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In this note we study the expected value of certain symplectic capacities of randomly

rotated centrally symmetric convex bodies in the classical phase space.

1 Introduction and Results

Symplectic capacities are fundamental invariants in symplectic topology, which in gen-

eral measure the “symplectic size” of sets (see e.g., [7] and [25] for two surveys). The first

examples originally introduced by Ekeland and Hofer in [8], where a certain symplec-

tic invariant was constructed via Hamiltonian dynamics, although the first example

of such kind of invariants were constructed previously by Gromov in his pioneering

work [14] using the theory of pseudo-holomorphic curves. Shortly after this, many other

symplectic capacities were constructed reflecting different geometrical and dynamical

properties. All these quantities play an important role in symplectic topology nowadays

and are closely related with symplectic embedding obstructions on the one hand and

with the existence and behavior of periodic orbits of Hamiltonian systems on the other.

For the definition of symplectic capacities and some discussions of their properties, see

for example, [7, 18, 25, 29].

In this notewe focus on the classical phase spaceR
2n equippedwith the standard

inner product 〈·, ·〉 and the standard symplectic form ω. Under the usual identifica-

tion between R
2n and C

n, these two structures are the real and the imaginary parts,
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2 E. D. Gluskin and Y. Ostrover

respectively, of the standard Hermitian inner product in C
n. Moreover, one has that

ω(v,u) = 〈v, Ju〉, where the linear operator J : R
2n → R

2n defines the standard complex

structure on C
n. Our main interest is the study of the symplectic size of sets in the class

of convex bodies in R
2n, that is, compact convex subsets with non-empty interior. It

turns out that even in this special class, symplectic capacities are in general very diffi-

cult to compute, and there are only a fewmethods to effectively estimate them (for some

exceptional cases we refer the reader, for example, to [1, 6, 17, 20, 24, 27]).

In [8] and [19], two symplectic capacities, nowadays known as the Ekeland–Hofer

and Hofer–Zehnder capacities (denoted by cEH and cHZ, respectively), were defined using

a variational principle for the classical action functional from Hamiltonian dynamics.

Moreover, it was proved (see [8, 19] and [31]) that for a smooth convex body K ⊂ R
2n,

these two capacities coincide and are given by the minimal action over all closed char-

acteristics on the boundary of K. More precisely, recall that if � ⊂ R
2n is a smooth

hypersurface then a closed curve γ on � is called a closed characteristic of � if it is

tangent to ker(ω|�). In other words, γ (t)+ {x ∈ R
2n |ω(γ̇ (t),x) = 0} is the tangent space

to the hypersurface � at γ (t). Recall moreover that the symplectic action of a closed

curve γ is defined by A(γ ) = ∫
γ
λ, where λ = pdq is the Liouville 1-form, and that the

action spectrum of � is given by

L(�) = {|A(γ )| ; γ is a closed characteristic on �}.

With these notations, the aforementioned results state that for a smooth convex body

K ⊂ R
2n, one has

cEH(K) = cHZ(K) = min L(∂K). (1)

Although the equalities in (1) were stated only for smooth convex bodies, they can nat-

urally be generalized via continuity to the class of all convex bodies (see e.g., Section

2.3 in [3]). In the following, we shall refer to the coinciding Ekeland–Hofer and Hofer–

Zehnder capacities on this class as the Ekeland–Hofer–Zehnder capacity and denote it

by cEHZ .

Another important example of a symplectic capacity, which is closely related

with Gromov’s non-squeezing theorem [14], is the cylindrical capacity c. This capacity

measures the area of the base of the smallest cylinder Z2n(r) := B2(r) × C
n−1 (where

Bk(r) stands for the k-dimensional Euclidean ball of radius r centered at the origin)

into which a subset of R
2n (not necessarily convex) can be symplectically embed. An
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Symplectic Size of a Randomly Rotated Convex Body 3

alternative description (see e.g., Appendix C in [29]) is

c(U) = inf Area (πE(φ(U))),

where πE is the orthogonal projection to E = {z ∈ C
n | zj = 0 for j �= 1}, and the infimum

is taken over all symplectic embeddings φ of the set U into R
2n.

