \C. We pick a point c ∈ ∂C
on the “other side” of ∂C. We can write, near q, f(q) = l1(q) + l2(q), where l1(q) and l2(q)

10



are the lengths of the shortest paths from c to q in R2 \ C, in the counter-clockwise and

clockwise directions, respectively (see Figure 3). We will compute the derivative of l1. To

this end, let γ : [0, A] → ∂C be a counter-clockwise, hT -unit parameterization of ∂C such

that γ(0) = c. We consider the local diffeomorphism

F (r, t) = γ(t) + rγ′(t), t ∈ [0, A], r > 0.

In these coordinates, l1 is particularly simple, and one has that F ∗l1(r, t) := l1 ◦ F (r, t) =

r + t. Evidently, F ∗l1 is C1-smooth, and F ∗dl1 = dF ∗l1 = dr + dt. Writing this out in

Cartesian coordinates, we get

DF T (r, t) · ∇l1(F (r, t)) =

(
1

1

)
. (2)

To differentiate F , we recall the Frenet equations in a normed plane (see e.g. [3]). By

definition, γ′(t) lies on the boundary of the hT -unit ball, which as noted above, is the polar

body T ◦. The right normal vector nγ(t) to γ at t is by definition the counter-clockwise

tangent to T ◦ at the point γ′(t), unit normalized in the so-called anti-norm hJT , where J

is a counter-clockwise rotation of the plane by 90◦. Equivalently, −Jnγ(t) = nT ◦(γ
′(t)).

The (first) Frenet equation for γ reads γ′′(t) = km(t)nγ(t), where km(t) is the Minkowski

curvature. Using this we compute

DF (r, t) =
(
γ′(t) + rkm(t)nγ(t) , γ′(t)

)
.

Inverting the matrix DF (r, t)T and using (2), we have

∇l1(F (r, t)) = −Jnγ(t) = nT ◦(γ
′(t)).

Observe that in the notations of the lemma, γ′(t) = u, thus we have computed ∇l1(q) =

nT ◦(u). An identical computation gives ∇l2(q) = nT ◦(v) which, since f(q) = l1(q) + l2(q),

proves the claim in this case.

Now we turn to the case of a general compact convex set C. Let Cj be a sequence of C2-

smooth convex bodies with positive Minkowski curvature which converge to C in the Haus-

dorff topology. Consider the associated string length functions fj(q) = PerhT (Conv(q, Cj)).

One easily verifies that the sequence (fj) tends to f uniformly outside a neighbourhood of

C, and by the previous step,

∇fj(q) = nT ◦(uj) + nT ◦(vj),

where uj and vj are hT -unit vectors parallel to the two tangents from q to Cj . Clearly

uj → u and vj → v point-wise. The function f is convex, and hence has a well-defined

sub-differential ∂f(q) at every point (see e.g, Chapter 1 in [26]). Moreover, at a point where

the sub-differential is a singleton the function f is differentiable. Since fj → f , one has

that for every q,

nT ◦(u) + nT ◦(v) = lim
j→∞

∇fj(q) ∈ ∂f(q).

11



Consider a level set S := {q : f(q) = L}. At each q ∈ S, the vector n(q) := nT ◦(u) +nT ◦(v)

belongs to the sub-differential ∂f(q), where the latter is a base of the normal cone for the

level set S (see again [26]). The function n(q) is a continuous section of this normal cone.

However, normal cones at distinct points of S have disjoint relative interiors (Chapter

2 in [26]). This clearly implies that the sub-differentials are all singletons, and so f is

differentiable. Moreover, is follows that ∇f(q) = n(q), whence f is C1, as claimed. This

completes the proof when T ◦ is C2-smooth. To remove the requirement on the existence of

the second derivative, we approximate T ◦ by a sequence of C2-smooth convex bodies, and

observe that all the needed properties are preserved for the above argument.

Lemma 2.7. Let K be the body formed by an hT -string construction over a convex body

C. Then K is convex. Moreover, if T is smooth and strictly convex, then so is K.

In the proof (and in the sequel) we shall use the following well-known fact from convex

geometry: for a centrally symmetric convex body T ⊂ R2, the hT -perimeter of a planar

convex body D is the mixed area of the body and T rotated by 90◦ (see, e.g., Section 2.3

in [30]). More preciesly, denote by V (·, ·) the mixed area function, and let JT be the body

obtained by rotation of T by 90◦. Then,

PerhT (D) = 2V (D,JT ). (3)

Proof of Lemma 2.7. Mixed areas are known to be linear (with respect to Minkowski sum

with positive coefficients) and monotone in each argument (see [30] Section 2.3). Hence,

relation (3) implies that PerhT (D) is linear and monotone with respect to D. Thus, for

x, y ∈ K, since for λ ∈ (0, 1)

Conv((1− λ)x+ λy,C) ⊆ (1− λ)Conv(x,C) + λConv(y, C), (4)

one has that

PerhT (Conv((1− λ)x+ λy,C)) ≤ PerhT ((1− λ)Conv(x,C) + λConv(y, C))

= (1− λ) PerhT (Conv(x,C)) + λPerhT (Conv(y, C)) (5)

≤ L.

Thus, (1 − λ)x + λy is also in K, which proves the convexity of K. Moreover, note that

the inclusion in (4) is in fact strict when x 6= y. Indeed, the point (1 − λ)x + λz is not

in the left-hand side of (4), for one of the tangency points z from (1 − λ)x + λy to C.

If T is smooth, the surface area measure dSJT (see Definition 2.3.12 in [30]) of JT has

full support, and from the fact that 2V (D,JT ) =
∫
S1 hDdSJT (see ibid.), it follows that

the first inequality in (5) is strict, and hence K is strictly convex. Finally, if T is strictly

convex, then by Lemma 2.6, the boundary ∂K is a regular level set of the C1-function

f(q) = PerhT (Conv(q, C)), which completes the proof of the lemma.

Another important consequence of Lemma 2.6, which appeared in [14], is that those bil-

liard tables admitting a convex T -caustic C are precisely all possible hT -string constructions

over C.
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Lemma 2.8 (Lemma 3.6 in [14]). Let (K,T ) be a symmetric billiard configuration. A convex

set C ⊂ R2
q is a T -caustic in K if and only if the function LhT (x) = PerhT (Conv(x,C)),

defined for x ∈ ∂K, is constant.

In the sequel we shall also need the following simple facts regarding the Minkowski string

construction.

Lemma 2.9. Let C be a convex body in R2
q, and denote by KT,L(C) ⊂ R2

q the billiard table

obtained by means of a hT -string construction with string length L > PerhT (C).

(i) If C ⊆ C ′ are two convex bodies, then KT,L(C ′) ⊆ KT,L(C),

(ii) If L1 ≤ L2, then KT,L1(C) ⊆ KT,L2(C),

(iii) If T1 ⊆ T2 are two convex bodies, then KT1,L(C) ⊆ KT2,L(C).

Proof of Lemma 2.9. (i) Take a point x ∈ KT,L(C ′), so that the PerhT (Conv(x,C ′)) ≤ L.

Clearly, Conv(x,C) ⊆ Conv(x,C ′), and so by the monotonicity of the hT -perimeter (which

follows, say, from (3) above), one has that PerhT (Conv(x,C)) ≤ L. Thus, x ∈ KT,L(C).

Items (ii) and (iii) are immediate from the definition.