Recently, it was proved by the authors that for centrally symmetric convex bod-

ies inR
2n, several symplectic capacities, including the Ekeland–Hofer–Zehnder capacity,

the cylindrical capacity, and its linearized version cSp(2n) (see Definition 2.4 in [10]), are all

asymptotically equivalent (see Theorem 1.6 in [10], and Theorem 1.1 below). In the cur-

rent note we use this fact to estimate the expected value of the Ekeland–Hofer–Zehnder

capacity of a randomly rotated centrally symmetric convex body K ⊂ R
2n, at least under

some non-degeneracy assumptions. To state our results precisely, we first need to recall

some more notations.

We equip R
n with the standard inner product 〈·, ·〉 and denote by |·| the Euclidean

norm in R
n and by Sn−1 = {x ∈ R

n | |x| = 1} ⊂ R
n the unit sphere. For a vector v ∈ R

n

we denote by {v}⊥ the hyperplane orthogonal to v. For a centrally symmetric convex

body K in R
n, that is, a compact convex subset with non-empty interior such that K =

−K, the associated norm on R
n (also known as the Minkowski functional) is defined by

‖x‖K = inf{λ > 0 |x ∈ λK}. The support function hK : R
n → R is defined by hK(u) =

sup{〈x,u〉 |x ∈ K}. Note that hK is a norm, and that for a direction u ∈ Sn−1, the quantity

hK(u) is half the width of the minimal slab orthogonal to u which includes K. The dual

(or polar) body of K is defined by K◦ = {y ∈ R
n | hK(y) ≤ 1}. One has hK(u) = ‖u‖K◦ .

Denote by r(K) = max{r : Bn(r) ⊆ K} the inradius of K, that is, the radius of the largest

ball contained in K, and by R(K) = max{|x| : x ∈ K} the circumradius of K, that is, the

radius of the smallest ball containing K. The mean width of K is defined by

M∗(K) =
∫
Sn−1

hK(x)dσn−1(x),

where σn−1 is the unique rotation invariant probability measure on the unit sphere Sn−1.

For centrally symmetric convex bodies K1,K2 ⊂ R
n, and a linear operator


 : R
n → R

n, we denote by

‖
‖K1→K2 = sup
x∈K1

‖
x‖K2 = sup
x∈K1

sup
y∈K◦

2

〈
x,y〉,

the operator norm of 
, where the latter is considered as a map between the normed

spaces (Rn, ‖·‖K1) and (Rn, ‖·‖K2). The tensor product notation v⊗u denotes the rank-one
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4 E. D. Gluskin and Y. Ostrover

n × n matrix whose entries are viuj, that is, the matrix corresponding to the linear

operator defined by v ⊗ u(w) = 〈w,v〉u. As usual, we shall identify linear operators

and their matrix representations in the standard basis, and write AT and Tr(A) for the

transpose and the trace of a matrix A respectively.

In what follows, we shall use standard probabilistic notations and terminology:

a normalized measure space (�, ν) is called a probability space. A measurable function

ψ : � → R is called a random variable, and its integral with respect to ν, denoted by

Eνψ , is referred to as the expectation of ψ . We recall that the special orthogonal group

SO(n) is the subgroup of the orthogonal group O(n), which consists of all orthogonal

transformations in R
n of determinant one. It is well known that SO(n) admits a unique

Haar probability measure μn, which is invariant under both left and right multiplica-

tions. When there is no risk of confusion, we sometimes drop the subscript n and write

just μ to simplify the notation. Equipped with this measure, the space SO(n) becomes a

probability space.

On top of the standard inner product, we equip the space R
2n = R

n ⊕R
n with the

usual complex structure J : R
2n → R

2n given in coordinates by J(x,y) = (−y,x). For a

centrally symmetric convex body K ⊂ R
2n, we denote

α(K) := ‖J‖K◦→K = sup
x,y∈K◦

〈Jx,y〉.

Finally, for two quantities f and g, we use the notation f � g as shorthand for

the inequality f ≤ cg for some universal positive constant c. Whenever we write f � g,

we mean that f � g and f � g. The letters C,C0, c, c0, c′, etc. denote positive universal

constants whose value is not necessarily the same in various appearances.

The following was proved in [10]:

Theorem 1.1. For every centrally symmetric convex body K ⊂ R
2n

(α(K))−1 ≤ cEHZ(K) ≤ c(K) ≤ cSp(2n) (K) ≤ 4(α(K))−1. �

Our first result in this note concerns the expectation of the map O �→ cEHZ(OK),

defined on the group SO(2n), where K ⊂ R
2n is some fixed centrally symmetric convex

body.