2.3.2 The Monotone Twist Condition

In this section we verify that the Minkowski billiard map is a monotone twist map. This

description will be useful later for relating convex caustics and invariant circles, and when

we discuss various classical parameters associated with convex caustics (see Section 2.3.3

below). For Euclidean billiard dynamics this is a classical fact (see e.g., [27] and [28]), and

for Minkowski billiards the details can be found in [14]. Below we use somewhat different

terminology and notations from [14], and therefore we repeat the argument for the sake of

completeness.

Let (K,T ) be a symmetric billiard configuration. We introduce the following notations:

denote S1 = S1
P = R/PZ, where P = PerhT (K). Note that according to formula (3) one

has P = PerhT (K) = PerhK (T ). Let γK : S1 → ∂K be a hT -unit speed, counter-clockwise

parametrization of ∂K. For q ∈ ∂K let τK(q) denote the positive hT -unit tangent to

∂K, i.e., γ̇(t) = τK(γ(t)). This gives the following natural identification of annuli: set

AK := S1 × (−1, 1), then one has

(∂K × ∂T )+ ' AK , (q, p) 7→ (t, s), where q = γK(t) and s = 〈−p, τK(q)〉. (6)

In a similar way (∂K × ∂T )− is identified with AT := S1 × (−1, 1) via the map

(q, p) 7→ (t, s), where p = γT (t) and s = 〈q, τT (p)〉.

Let us first verify that the map in (6) is a well-defined bijection. For q ∈ ∂K, denote

∂T+,q = {p ∈ ∂T : 〈nK(q), nT (p)〉 > 0}.
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Lemma 2.10. With the above notations, for every p ∈ ∂T+,q one has 〈p, τK(q)〉 ∈ (−1, 1).

Moreover, the map

∂T+,q → (−1, 1), given by p 7→ s = 〈−p, τK(q)〉,

is a (monotone) bijection.

Proof of Lemma 2.10. First, as τK(q) ∈ ∂T ◦ (note that by definition hT (τK(q)) = 1),

one has |〈p, τK(q)〉| ≤ 1. Moreover, for every p ∈ ∂T and v ∈ ∂T ◦ one has 〈p, v〉 =

±1 if and only if v = ±nT (p). In particular, if 〈p, τK(q)〉 = ±1, then 〈nK(q), nT (p)〉 =

〈nK(q),±τK(q)〉 = 0, which proves the first assertion. For the second, observe that the map

∂T+,q → (−1, 1), given by p 7→ 〈p, τK(q)〉,

is continuous and monotone, as its derivative along ∂T is 〈τT (p), τK(q)〉, which is positive

by the definition of ∂T+,q.

Let us note that under the identification (∂K× ∂T )+ ' AK given by (6) the 1-form sdt

on AK pulls back to the Liouville form −pdq on (∂K×∂T )+, and so ds∧dt pulls back to the

standard symplectic form dq ∧ dp. One can naturally pull back the discrete (K,T )-billiard

map Ψ2 (see Definition 2.4) restricted to (∂K×∂T )+ to a bijective map φK from AK to itself.

Moreover, we lift φK to a map φ̃K on R× (−1, 1) satisfying φ̃K(r+P, s) = φ̃K(r, s)+(P, 0).

Note that one can also continuously extend φ̃K to R × [−1, 1] so that on the boundaries

one has φ̃K(r, 1) = (r + P, 1) and φ̃K(r,−1) = (r,−1). The map φ̃K satisfies an important

condition: it is a “monotone twist map” (see e.g., Definition 1.1.1 in [27]), with generating

function h given by

h(r, r′) = −hT (γK(r)− γK(r′)), (7)

where γK has been lifted to a P -periodic function on R. To show this, one computes

∂h

∂r
= 〈−nK(q − q′), τK(q)〉,

where q = γK(r) and q′ = γK(r′), and similarly

∂h

∂r′
= 〈nK(q − q′), τK(q)〉.

Using the description of the billiard dynamics in Section 2.2.2, one easily sees that

φ̃K(r, s) = (r′, s′)⇐⇒
{
∂h
∂r = s,
∂h
∂r′ = −s′.

In particular, φ̃K preserves the area form dr ∧ ds. The monotone twist condition for this

mapping follows from Lemma 2.10. Indeed, the twist condition is equivalent to the fact

that for a given q the set ∂T+,q is mapped onto the interval (−1, 1) in a monotone manner.
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Figure 4. The (K,T )-duality transform (q, v)
α−→ (p, w).

2.3.3 Minkowski Caustics and Invariant Circles

We recall from the previous section that the discrete T -billiard map φK : AK → AK
associated with the table K ⊂ R2

q is a monotone twist map. An invariant circle of φK is

an embedded circle in AK which is homotopically non-trivial and φK-invariant. A classical

result by Birkhoff states that any invariant circle of a monotone twist map is the graph of a

Lipschitz function from S1
P to (−1, 1) (see Section 1.3 in [27] and the references therein). We

note that under the identification (∂K × ∂T )+ ' AK (6), a φK-invariant circle corresponds

to an embedded circle in (∂K × ∂T )+ ⊂ ∂K × ∂T , which is homotopic to either one of the

two disjoint circles forming (∂K × ∂T )0, and invariant under Ψ2.

Any convex T -caustic C in K gives rise to a φK-invariant circle, as follows. For q ∈ ∂K,

consider the positive tangent line to C from q with direction v. The set of all such pairs

(q, v) ∈ P(K) ' (∂K × ∂T )+ forms an embedded circle Γ ⊂ AK , which by construction

is a graph over S1 and, in particular, not contractible. Moreover, as C is a caustic, Γ is

φK-invariant. We emphasize that the converse is false in general, i.e., not every invariant

circle corresponds to a convex caustic (see e.g., [13, 19]). Note that given a φK-invariant

circle Γ ⊂ AK ' (∂K×∂T )+, its image under Ψ defines a φT -invariant circle Ψ(Γ) ⊂ AT '
(∂K × ∂T )−. This fact allows us to rephrase Definition 1.2 in terms of invariant circles.

Corollary 2.11. Let (K,T ) be a symmetric billiard configuration in R2
q × R2

p. Consider

two convex caustics C ∈ C(K,T ) and C ′ ∈ C(T,K), with corresponding invariant circles

Γ ⊂ AK and Γ′ ⊂ AT . Then, C and C ′ are dual caustics if and only if Ψ(Γ) = Γ′.

Next we describe a geometric point of view on caustic duality. Let (K,T ) as above. We

consider the space

L(K) = {` ⊂ R2 an oriented line : ` ∩ int(K) 6= ∅}.

Observe that L(K) is naturally identified with the phase space, P(K) ' (∂K × ∂T )+, of

the T -billiard dynamics in K, where the oriented line ` ∈ L(K) is identified with the pair

(q, v) ∈ P(K) such that v is the hT -unit vector in the direction of `, and q ∈ ∂K ∩ ` is

the first intersection point, that is, q + εv ∈ K for small enough ε > 0. One has a similar

identification L(T ) ' P(T ). Note that the identification L(K) ' P(K) induces a natural

topology on L(K). From these identifications, the Poincaré map induces a map, which (by
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a slight abuse of notation) we also denote by Ψ: L(K)→ L(T ). Its square, the billiard ball

map Ψ2, induces a map L(K) → L(K), given by ` 7→ `′, such that the oriented segments

` ∩K and `′ ∩K form consecutive segments of a T -billiard trajectory in K.

Using the identifications L(K) ' P(K) and L(T ) ' P(T ) implicitly, we define:

Definition 2.12. The (K,T )-duality map α = αK,T : L(K)→ L(T ) is given by

α(q, v) = (p, w), where v = nT (p) and w = nK(q) (see Figure 4).

The duality map α = αT,K : L(T ) → L(K) is defined in a similar manner. The com-

position of these two maps, which (by a slight abuse of notation) we denote by α2, is the

identity map both on L(K) and on L(T ). The next result shows that the maps Ψ and α

are essentially the same.

For an oriented line ` we denote by −` the line obtained by reflecting ` about the

origin, and by ¯̀ the line ` with the reversed orientation. We note that these two operations

commute, so the notation −¯̀ is unambiguous.

Lemma 2.13. Let (K,T ) be a symmetric billiard configuration. Then for ` ∈ L(K) one

has α(`) = Ψ(¯̀), and for ` ∈ L(T ) one has α(`) = Ψ(−¯̀).

Proof of Lemma 2.13. We shall prove the first assertion, the proof of the second being

similar. Let ` = (q, v) ∈ L(K). Consider the composition α ◦ Ψ: L(K) → L(K). By

definition, Ψ(`) = (p, w) ∈ L(T ), for p, w satisfying v = −nT (p) and w = nK(q′), where q′

is the next impact point of the oriented line ` with ∂K. Then α(Ψ(`)) = (q1, v1), where

q1 and v1 satisfy v1 = nT (p) and w = nK(q1). Hence, v1 = −v and q1 = q′. That is,

α ◦Ψ(`) = (q′,−v) = ¯̀. As α2 is the identity, one has Ψ(`) = α(¯̀).

An immediate corollary of Lemma 2.13 which will be used later is the following.

Corollary 2.14. Suppose that (Kn, Tn) is a sequence of symmetric billiard configurations

which converges in the Hausdorff topology to a symmetric billiard configuration (K,T ).

Suppose moreover that `n ∈ L(Kn) is a sequence of oriented lines which converges to an

oriented line ` ∈ L(K). Then ΨKn,Tn(`n)→ ΨK,T (`).

Proof of Corollary 2.14. This follows immediately from Proposition 2.13 and the anal-

ogous continuity property of the duality map α, which holds by the fact that if Dn is a

sequence of convex bodies converging (in the Hausdorff topology) to D, and xn ∈ ∂Dn

converge to x ∈ ∂D, then nDn(xn)→ nD(x).

Using the above identifications L(K) ' AK and L(T ) ' AT , one may consider the

(K,T )-duality transform α as a map AK → AT . Thus, another immediate corollary of

Lemma 2.13 is the following reformulation of Corollary 2.11:

Corollary 2.15. Let (K,T ) ⊂ R2
q ×R2

p be a symmetric billiard configuration. The (K,T )-

duality transform α maps invariant circles to invariant circles. Moreover, given two convex

caustics C ∈ C(K,T ) and C ′ ∈ C(T,K) with corresponding invariant circles Γ ⊂ AK and

Γ′ ⊂ AT , the caustics C and C ′ are dual if and only α(Γ) = Γ
′
:= {¯̀′ : `′ ∈ Γ′}.
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2.3.4 Parameters of Caustics

Here we consider some natural parameters associated with caustics, namely, the Lazutkin

parameter, the perimeter, and the rotation number. We show that under mild assumptions

these parameter coincide for two dual caustics. In fact, these are all marked length spectrum

invariants (see e.g., Section 3.2 in [27]), and from the sequel it follows that the monotone

twist maps φK and φT , for a symmetric billiard configuration (K,T ), have identical marked

length spectrum.

We start by recalling the notion of rotation number associated with an invariant circle

Γ of a monotone twist map φ : A → A (see e.g., Chapter 13 in [18], or Chapter 1 in [27]).

The restriction φ
∣∣
Γ

: Γ → Γ defines an orientation preserving homeomorphism of S1, which

has a well-defined Poincaré rotation number ω ∈ [0, 1). The rotation number of Γ is by

definition ω. It can be computed as

ω = lim
n→∞

rn
n
,

where (rn, sn) = φ̃n(r0, s0) ∈ R × (−1, 1) is the trajectory of an arbitrary point (r0, s0)

lying on the lift of Γ. The rotation number of a convex caustic is defined to be the rotation

number of the associated invariant circle. We recall from Section 2.3.1 that to any convex

T -caustic C in K one can associate its Lazutkin parameter (see Remark 2.5). Finally, by

the perimeter of the T -caustic C we mean the hT -perimeter of C.

Proposition 2.16. Suppose that the symmetric billiard configuration (K,T ) admits a pair

of dual convex caustics C ∈ C(K,T ) and C ′ ∈ C(T,K). Then the caustics C and C ′ have

the same rotation number. Moreover, if we assume further that C and C ′ are C1-smooth

and strictly convex, then C and C ′ have equal Lazutkin parameters, and perimeters.

To prove Proposition 2.16 we find formulas to compute these parameters. We begin

with the following proposition (see Theorem 3.2.10 in [27] for the Euclidean case, cf. [1]).

Proposition 2.17. Let C ⊂ K be a C1-smooth, strictly convex T -caustic, and let Γ ⊂ AK
be the corresponding invariant circle. Then the hT -perimeter of C is given by

PerhT (C) = −
∫

Γ
sdt,
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where s is the function appearing in the graph representation Γ = {(t, s(t)) : t ∈ S1}.

Proof of Proposition 2.17. Using the identification AK ' (∂K × ∂T )+ one has that

Γ = {(q, p(q)) : q ∈ ∂K}. Then the oriented line corresponding to Γ emanating from

q ∈ ∂K has direction v(q) = nT (p(q)). Next, let γ(t) be an hT -unit speed parametrization

of ∂K, i.e., γ̇(t) = τK(γ(t)) (where hT (τK(q)) = 1), and abbreviate v(t) = v(γ(t)). By

the definition of a convex caustic, the line γ(t) + R+v(t) is tangent to C. Therefore, for

some λ(t) > 0, the point γ(t) + λ(t)v(t) belongs to the boundary of C. We thus get a

parametrization of ∂C in the form C(t) = γ(t) + λ(t)v(t) (see Figure 5). Hence,

Ċ(t) = τK(γ(t)) + λ̇(t)v(t) + v̇(t)λ(t). (8)

Note that as Ċ(t)||v(t) (since the line γ(t) + R+v(t) is tangent to the caustic C),

hT (Ċ(t)) = 〈Ċ(t), nT ◦(v(t))〉. (9)

Combining relations (8) and (9), and since nT ◦(v(t)) = p(t), one obtains

hT (Ċ(t)) = 〈τK(γ(t)), p(t)〉+ λ̇(t)〈v(t), nT ◦(v(t))〉+ λ(t)〈v̇(t), nT ◦(v(t))〉.

Note that v(t) ∈ ∂T ◦, and thus 〈v(t), nT ◦(v(t))〉 = hT (v(t)) = 1. Moreover, since v̇(t) is

tangent to ∂T ◦, one has 〈v̇(t), nT ◦(v(t))〉 = 0. Finally, by the identification (∂K × ∂T )+ '
AK given by (6), one has 〈τK(γ(t)), p(t)〉 = −s(t), and hence

hT (Ċ(t)) = −s(t) + λ̇(t).

Integrating, we get the desired equality

PerhT (C) =

∫
S1

hT (Ċ(t)) =

∫
S1

(−s(t) + λ̇(t))dt = −
∫

Γ
sdt,

and the proof of the proposition is thus complete.

We next recall the definition of the “minimal action” β associated with an invariant

circle of a monotone twist map φ with generating function h (see e.g., Chapter 1 in [27]):

β := lim
N→∞

1

2N

N−1∑
n=−N

h(rn, rn+1), (10)

where (rk, sk) = φ̃k(r0, s0) ∈ R× (−1, 1) is the trajectory of an arbitrary point (r0, s0) lying

on the lift of Γ to R× (−1, 1). The minimal action of a convex caustic is defined to be the

minimal action of the corresponding invariant circle.