Theorem 1.2. Let K ⊂ R
2n be a centrally symmetric convex body, and v ∈ ∂K◦ one of

the contact points of K◦ with its minimal circumscribed ball. Denote L = {v}⊥ ⊂ R
2n.
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Symplectic Size of a Randomly Rotated Convex Body 5

Then, for every 0 < p < 1 there exists a constant Cp, which depends only on p, such that

C0
r(K)

M∗(K◦ ∩ L)
≤
(
Eμ

((
cEHZ(OK)

)p))1/p ≤ Cp
r(K)

M∗(K◦ ∩ L)
, (2)

for some universal constant C0 > 0. �

For p = 1, the inequality on the right-hand side of (2) does not hold for every

symmetric convex body in R
2n. For example, let Kλ = B2(1)× B2n−2(λ) for some constant

λ > 0. A direct computation using Theorem 1.1 above shows that as λ → ∞, one has

Eμ

(
cEHZ(OKλ)

)→ ∞, while
r(Kλ)

M∗(K◦
λ ∩ L)

�
√
n.

The following condition, which is motivated by the works [21] and [22], is enough to

extend inequality (2) for values p ≥ 1.

Definition 1.3. For two constants C,q > 0, a convex body K ⊂ R
n is said to be “(C,q)-

non-degenerate” if

∫
Sn−1

hK(x)dσn−1(x) ≤ C
(∫

Sn−1
(hK(x))

−qdσn−1(x)
)−1/q

. (3)

�

Theorem 1.4. Let K ⊂ R
2n be a centrally symmetric convex body, and let L ⊂ R

2n as in

Theorem 1.2. If K◦ ∩L is a (C,q)-non-degenerate for some q > 0, then for every 0 < p ≤ q

C0
r(K)

M∗(K◦ ∩ L)
≤
(
Eμ

((
cEHZ(OK)

)p))1/p ≤ 4C
r(K)

M∗(K◦ ∩ L)
, (4)

where C0 > 0 is the same universal constant that appears in Theorem 1.2 above. �

Remark 1.5. It is known (see [16]) that for 0 < q < 1, every symmetric convex body inR
n

is (C,q)-non-degenerate for some constant C that depends only on q. Thus, Theorem 1.2

above follows immediately from Theorem 1.4. �

Combining a concentration of measure inequality on the special orthogonal

group SO(2n) due to Gromov and Milman (Theorem 2.6 below), with Theorem 1.4 we

obtain the following
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6 E. D. Gluskin and Y. Ostrover

Corollary 1.6. For a centrally symmetric convex body K ⊂ R
2n the map O �→ cEHZ(OK)

is asymptotically concentrated around its mean, that is, there are constants c1, c2 > 0

such that

μ
{
O ∈ SO(2n) ;

∣∣cEHZ(OK)− Eμ

(
cEHZ(OK)

)∣∣ ≥ t
} ≤ c1exp

( −c2nt2
R8(K)R4(K◦)

)
.

Moreover, if L ⊂ R
2n is the hyperplane appearing in Theorem 1.2, and the body K◦ ∩ L is

(C, 1)-non-degenerate for some constant C > 0, then one has

Eμ

(
cEHZ(OK)

) � r(K)

M∗(K◦ ∩ L)
. �

Remark 1.7. We remark that every centrally symmetric convex body K ⊂ R
n for which

R(K) ≤ √
nr(K) is (C, 1)-non-degenerate, for some constant C > 0. Indeed, in this case,

the so-called “Dvoretzky dimension” of K, given by k(K) = n(M∗(K◦)/R(K◦))2 satisfies

k(K) ≥ 1, and the (C, 1)-non-degeneracy condition follows from Proposition 1.2 in [21]

(cf. Corollary 1 in [22]), and the fact that for every two centrally symmetric convex bodies

K1,K2 ⊂ R
n, if K2 ⊂ K1 ⊂ λK2 for some λ > 1, and K2 is (C,q)-non-degenerate for some

q > 0, then K1 is (λC,q)-non-degenerate. In particular, Corollary 1.6 above holds, for

example, for all the unit balls of the l2np -norms in R
2n, where 1 ≤ p ≤ ∞, as well as for

many other families of convex bodies. We refer the reader to [21] and [22] for some other

criteria that ensure inequality (3), and more details. �

Combined with Theorem 1.1 above, the main ingredient in the proof of Theo-

rem 1.4 is the following estimate of the expectation of the map

O �→ α(OK) = ‖OTJO‖K◦→K ,

defined on SO(2n).

Theorem 1.8. Let K ⊂ R
2n be a centrally symmetric convex body, and v ∈ ∂K◦ one of

the contact point of K◦ with its minimal circumscribed ball. Denote L = {v}⊥ ⊂ R
2n.

Then,

R(K◦)M∗(K◦ ∩ L) ≤ Eμ (α(OK)) ≤ C1R(K
◦)M∗(K◦ ∩ L),

Downloaded from https://academic.oup.com/imrn/article-abstract/doi/10.1093/imrn/rnx205/4103603/The-Symplectic-Size-of-a-Randomly-Rotated-Convex
by TEL AVIV UNIVERSITY user
on 08 October 2017



Symplectic Size of a Randomly Rotated Convex Body 7

for some universal constant C1 > 0. Moreover, one has that

μ
{
O ∈ SO(2n) ;

∣∣α(OK)− Eμ (α(OK))
∣∣ ≥ t

} ≤ c1exp
(−c2nt2
R4(K◦)

)
,

for some universal constants c1, c2 > 0. �

AQuickProofOverview:For the reader’s convenience,wedescribe briefly themain steps

of the proof of Theorem 1.8. First, we recall an observation proved in [11] that states that

for a fixed unit vector y ∈ S2n−1, the map O �→ OTJOy, where O ∈ SO(2n), pushes forward

the Haarmeasure on SO(2n) to the Lebesguemeasure on the (2n−2)-dimensional sphere

S2n−1∩{y}⊥ (seeCorollary 2.2 below). From thiswe conclude that for a centrally symmetric

convex body K ⊂ R
2n, the random variable O �→ α(OK), defined on the group SO(2n), is

the supremum of a certain sub-Gaussian process {Xt}t∈T , defined on some metric space

(T , d). Next, a corollary of Talagrand’s majorizing measure theorem is used to give an

upper bound for E supt∈T Xt in terms of the expected value of the supremum of a certain

Gaussian process {Yt}t∈T , indexed on the same set T , and defined via the metric d (see

Corollary 3.3). An estimate of the latter quantity via Chevet’s inequality completes the

first part of Theorem 1.8. The proof of the second part of the theorem is based on a

concentration of measure inequality on the special orthogonal group due to Gromov

and Milman (Theorem 2.6 below), combined with the fact that the map O �→ α(OK) has a

dimension-independent Lipschitz constant. All the aforementioned ingredients needed

for the proof of Theorem 1.8 are presented in Section 2 below, and the proof itself in

Section 3.

Remarks 1.9. (i) The expected values of the Ekeland–Hofer–Zehnder and cylindrical

capacities for the randomly rotated cube in R
2n were computed previously in [11].

(ii) It is interesting to compare the ratio r(K)/M∗(K◦ ∩ L) in Corollary 1.6 above

with some other 2-homogeneous geometric quantities associated with the body K ⊂
R

2n. Two natural examples are the square of the inradius, and the square of the so-

called volume-radius ofK givenby (Vol(K)/Vol(B2n))1/2n. Table 1 provides the asymptotic

behavior of these quantities for the following convex bodies in R
2n: the standard cube

�2n = [−1, 1]2n, the croos-polytope �2n = Conv{±ei} (where {ei}2ni=1 is the standard basis

of R
2n), the symplectic ellipsoid

E := E(a1, . . . ,an) =
{
(z1, . . . , zn) ∈ C

n |
n∑
i=1

π |zi|2
ai

< 1

}
,
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8 E. D. Gluskin and Y. Ostrover

Table 1. Here, when we write the value of some entry to be f (n), we mean that the ratio between

the actual value of the entry and f (n) is bounded from above and from below by two positive

universal constants

K r2(K) r(K)
M∗(K◦∩L)

(
Vol(K)

Vol(B2n)

)1/n
�2n 1

√
n

ln(n) n

�2n 1
n

1
n

1
n

E a1
√
a1

√
n∑n

i=1
1
ai

n
√
a1 · · ·an

P a1
√
a1 min

1≤k≤n

√
nak

ln(k+2) n n
√
a1 · · ·an

and the “symplectic box”

P := P(a1, . . . ,an) =
{
(z1, . . . , zn) ∈ C

n |0 < Re(zi), Im(zi) <
√
ai
}
.