The next proposition relates the minimal action, Lazutkin parameter, perimeter, and

rotation number of a convex caustic (see [27] for the Euclidean case, cf. [1]).

Proposition 2.18. For a symmetric billiard configuration (K,T ), let C ∈ C(K,T ) with

rotation number ω, minimal action β, and Lazutkin parameter L. Then, one has

L = −β − ω · PerhT (C). (11)
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Proof of Proposition 2.18. Denote by Γ the invariant circle associated with the convex

T -caustic C. Let (rn, sn), n ∈ Z, be any φ̃K-trajectory lying on (the lift of) Γ, and let

qn = γK(rn) ∈ ∂K be the corresponding T -billiard trajectory in K. Let An ∈ C be the

tangency point between qn and qn+1 (see Figure 6). By the definition of the Lazuktin

parameter,

L = PerhT (Conv(qn, C))− PerhT (C)

= hT (An − qn) + hT (qn −An−1)− LengthhT (arc(An−1An)).

Summing over −N ≤ n ≤ N − 1 gives

2NL =
N−1∑
n=−N

hT (qn+1 − qn) +O(1)−
N−1∑
n=−N

LengthhT (arc(AnAn+1)).

Thus, using the definition of the generating function (7), and (10), one has

L =
1

2N

N−1∑
n=−N

hT (qn+1 − qn) +O

(
1

N

)
− 1

2N

N−1∑
n=−N

LengthhT (arc(AnAn+1))

−−−−→
N→∞

−β − ω · PerhT (C).

This completes the proof.

Finally we are in a position to prove that dual caustics have equal parameters.

Proof of Proposition 2.16. We first note that the dual caustics C ⊂ K and C ′ ⊂ T have

equal rotation numbers. Indeed, this holds as the map Ψ
∣∣
Γ

: Γ→ Γ′ induces an orientation

preserving diffeomorphism conjugating the circle homeomorphisms φK
∣∣
Γ

and φT
∣∣
Γ′

, which

therefore have the same rotation number (see Chapter 11 in [18]).

Next, we prove that C and C ′ have equal minimal actions. To this end, we must show

that if (qn)n∈Z ⊂ ∂K is a T -billiard trajectory in K which is tangent to C, and (pn)n∈Z ⊂ ∂T
is its dual trajectory (which is by definition tangent to C ′), then

lim
N→∞

1

N

N−1∑
n=−N

hT (qn − qn+1) = lim
N→∞

1

N

N−1∑
n=−N

hK(pn − pn+1). (12)
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Indeed, if one (and hence both) of the trajectories is periodic, this holds since dual periodic

trajectories have equal lengths (see Remark 2.2). The general case now follows, as given

two non-periodic dual trajectories, for any fixed N one may close the characteristic curve

corresponding to the trajectory {(qn, pn)}N−1
n=−N in ∂(K×T ) with a short segment, obtaining

N−1∑
n=−N

hT (qn − qn+1) =
N−1∑
n=−N

hK(pn − pn+1) +O(1),

which proves (12).

From this point we assume that C and C ′ are C1-smooth and strictly convex. We prove

next that C and C ′ have equal perimeters. . We write, by a slight abuse of notation,

Ψ: AK → AT for the map induced by Ψ under the identifications (∂K × ∂T )+ ' AK
and (∂K × ∂T )− ' AT . Since Ψ preserves the standard symplectic form dq ∧ dp, and the

latter is identified with the form ds ∧ dt on the two cylinders, we deduce that this map is

symplectic, i.e., Ψ∗(ds ∧ dt) = ds ∧ dt. Note additionally that Ψ extends continuously to a

map between the closed cylinders Ψ: AK → AT , where for example AK = S1× [−1, 1], and

this extension maps the boundary circle {s = −1} ⊂ AK to {s = −1} ⊂ AT . Now, let Γ

and Γ′ be invariant circles associated with C and C ′, respectively. As these invariant circles

are graphs, we may write

Γ = {(t, s) ∈ AK : s = f(t)}, Γ′ = {(t, s) ∈ AT : s = g(t)}.

Consider the domains

D = {(t, s) ∈ AK : −1 < s < f(t)}, D′ = {(t, s) ∈ AT : −1 < s < g(t)}.

Since C and C ′ are dual caustics, Ψ(Γ) = Γ′ by Corollary 2.11. Since, as noted above,

Ψ maps the boundary circle {s = −1} of AK to that of AT , it follows that Ψ(D) = D′.

Therefore, ∫
D
ds ∧ dt =

∫
D

Ψ∗(ds ∧ dt) =

∫
D′
ds ∧ dt. (13)

Using Proposition 2.17 and Stokes’ Theorem, one obtains∫
D
ds ∧ dt =

∫
Γ
sdt−

∫
{s=−1}

sdt = PerhT (C) +

∫
S1

dt = PerhT (C) + PerhT (K). (14)

By a similar computation, ∫
D′
ds ∧ dt = PerhK (C ′) + PerhK (T ). (15)

Finally, since PerhT (K) = PerhK (T ) (see formula (3)), relations (13), (14) and (15) imply

that PerhT (C) = PerhK (C ′), as required.

To conclude, we observe that C and C ′ have equal Lazutkin parameters. This follows

immediately from (11), and the equality of the other parameters appearing there, which

has already been established above.

Remark 2.19. Proposition 2.16 is a special case of the fact that the monotone twist maps

φK and φT have equal marked length spectrum functions (see e.g., [27] for more details).
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Figure 7. A pair of dual caustics for the Euclidean billiard in an ellipse.

3 Existence of Dual Caustics

In this section we prove Theorem 1.4. We shall start with the special case where the body K

is an ellipse. Although this example is quite elementary, it is pivotal in our understanding

of Euclidean caustics, since, roughly speaking, every Euclidean string construction is locally

an ellipse. This example will play a role both in our proof of the theorem under regularity

assumptions on the caustic (Section 3.2), and in the proof provided in the Appendix which

pertains to the case of polygonal caustics. The case of a general (Euclidean) caustic is then

settled by an approximation argument (Section 3.3).

3.1 The Ellipse Case

It is well known (see e.g., [28]) that confocal ellipses contained in an ellipse E are convex

caustics for the Euclidean billiard in E . We show, by a straightforward computation, that

a Euclidean caustic in an ellipse has a dual caustic in the unit disk B, which is itself an

ellipse.

Proposition 3.1. Let E ⊂ R2
q be a Euclidean ellipse, given by AE = B for some positive

definite symmetric A ∈ GL(2), where B is the Euclidean ball. Let C ⊂ E be a confocal

ellipse. Then C ′ := AC is its dual convex E-caustic in B ⊂ R2
p (see Figure 7).

While it is relatively easy to check that C ′ is an E-caustic in B, using that a linear

transformation maps lines to lines and changes length in a predictable way (in fact, for a

convex set D, the hE -perimeter of AD is the Euclidean perimeter of D), Proposition 3.1

asserts something slightly stronger – not only is it a caustic, but it is the caustic dual to C.

The proof is elementary, and amounts to the following computation.

Proof of Proposition 3.1. Assume without loss of generality that the matrix A is diag-

onal, i.e.,

A =

(
1/a 0

0 1/b

)
, with 0 < b ≤ a.

In this case

E =

{
q2

1

a2
+
q2

2

b2
≤ 1

}
.
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A confocal ellipse C ⊂ E is then of the form

C =

{
q2

1

a2 − λ +
q2

2

b2 − λ ≤ 1

}
, where 0 < λ < b2.