In the latter two examples, we assume that 0 < a1 ≤ · · · ≤ an. The computation of

the quantities appearing in Table 1 are based on standard techniques from asymptotic

geometric analysis. We remark that for any convex body K ⊂ R
2n and any symplectic

capacity c, the quantity πr2(K) serves as a lower bound for c(K), while the square of the

volume-radius is known to be, up to some universal constant, an upper bound for c(K)

(see [2]). �

2 Preliminaries

In this sectionwe recall some definitions, results, and other backgroundmaterial needed

later on in the proofs of our main results.

2.1 The Orlicz space Lψ2 and sub-Gaussian random variables

We start by recalling the definition of the Orlicz space Lψ2 (a more detailed discussion

can be found e.g., in [28]). Let ψ : [0,∞) → [0,∞) be a convex non-decreasing function

that vanishes at the origin, and let (�,μ) be a probability space. We denote

Lψ =
{
f : � → R measurable

∣∣ ∫
�

ψ

( |f (x)|
λ

)
dμ(x) ≤ 1, for some λ > 0

}
.
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Symplectic Size of a Randomly Rotated Convex Body 9

It is a classical fact that Lψ is a linear space, and the functional ‖ · ‖ψ : Lψ → R given by

‖f ‖ψ = inf
{
λ > 0 |

∫
�

ψ

( |f (x)|
λ

)
dμ(x) ≤ 1

}
is a norm on Lψ , upon identifying functions which are equal almost everywhere as is

done with the classical Lp spaces. Moreover, (Lψ , ‖·‖ψ) is in fact a Banach space (see [28]).

An important concrete example is the Orlicz space Lψ2 associated with the function

ψ2(x) = ex
2 − 1.

For a probability measure space (�,μ) and a random variable Z, one has that Z ∈ Lψ2 if

and only if there is a constant c > 0 such that,

P{|Z| ≥ u} ≤ 2exp(−u2/c), for all u ≥ 0.

Such a random variable Z is called sub-Gaussian. It is clear that for a sub-Gaussian

random variable Z one has

‖Z‖ψ2 = inf
c>0

E
(
exp(Z2/c2)

) ≤ 2.

Furthermore, one can check that

‖Z‖ψ2 � sup
p≥1

1√
p
(E|Z|p)1/p .

Some classical examples of sub-Gaussian random variables are Gaussian, weighted-

sum of Bernoulli’s, and more generally bounded random variables. In particular, the

restriction of any linear functional f on R
n to the sphere Sn−1 is sub-Gaussian. More

precisely, consider f |Sn−1 : (Sn−1, σn−1) → R, where f (x) = 〈x,a〉, and a ∈ R
n is some fixed

vector. In this case it is known (see e.g., [9]) that

‖f ‖ψ2 = Cn|a|,

where the sequence Cn satisfies Cn
√
n � 1.

2.2 The distribution of OTAOy for a random O ∈ SO(2n) and fixed y ∈ S2n−1

Let A ∈ L(R2n) be a linear transformation of R
2n, and y ∈ S2n−1 some fixed unit vector.

Denote by νAy the push-forwardmeasure onR
2n induced by the Haarmeasureμ on SO(2n)
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10 E. D. Gluskin and Y. Ostrover

through the map

f : SO(2n) → R
2n, defined by f (O) = OTAOy.

For v ∈ S2n−1, denote rAv = √|Av|2 − 〈Av,v〉2, and let νAy,v be the normalized Haar measure

on the (2n − 2)-dimensional sphere S2n−2(rAv ) with radius rAv which lies in the affine

hyper-space 〈Av,v〉y + {y}⊥.

The following proposition gives a description of the measure νAy in terms of the

“conditionalmeasures” νAy,v . Although inwhat followswe restrict our consideration to the

case where A = J is the linear operator associated with the standard complex structure

in R
2n, we include here the proof of the general case.

Proposition 2.1. With the above notations one has

∫
R2n

hdνAy =
∫
v∈S2n−1

(∫
R2n

hdνAy,v

)
dσ2n−1(v)).

νAy =
∫
v∈S2n−1

νAy,vdσ2n−1(v). (5)

�

Proof of Proposition 2.1. LetGy = {U ∈ SO(2n) |Uy = y} be the subgroup of all the spe-

cial orthogonal transformations which preserve the vector y. One can naturally identify

Gy with SO(2n − 1), and thus equip Gy with the Haar measure μ2n−1. The map O �→ Oy

from SO(2n) to S2n−1 is constant on the right Gy-cosets. It provides a homeomorphism

between the quotient space SO(2n)/Gy and S2n−1, and pushes forward the Haar measure

on SO(2n) to that of S2n−1. Next, for v ∈ S2n−1, let Ov ∈ SO(2n) be some orthogonal trans-

formation for which Ovy = v (e.g., the rotation in the {y,v}-plane from y to v). The right

Gy-coset corresponding to v is

[v] := {OvU |U ∈ Gy} = {O ∈ SO(2n) |Oy = v}.

It follows from the uniqueness of the Haar measure on SO(2n) that for any continuous

function ϕ ∈ C(SO(2n)) one has

∫
SO(2n)

ϕ(O)dμ2n(O) =
∫

S2n−1

⎛⎜⎝∫
Gy

ϕ(OvU)dμ2n−1(U)

⎞⎟⎠dσ2n−1(v).
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Symplectic Size of a Randomly Rotated Convex Body 11

Next, we apply the above formula to the map ϕ = h ◦ f , where h ∈ C(R2n) is some

continuous function. By the definition of νAy one has

∫
R2n

h(z)dνAy (z) =
∫

SO(2n)

h(f (O))dμ2n(O) =
∫

S2n−1

⎛⎜⎝∫
Gy

h(f (OvU))dμ2n−1(U)

⎞⎟⎠dσ2n−1(v). (6)

To simplify the last integral we use cylindrical coordinates (t, r,w) to write z = f (O) ∈
R

2n as z = ty + rw, where r, t ∈ R, r ≥ 0, and w ∈ S2n−1 ∩ {y}⊥ � S2n−2 (so that t = 〈z,y〉
and r = √|z|2 − t2). For v ∈ S2n−1, O = OvU ∈ [v], and z = f (O) one has⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t(O) = 〈OTAOy,y〉 = 〈Av,v〉,
r(O) = √|Av|2 − 〈Av,v〉2,
w(O) = UTw(Ov).

(7)

In particular, the maps t(O) = t(v) and r(O) = r(v) are constant on the Gy-right coset

[v]. For a fixed unit vector v ∈ S2n−1, the point

z = f (OvU) = t(v)y + r(v)UTw(Ov)

depends only on UTw(Ov) ∈ S2n−1∩{y}⊥ � S2n−2. The map U �→ UTw(Ov) pushes forward

the measure μ2n−1 on Gy to the measure σ2n−2 on S2n−1 ∩ {y}⊥. Thus, the interior integral

on the right-hand side of (6) equals∫
S2n−1∩{y}⊥

h (t(v)y + r(v)w)dσ2n−2(v) =
∫

R2n

h(z)dνAy,v .

Plugging this back in (6) one obtains that∫
R2n

hdνAy =
∫

S2n−1

(∫
R2n

hdνAy,v
)
dσ2n−1(v).

Since this holds for any continuous function h, the proof of the proposition is now

complete. �

In the special case where A = J is the linear operator associated with the stan-

dard complex structure in R
2n � C

n, we get the following corollary obtained previously

in [11].
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12 E. D. Gluskin and Y. Ostrover

Corollary 2.2. With the above notations, for y ∈ S2n−1, the measure νJy is the standard

normalized rotation invariant measure on the sphere S2n−1 ∩ {y}⊥. �

Proof of Corollary 2.2. The proof follows immediately from the fact that for every

vector v ∈ S2n−1 one has

t(v) = 〈OTJOy,y〉 = 〈JOy,Oy〉 = 0, and r(v) = 1.