Then we must show that the dual E-caustic in B is

C ′ = AC =

{
a2p2

1

a2 − λ +
b2p2

2

b2 − λ ≤ 1

}
.

Indeed, let q = (q1, q2) ∈ ∂E , and consider a line ` = q + R · p ∈ L(E) emanating from q

with direction p = (p1, p2) ∈ ∂B. The line ` is mapped under the (E , B)-duality map α

(Definition 2.12) to the line `′ = p+ R · nE(q) ∈ L(B) (see Figure 7). From Corollary 2.15

it follows that in order to prove our claim, it is enough to check that ` is tangent to C if

and only if `′ is tangent to C ′. The intersection ` ∩ ∂C corresponds to solutions t ∈ R of

the equation
(q1 + tp1)2

a2 − λ +
(q2 + tp2)2

b2 − λ = 1. (16)

Expanding, and using the fact that q ∈ ∂E , we rewrite (16) as(
p2

1

a2 − λ +
p2

2

b2 − λ

)
t2 + 2

(
q1p1

a2 − λ +
q2p2

b2 − λ

)
t+ λ

(
q2

1

a2(a2 − λ)
+

q2
2

b2(b2 − λ)

)
= 0. (17)

Next, note that the outer normal nE(q) is given, up to rescaling, by the vector n =
( q1
a2
, q2
b2

)
,

and so the intersection `′ ∩ ∂C ′ corresponds to solutions t ∈ R of

a2(p1 + tq1/a
2)2

a2 − λ +
b2(p2 + tq2/b

2)2

b2 − λ = 1. (18)

Using the fact that p ∈ ∂B, we rewrite (18) as(
q2

1

a2(a2 − λ)
+

q2
2

b2(b2 − λ)

)
t2 + 2

(
q1p1

a2 − λ +
q2p2

b2 − λ

)
t+ λ

(
p2

1

a2 − λ +
p2

2

b2 − λ

)
= 0. (19)

Note that the equations (17) and (19) have the same discriminant

∆ = 4

(
q1p1

a2 − λ +
q2p2

b2 − λ

)2

− 4λ

(
p2

2

a2 − λ +
p2

2

b2 − λ

)(
q2

1

a2(a2 − λ)
+

q2
2

b2(b2 − λ)

)
.

In particular, the condition ∆ = 0 is the same for both equations. We deduce that equation

(17) has a unique solution if and only if the same holds for equation (19), or in other words,

that ` is tangent to C if and only if `′ is tangent to AC, proving the claim.

By a similar computation (or taking the limit λ ↗ b2) we get a dual caustic for the

segment between the foci of E .

Proposition 3.2. Let E ⊂ R2
q be an ellipse which is a Euclidean string construction over

the segment C := [(−x, 0), (x, 0)], for x > 0, with string length L+ 2x. Then, the segment

C ′ := [(− x
2L , 0), ( x

2L , 0)] is the dual convex E-caustic to C in B ⊂ R2
p. Moreover, if ` ∈ L(E)

passes through (x, 0), then the (E , B)-dual line αE,B(`) ∈ L(B) passes through ( x
2L , 0).

22



θ

θ

q

e(q)

b(q)

C

K

nk(q)

C ′

B

w(q)

Figure 8. A pair of dual caustics C ∈ C(K,B) and C ′ ∈ C(B,K).

Using the rotational symmetry of B, we obtain the same result for a rotated ellipse.

Corollary 3.3. Let E ⊂ R2
q be an ellipse which is a Euclidean string construction over the

segment C := [e, b] with string length L + |e − b|, for two distinct points b, e ∈ R2
q. Then

C ′ := [ e−b2L ,
b−e
2L ] is its dual convex E-caustic in B ⊂ R2

p. Moreover, if ` ∈ L(E) passes

through e (b), then the (E , B)-dual line αE,B(`) ∈ L(B) passes through e−b
2L ( b−e2L ).

This result will be crucial in the proof of Theorem 1.4 below, and sheds some light on

the formula for the dual caustic given in Remark 1.5.

3.2 The case of smooth caustics

Here we prove a special case of Theorem 1.4 when the caustic C is sufficiently regular.

Let K and C be as in Theorem 1.4, and assume moreover that C is strictly convex. For

q ∈ ∂K, denote by e(q) and b(q) the positive and the negative tangency points to C from

q (see Figure 8), and set L(q) = |q − e(q)|+ |q − b(q)|.

Proposition 3.4. Let K ⊂ R2
q be a C1-smooth, centrally symmetric and strictly convex

body. If C ⊂ K is a Euclidean caustic which is C2-smooth and has nowhere vanishing

curvature, then it admits a dual K-caustic C ′ ⊂ B. Moreover, C ′ is C1-smooth, strictly

convex, and its boundary can be parametrized by

w(q) =
e(q)− b(q)

L(q)
, q ∈ ∂K.

For the proof of Proposition 3.4 we will require some straightforward computations.

In what follows we denote by τC the unit counter-clockwise tangent to C and by kC the

curvature of C. Moreover, we denote by θ the angle of incidence and reflection at q (see

Figure 8), namely,

cos θ = 〈τK(q),
e− q
|e− q| 〉 = 〈τK(q),

q − b
|q − b| 〉.
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Lemma 3.5. With the assumptions of Proposition 3.4, the functions e(q), b(q), and L(q)

are C1-smooth, with derivatives (with respect to the counter-clockwise arc-length parameter

along the boundary ∂K)

e′(q) =
sin θ

kC(e)|e− q|τC(e), b′(q) =
sin θ

kC(b)|b− q|τC(b),

L′(q) = sin θ ·
[

1

kC(e)|q − e| −
1

kC(b)|q − b|

]
.

Proof of Lemma 3.5. Note that the function e(q) is determined implicitly by q via the

following equation

〈q − e(q), nC(e(q))〉 = 0.

In fact, this equation has two solutions, one of which is e(q) and the other b(q). Let

γ : [0, A] → ∂C be a counter-clockwise parametrization by (Euclidean) arc length. We

rewrite the above equation as

F (q, t) = 〈q − γ(t), nC(γ(t))〉 = 0.

Note that F : ∂K × [0, A] → R is C1-smooth. To see that e depends smoothly on q, we

must check that ∂F
∂t 6= 0. Indeed,

∂F

∂t
(q, t) = −〈γ′(t), nC(γ(t))〉︸ ︷︷ ︸

=0

+ 〈q − γ(t), kC(γ(t))γ̇(t)〉 = kC(γ(t)) · 〈q − γ(t), γ̇(t)〉.

Note that by the definition of e, the vector q − γ(t) is negatively tangent to C at γ(t), so

that q − γ(t) = −|q − γ(t)| γ̇(t). Using the assumption kC 6= 0, we conclude that for this

solution (q, t) of the equation F (q, t) = 0 one has

∂F

∂t
(q, t) = −|q − γ(t)| · kC(γ(t)) · 〈γ̇(t), γ̇(t)〉 = −|q − γ(t)| · kC(γ(t)) 6= 0.

This shows that the map q 7→ t(q) for the above chosen solution of F (q, t(q)) = 0 is C1-

smooth. We next compute its derivative with respect to q. Clearly,

∂F

∂q
(q, t) = 〈τK(q), nC(γ(t))〉 = −〈nK(q), τC(γ(t))〉 = − cos(θ + π/2) = sin θ.

Then, the Implicit Function Theorem gives

dt

dq
= −∂F/∂q

∂F/∂t
=

sin θ

kC(γ(t))|γ(t)− q| .