This implies that the measure νJy,v does not depend on v and thus coincides with the

unique normalized rotation-invariant measure on S2n−1 ∩ {y}⊥. �

2.3 Talagrand’s comparison theorem and Chevet’s inequality

For the purpose of this note, a “random process” is just a collection of (real-valued) ran-

dom variables indexed by the elements of some abstract set T . Furthermore, a “Gaussian

process” is a collection of centered jointly normal random variables {Yt}t∈T . Given a

Gaussian process {Yt}t∈T as above, the index set T becomes a metric space by defining

the distance function

d(t, s) := (E(Yt − Ys))
1/2, t, s ∈ T .

The proof of the following theorem can be found in Chapter 2 of [30].

Theorem 2.3 (Talagrand). Let {Xt}t∈T and {Yt}t∈T be two random processes indexed

on some abstract set T , such that for every t ∈ T one has E(Xt) = E(Yt) = 0. Assume

moreover that (i) {Yt}t∈T is a Gaussian process, (ii) the space (T ,d) is a compact metric

space, and (iii) there is a positive constant c1 > 0 such that for every t, s ∈ T one has

‖Xt − Xs‖ψ2 ≤ c1‖Yt − Ys‖ψ2 .

Then, there is a positive constant c2 > 0 such that

E sup
t∈T

Xt ≤ c1c2 E sup
t∈T

Yt. �

Chevet’s inequality estimates the expectation of the operator norm of a Gaussian

matrix (see [5], c.f. [4, 13]). More precisely,

Theorem 2.4 (Chevet’s inequality). LetK1,K2 ⊂ R
n be symmetric convex bodies, andG

an n×nmatrix whose entries are standard i.i.d. Gaussian random variables (continuous
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Symplectic Size of a Randomly Rotated Convex Body 13

random variables with probability density function 1√
2π

exp(−x2/2)) with zero-mean.

Then,

E‖G‖K1→K2 ≤ c
√
n
(
R(K1)M

∗(K◦
2)+ R(K◦

2)M
∗(K1)

)
,

for some absolute constant c > 0. �

Remark 2.5. We remark that Theorem 2.4 is often formulated in the literature using

the Gaussian mean-width instead of the spherical mean-width. However, these two

quantities are known to be asymptotically equivalent up to a factor of
√
n. �

2.4 Concentration of measure on the special orthogonal group

Here we recall the concentration of measure inequality on the special orthogonal group

obtained by Gromov and Milman in [15]. The group SO(n) admits a natural Riemannian

metric d, which it inherits from the obvious embedding into R
n2 . It is well known that

the geodesic distance d is equivalent to the Hilbert–Schmidt distance that is,

‖O1 − O2‖2 ≤ d(O1,O2) ≤ π

2
‖O1 − O2‖2, for any O1,O2 ∈ SO(n),

where ‖·‖2 is the Hilbert–Schmidt norm, that is, ‖A‖2 =
√∑n

i,j=1 |ai,j|2, for an n×nmatrix

A = (ai,j). With the above notations one has the following inequality (see [15, 23]):

Theorem 2.6 (Gromov–Milman). Let n ≥ 1, and f : SO(n) → R such that there exists a

constant L > 0 with

f (O1)− f (O2) ≤ L‖O1 − O2‖2, for all O1,O2 ∈ SO(n).

Then,

μ{O ∈ SO(n) : |f (O)− Eμ(f )| ≥ t} ≤ Cexp(−cnt2/L2),

for some universal constants c,C > 0. �

3 Proof of the Main Results

In this sectionwe prove Theorem 1.4, Corollary 1.6, and Theorem 1.8.We start with some

preparation. First, for notational convenience, we shall use the following abbreviation:
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14 E. D. Gluskin and Y. Ostrover

J(O) = OTJO, where O ∈ SO(2n), and J is the standard linear complex structure in R
2n.

For a linear operator S ∈ L(R2n), we define the random variable ξS : SO(2n) → R by

ξS(O) = Tr(J(O)S), for O ∈ SO(2n). (8)

Moreover, for a pair (x,y) ∈ R
2n × R

2n, we define the random variable ξx,y : SO(2n) → R

by

ξx,y(O) = 〈J(O)x,y〉, for O ∈ SO(2n). (9)

Next, recall that the Schatten p-norm (p ≥ 1) of a linear operator A ∈ L(R2n) is given by

‖A‖p :=
(

2n∑
i=1

spk(A)

)1/p

,

where s1(A) ≥ s2(A) ≥ · · · ≥ s2n(A) ≥ 0 are the singular values of A, that is, the eigen-

values of the Hermitian operator
√
ATA. Two notable cases, which will be used in the

sequel, are the trace-class norm ‖A‖1, and the Hilbert–Schmidt norm ‖A‖2, which was

defined in an equivalent form in Section 2.4 above.