Letting e(q) = γ(t(q)), we conclude that e depends C1-smoothly on q, and

e′(q) = γ′(t(q)) · dt
dq

=
sin θ

kC(e(q))|e(q)− q|τC(e(q)).

In computing b′(q), the only change is that the solution t of F (q, t) = 0 is now chosen so

that q − γ(t) is positively tangent to C at γ(t), which yields identical computations except

for the following signs:

q − γ(t) = |q − γ(t) |γ̇(t) and 〈nK(q), τC(γ(t))〉 = cos (π/2− θ) = sin θ.
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Finally, since e(q) and b(q) are C1-smooth, so is L(q). Elementary differentiation gives

L′(q) =
〈e(q)− q, e′(q)〉
|e(q)− q| +

〈b(q)− q, b′(q)〉
|b(q)− q| = 〈e′(q), τC(e(q))〉 − 〈b′(q), τC(b(q))〉.

Substituting the formulas for e′(q) and b′(q) gives the required result.

Proof of Proposition 3.4. By the previous lemma, the map

∂K 3 q 7→ w(q) =
e(q)− b(q)

L(q)

is a closed, C1-smooth parametrized curve which is clearly contained in B. Our goal is to

prove that it is a simple closed curve bounding a strictly convex set, which we denote by

C ′, and that C ′ ⊂ B is a K-caustic which is dual to C. To this end, we first prove that

w′(q) is negatively proportional to nK(q) for all q ∈ ∂K. We first fix some notations. We

abbreviate e = e(q), b = b(q), and denote

B = |b− q|, v =
b− q
B

, E = |e− q|, u =
e− q
E

.

Next, by the definition of e and b, one has that τC(e) = u and τC(b) = −v. Note that by

the (Euclidean) billiard reflection law, nK(q) is negatively proportional to the vector u+ v

(see Figure 8). A direct computation using Lemma 3.5 gives

w′(q) =
sin θ

L(q)2

[
B

E · kC(e)
+

E

B · kC(b)

]
(u+ v).

This proves that w′(q) is proportional to −nK(q), as asserted. This implies that the angle of

w′(q) is strictly increasing, and increases by 2π as q traverses ∂K (counter-clockwise) once.

Finally, we use elementary differential geometry to conclude that w(q) is a simple closed

curve bounding a strictly convex domain C ′. Indeed, simplicity follows since otherwise w

would self-intersect at some point p, in which case either the intersection is transversal,

which would imply that points of w lie on both sides of one of the tangents to w at p, or

the intersection is tangential, in which case w would have a double tangent at p. In both

cases, this implies the existence of three parallel tangents to w, a contradiction. For the

convexity, note that once the curve is simple, if it were not convex, this would mean that

we may construct a line which intersects w at least four times, partitioning it into four arcs,

and such that w admits a tangent parallel to this line in each of the four regions, again

contradicting the fact that the angle increases by 2π during the journey along w.

Next let us prove that C ′ is the dual caustic to C. Indeed, fix q ∈ ∂K and let E be

the ellipse formed by the Euclidean string construction over the segment [e(q), b(q)] with

string length L(q) + |e(q) − b(q)|. Note that E contains q on its boundary, and moreover

nE(q) = nK(q) (since the broken line bqe) obeys the Euclidean billiard reflection law in

both). In particular, the duality transforms αK,B and αE,B agree on oriented lines emanating

from q. By Corollary 3.3, the dual of the oriented line ` emanating from q and tangent to

C at e(q), αE,B(`), passes through w(q), and has direction nE(q) = nK(q). Since w′(q) is
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negatively proportional to nK(q), it follows that the line αK,B(`) = αE,B(`) is tangent to

C ′. In other words, denoting by Γ the invariant circle determined by the caustic C ⊂ K,

we have shown that C ′ is tangent to every line in αK,B(Γ). By Corollary 2.15, this means

that C ′ is the dual convex caustic to C. This completes the proof.

3.3 Proof of Theorem 1.4

Here we complete the proof of Theorem 1.4, by using an approximation argument to reduce

it to Proposition 3.4. To this end we shall need the following lemma.

Lemma 3.6. Suppose that Kn ⊂ R2
q and Tn ⊂ R2

p are a sequence of symmetric billiard

configurations, and let Cn be a sequence of convex Tn-caustics in Kn. Assume further that

the following Hausdorff limits exist:

Kn → K, Tn → T, Cn → C,

where (K,T ) is a symmetric billiard configuration. Then, C is a (convex) T -caustics in K.

Moreover, if in addition for each n ∈ N there exists a convex Kn-caustic C ′n dual to Cn,

and C ′n → C ′ in the Hausdorff metric, then C and C ′ are dual caustics.

Proof of Lemma 3.6. The fact that C ⊆ K follows from the properties of Hausdorff

convergence. To show that C is a T -caustic in K, note that any positive tangent line ` to

C is a limit of positive tangent lines `n to Cn. Indeed, let x ∈ ∂K. From the fact that

Kn → K it follows that there is a sequence xn ∈ ∂Kn such that xn → x. For each xn let

`n be the positive tangent to Cn emanating from xn. By passing to a subsequence, we may

assume without loss of generality that `n converges to some oriented line ˜̀emanating from

the point x. It is easily seen that the line ˜̀ is tangent to C. This follows from the fact

that the tangency of `n to Cn can be described by the equality maxCn φn = φn(xn), where

φn is a linear functional (say, of norm one) which admits `n as a level set. Since the line

emanating from x and positively tangent to C is unique, one has ˜̀= ` i.e., `n → `. To

show that C is indeed a T -caustic, consider for each n the next reflection point x′n ∈ ∂Kn

of the line `n, and the line `′n emanating from x′n and positively tangent to Cn. In other

words, Ψ2
Kn,Tn

(`n) = `′n. Repeating the argument above, we obtain that `′n → `′ which is

positively tangent to C. From Corollary 2.14 it follows that Ψ2
K,T (`) = `′, which shows

that C is indeed a T -caustic in K. For the second part of the lemma, let C ′n be a convex

Kn-caustic in Tn such that C ′n → C ′. As before, C ′ is a K-caustic in T . Moreover, since

ΨKn,Tn(`n) is tangent to C ′n, passing to the limit one sees that ΨK,T (`) is tangent to C ′,

and so by Corollary 2.11, C and C ′ are dual caustics.

Proof of Theorem 1.4. Let K be a centrally symmetric, smooth, and strictly convex

body, and let C be a Euclidean caustic in K. By Lemma 2.8 the body K is a (Euclidean)

string construction over C, and we denote its string length by L. Let Cn, n ∈ N, be a

sequence of C2-smooth convex bodies with nowhere vanishing curvature which converges to

C in the Hausdorff metric. For each n, let Kn be the convex body formed by a Euclidean
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Figure 9. A convex caustic which has no dual convex caustic.

string construction over Cn with string length L. Then, denoting fn(x) = Per(Conv(x,Cn))

and f(x) = Per(Conv(x,C)), one has Kn = {fn ≤ L} and K = {f ≤ L}. Since Cn → C,

one easily verifies that (fn) converges to f uniformly, which implies that Kn converge to K

in the Hausdorff metric. By Proposition 3.4, each Cn admits a dual Kn-caustic C ′n ⊂ B.

By passing to a subsequence, we may assume that C ′n converge in the Hausdorff metric to

a convex body C ′. Now by Lemma 3.6, C ′ is a K-caustic in B, dual to C. By Proposition

2.16, the caustics C and C ′ have the same rotation numbers, and that the dual caustics

Cn and C ′n have equal perimeters and string lengths. Finally, by continuity, C and C ′ have

equal perimeters and equal string lengths. This completes the proof.

4 Non-existence of a dual caustic

In this section we prove Theorem 1.6 and show that the caustic-to-caustic duality established

in Theorem 1.4 fails for arbitrary Minkowski billiards.

Proof of Theorem 1.6. We start with a construction of a “degenerate” convex caustic

which has no convex dual caustic. Let T ⊂ R2
p be the unit ball of the `1-norm, i.e.,

T = {(p1, p2) : |p1| + |p2| ≤ 1}. Let Tn be a family of smooth, unconditional, and strictly

convex bodies in R2
p which converges to T in the Hausdorff metric. Assume further that for

each n, the boundary of Tn contains the point (1, 0), and that the (Euclidean) outer normal

nTn to Tn on the open first quadrant converges locally uniformly to the vector (1/
√

2, 1/
√

2)

(and hence by unconditionality nTn → (±1/
√

2,±1/
√

2) locally uniformly on the other open

quadrants). Fix the interval I = [−1, 1] ⊂ R2
q , and a string length L = 6, and let Kn ⊂ R2

q

be the result of the hTn-string construction on I with string length L (see Figure 9). By

Lemma 2.8, I = [−1, 1] is a convex Tn-caustic in Kn for all n. We claim that for large

enough n, the caustic I admits no dual convex caustic in Tn.

Indeed, assume towards a contradiction that for infinitely many n there exists a convex
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Kn-caustic Cn in Tn, dual to I. We first note that the caustic I ⊂ Kn admits a 2-periodic

tangent Tn-billiard trajectory along the q1-axis, with bouncing points (±2, 0). Since the

vector nKn(±2, 0) = (±1, 0), the dual caustic Cn also admits a 2-periodic tangent Kn-

billiard trajectory along the p1-axis, and hence Cn must be “flat”, that is Cn ⊂ {p2 = 0}.
From symmetry, we conclude that Cn = [−εn, εn] × {0} ⊂ R2

p, for some εn > 0. Next, let

qn = (0,−yn) ∈ ∂Kn with yn > 0. Note that, by symmetry, nKn(qn) is in direction (0,−1).

Let `n be the positive tangent from qn to I, whose direction we denote by vn (normalized

so that vn ∈ ∂Tn). Then, by Corollary 2.15, the line αKn,Tn(`n) is (negatively) tangent

to Cn. By definition, αKn,Tn(`n) = (pn, (0,−1)), where pn ∈ ∂Tn is the unique point such

that nTn(pn) = vn (see Figure 9). Therefore, the first coordinate of pn is εn. Note that

the sequence vn converges to some v /∈ {(t,±t) : t ∈ R}. Indeed, Kn converges to K,

which is the body obtained by the hT -string construction on the interval I, and so vn → v,

which is the vector in the direction of the positive tangent to I from q = (0,−2) ∈ ∂K, i.e.,

v is in direction (1, 2). Since vn = nTn(pn) → v, by the construction of Tn one has that

pn = nT ◦n (vn)→ nT ◦(v) = (0, 1). This shows that εn → 0.

Using Lemma 2.8, as Cn = [−εn, εn] × {0} is a Kn-caustic in Tn, it is an hKn-string

construction on [−εn, εn] × {0} of some string length Ln. In fact, since ∂Tn contains the

point (1, 0), one has that Ln = 4(1 + εn) (as hKn(1, 0) = 2). We claim that from this it

follows that the Hausdorff distance dH(Tn, (Ln/2) ·K◦n) → 0 as n → ∞. Indeed, by item

(i) in Lemma 2.9, it follows that Tn is contained in (Ln/2) ·K◦n. On the other hand, let us

verify that Tn contains the result of an hKn-string construction of string length Ln − 8εn
(which is positive as εn < 1) on the point {(0, 0)}, which is (Ln/2− 4εn) ·K◦n. Indeed, let p

belong to (Ln/2− 4εn) ·K◦n, so that hKn(p) ≤ Ln/2− 4εn. By the triangle inequality, and

as hKn(εn, 0) = 2εn, one has

hKn(p− (εn, 0)) ≤ hKn(p) + 2εn ≤ Ln/2− 2εn.

Similarly, hKn(p+ (εn, 0)) ≤ Ln/2− 2εn. It follows that the hKn-perimeter of Conv(p, Cn)

is at most Ln, so p ∈ Tn. Since Ln = 4(1 + εn), we verified that

(2− 2εn)K◦n ⊂ Tn ⊂ (2 + 2εn)K◦n.

Therefore, the Hausdorff distance dH(Tn, 2K
◦
n) → 0 as n → ∞. By construction, Tn → T

as n → ∞. Therefore, Kn → 2T ◦, which is a square of side length 4. On the other hand,

by the continuity of the string construction, Kn converge to the hT -string construction of

length L = 6 on I, which is clearly not a square (it is an octagon, see Figure 9). We have

thus reached a contradiction, meaning that for large enough n, the Tn-caustic I in Kn has

no dual convex caustic.

To produce a counterexample with a smooth caustic we use a standard approximation

argument. Let (K,T ) be a symmetric billiard configuration admitting an interval I ⊂ K

as a T -caustic with string length L which has no dual convex K-caustic (as constructed

above). Let Ej be a sequence of ellipses such that Ej → I, and let Kj ⊂ R2
q be the result

of the hT -string construction on Ej with string length L. We claim that for j large enough,

T contains no convex Kj-caustic dual to Ej . Indeed, if a dual caustic exists for infinitely
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many j’s, then from Lemma 3.6 it follows that in the limit (after passing to a subsequence

if necessary) I admits a convex K-dual caustic in T which is a contradiction.

5 Appendix: dual caustics to polygonal caustics

To complete the picture we present a different proof for Theorem 1.4, using an approxima-

tion of a general B-caustic in K by polygons. The approximation argument is similar to

the one in the proof of Theorem 1.4, using Lemma 3.6. The main ingredient is the following

theorem for polygonal caustics.

q

q′

b(q) = b(q′)e(q′)

e(q)

Figure 10. String construction over a triangle.

Theorem 5.1. Let C be a convex polygon which is a caustic for the Euclidean billiard in

a C1-smooth, centrally symmetric strictly convex body K ⊂ R2
q. Then C has a convex dual

polygonal caustic C ′ ⊂ B2 ⊂ R2
p.

Proof of Theorem 5.1. First note that since K is a Euclidean string construction over

C, then by Lemma 2.7 it follows that K is necessarily C1-smooth and strictly convex. Next,

for q ∈ ∂K, we denote by e(q) and b(q) the positive and negative tangency points to C from

q, and let L(q) = |q − e(q)| + |q − b(q)|. These notation are as in the proof of Proposition

3.4, but the main difference is that in the polygonal case the functions e(q) and b(q) are no

longer continuous, and are piecewise constant (and initially multi-valued at a finite number

of points). In fact, the boundary ∂K is a finite union of arcs, on (the interior of) each of

which the functions e(q) and b(q) are constant, and those arcs are therefore arcs of ellipses

with foci e(q) and b(q) and string length given by L(q) + |e(q)− b(q)| (see Figure 10)†.

Let us explain this in more detail. Note that, as q traverses ∂K counter-clockwise, the

changes in b(q) and e(q) occur only when q crosses the lines passing through the edges of

C, and at such an intersection either one or both of e(q) and b(q) change, by moving from

one vertex of C to a successive vertex (and for a generic string length they do not change

†Note that a string construction over a non-centrally-symmetric polygon can never be centrally symmetric.

However, the figure suffices to illustrate the parameters specified.
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bi−1 = bi

ei−1

ei

wi−1

wiwi

wi−1

wi

`i

O

Figure 11

simultaneously). Indeed, for any point z ∈ Rn one may consider the edges of C which are

“illuminated” by z and those which are “dark”. Here an edge is called “illuminated by z”

if the interval [z, q] ∩ C = {q} for any q on that edge. It is not hard to check that for

any fixed z ∈ R2 \ C, the edges of C are separated into two disjoint sets (illuminated and

dark). Moreover, with respect to the cyclic order on the edges, the illuminated edges form

an order interval, as do the dark edges. For q ∈ ∂K, the point b(q) is the initial vertex of

the illuminated polygonal line, and e(q) is its terminal vertex, and we use this to extend

the definitions of e(q) and b(q) to those points where they were previously multi-valued. As

q crosses the line on which a certain edge lies, this edge changes from illuminated to dark,

or vice versa. In the former case, b(q) changes from the initial vertex of this edge to its

terminal vertex, and in the latter case, e(q) changes from the initial vertex of this edge to

its terminal vertex (again, see Figure 10). This shows that, as asserted, the boundary of K

is a finite union ∂K =
⋃M
i=1 Ei, disjoint except for common boundary points, where for each

i the functions e(q) and b(q) are constant on the interior of Ei, and Ei is therefore an arc

of an ellipse with foci b(q) and e(q). We index Ei according to the counter-clockwise order

on ∂K, and denote by qi the joint boundary point of Ei−1 and Ei, and by ei, bi and Li the

constant values of e(q), b(q), and L(q) on the interior of Ei.
Denote, for 1 ≤ i ≤ M , wi = ei−bi

Li
∈ B, and consider the closed polygonal line P

with vertices (wi)
M
i=1, in that order. We will prove that P is a simple closed polygonal line,

bounding a convex polygon C ′, and that C ′ is in fact a convex K-caustic in B dual to

C. Indeed, consider the invariant circle Γ corresponding to C. The partition ∂K =
⋃
i Ei

induces a partition Γ =
⋃
i Γi, where for each i, Γi corresponds to those oriented lines of Γ

emanating from points of Ei. We have observed that Ei is an arc of an ellipse with foci bi
and ei and string length Li + |ei− bi|, and Γi contains those lines emanating from points of

Ei and passing through ei. Therefore, by Corollary 3.3, the image of Γi under the (K,B)-

duality map α contains lines emanating from some arc of ∂B, which we denote by Bi, and

passing through wi.

For each i we consider the point pi = Bi ∩ Bi−1 ∈ ∂B. Denote by `i ∈ Γ the oriented

line emanating from qi, and `′i = α(`i) ∈ α(Γ), which emanates from pi. Note that `′i is in

direction nK(qi), and that it belongs to both α(Γi−1) and α(Γi), hence it passes through

both wi−1 and wi, so wi − wi−1 is parallel to the outer normal nK(qi). We claim that it
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is in fact negatively proportional to this normal. Indeed, by Corollary 3.3, the line `′i is

negatively tangent to the segment whose end-point is wi, and hence the origin O lies to

the right of `′i. Additionally, one easily verifies that (wi−1, wi) forms a positive basis of R2,

since by construction wi−1 and wi either share a common initial point bi, in which case ei−1

and ei are consecutive vertices of C and bi lies in C, or they share the end point ei and

bi−1 and bi are consecutive points in C (see Figure 11). It follows easily that wi−1 − wi
agrees with the orientation of `′i, which means that wi − wi−1 is negatively proportional to

nK(qi) (see Figure 11 again). It follows that the angle of the edges wi − wi−1 is strictly

increasing, and increases by 2π, as i runs from 1 to M . Similarly to the smooth case, this

implies that the polygonal line P is a simple closed curve, which bounds a convex polygon

C ′. Indeed, simplicity follows as before, since at a self-intersection there must occur one

of the following two: (1) at least one of the (inbound or outbound) edges, when elongated

to a line, is such that P lies on both of its sides, or (2) the intersection is a segment along

an edge; both cases lead to a contradiction with the fact that the angle of edges increases

only by 2π during the journey along P . For the convexity one repeats the argument in the

smooth case verbatim.

We are left with showing that C ′ is the dual caustic to C. Indeed, by construction

the dual invariant circle α(Γ) contains lines which pass through the vertices of C ′. By the

convexity of C ′, this means that C ′ is everywhere tangent to α(Γ). By Corollary 2.15, this

means that C ′ is a convex caustic dual to C, as required.
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[20] Kozlov, V., Treshchëv, D. Billiards, Amer. Math. Soc., Providence RI, 1991.

[21] Lazutkin, V. F. Existence of caustics for the billiard problem in a convex domain,

(Russian) Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 186–216.

[22] Lazutkin, V.F. KAM Theory and Semiclassical Approximations to Eigenfunctions, New

York: Springer-Verlag, 1993.

[23] Mather, J. N. Glancing billiards, Ergodic Theory Dyn. Syst. 2 (1982), no. 3-4, 397–403.

[24] Petty, C. M. On the geometry of the Minkowski plane, Riv. Mat. Univ. Parma 6 (1955),

269–292.

[25] Rockafellar, R. T. Convex Analysis, Princeton Landmarks in Mathematics. Princeton

University Press, Princeton, NJ, 1997.

[26] Schneider, R. Convex bodies: the Brunn-Minkowski Theory, Second expanded edition.

Encyclopedia of Mathematics and its Applications, 151. Cambridge University Press,

Cambridge, 2014.

32



[27] Siburg, K. F. The Principle of Least Action in Geometry and Dynamics, Lecture Notes

in Mathematics Vol. 1844, Springer-Verlag, 2004.

[28] Tabachnikov, S. Geometry and Billiards, Student Mathematical Library, 30. American

Mathematical Society, Providence, RI; University Park, PA, 2005.

[29] Tabachnikov, S. Billiards, SMF Panoramas et Syntheses, No. 1, 1995.

[30] Thompson, A.C. Minkowski Geometry, Encyclopedia of Mathematics and its Applica-

tions, 63. Cambridge University Press, Cambridge, 1996.

Shiri Artstein-Avidan

School of Mathematical Sciences

Tel Aviv University, Tel Aviv 69978, Israel

e-mail: artstein@post.tau.ac.il

Dan Florentin

Department of Mathematical Sciences

Kent State University, Kent, OH, 44242 USA

e-mail: danflorentin@gmail.com

Yaron Ostrover

School of Mathematical Sciences

Tel Aviv University, Tel Aviv 69978, Israel

e-mail: ostrover@post.tau.ac.il

Daniel Rosen

School of Mathematical Sciences

Tel Aviv University, Tel Aviv 69978, Israel

e-mail: danielr6@post.tau.ac.il

33


	1 Introduction and Main Results 
	2 Preliminaries and Background
	2.1 Some Historical Background
	2.2 The Minkowski (K,T)-Billiard Dynamics
	2.2.1 A Continuous Model
	2.2.2 The Discrete Model

	2.3 Planar Minkowski Billiards
	2.3.1 The String Construction
	2.3.2 The Monotone Twist Condition
	2.3.3 Minkowski Caustics and Invariant Circles
	2.3.4 Parameters of Caustics


	3 Existence of Dual Caustics
	3.1 The Ellipse Case
	3.2 The case of smooth caustics
	3.3 Proof of Theorem 1.4

	4 Non-existence of a dual caustic
	5 Appendix: dual caustics to polygonal caustics