Lemma 3.1. There exists a positive constant c > 0 such that

(1) For any pair (x,y) ∈ R
2n × R

2n one has ‖ξx,y‖ψ2 ≤ c√
n |x||y|.

(2) For any S ∈ L(R2n), the random variable ξS is sub-Gaussian, and ‖ξS‖ψ2 ≤
c√
n‖S‖1.

Here ‖ · ‖ψ2 is the Orlicz norm introduced in Section 2.1 above. �

Proof of Lemma 3.1. Let (x,y) ∈ R
2n × R

2n. We can assume that |x||y| �= 0, and that x

and y are not collinear. Denote e = x
|x| and f = Py

|Py| , where P is the orthogonal projection

on {x}⊥, that is, Py = y − 〈y, e〉e. Since J(O)x ⊥ x, one has that

ξx,y(O) = |x||Py| 〈J(O)e, f 〉.

From Corollary 2.2 it follows that for a random O ∈ SO(2n) distributed according to the

Haar measure μ, the vector J(O)e is uniformly distributed on S2n−2 ∼= S2n−1 ∩ {e}⊥ with

respect to the measure σ2n−2 on S2n−2. This means that (|x||Py|)−1ξx,y is distributed like

the random variable ζ1 defined on S2n−2 by the projection map S2n−2 � (ζ1, . . . , ζ2n−1) �→ ζ1.
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Symplectic Size of a Randomly Rotated Convex Body 15

It is well known (see e.g., [9]) that such a spherical random vector is sub-Gaussian and

that ‖ζ1‖ψ2 � 1√
n (see also the remark at the end of Section 2.1). Thus we conclude that

‖ξx,y‖ψ2 ≤ c√
n

|x||y|,

for some universal constant c > 0. This completes the proof of the first part of the

lemma.

Next, by the singular value decomposition theorem (see e.g., Theorem 4.1 in [12]),

there exist two orthonormal bases {ek} and {fk} of R
2n such that for every x ∈ R

2n one

has

Sx =
2n∑
i=1

sk〈x, ek〉fk,

where {sk} are the singular values of S. This implies that

ξS(O) = Tr(J(O)S) =
2n∑
k=1

sk〈J(O)fk, ek〉 =
2n∑
k=1

skξfk ,ek (O).

The proof of the second part of Lemma 3.1 now follows from the triangle inequality and

the first part of the lemma. �

Next, letG be a 2n×2nmatrix whose entries are standard i.i.d. Gaussian random

variables with zero-mean and unit standard deviation. For a linear operator S ∈ L(R2n)

and a pair (x,y) ∈ R
2n × R

2n, we define two random variables analogously to (8) and (9)

via:

ηS(G) = 1√
2n

Tr(GS), and ηx,y(G) = 1√
2n

〈Gx,y〉.

Clearly, ηS and ηx,y are centered Gaussian random variables, and

‖ηS‖2 :=
(
E‖ηS‖2

2

)1/2 = 1√
2n

‖S‖2.

Moreover, it is well known (and can be easily checked) that Lψ2 ⊆ L2, and moreover that

‖ηS‖2 ≤ ‖ηS‖ψ2 . Hence, one has

1√
2n

‖S‖2 ≤ ‖ηS‖ψ2 . (10)
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16 E. D. Gluskin and Y. Ostrover

Proposition 3.2. Let T ⊂ R
2n × R

2n be a compact set, and ξx,y , ηx,y as above. Then,

E sup
(x,y)∈T

ξx,y ≤ C E sup
(x,y)∈T

ηx,y ,

where C > 0 is some universal constant. �

Proof of Proposition 3.2. Let t1 = (x1,y1), t2 = (x2,y2) be two points in R
2n×R

2n. Denote

S := x1 ⊗ y1 − x2 ⊗ y2 (recall that the tensor product notation of two vectors v ⊗u denote

the rank-one n × n matrix whose entries are viuj). By definition, ξS = ξx1,y1 − ξx2,y2 and

ηS = ηx1,y1 − ηx2,y2 . Moreover, from Lemma 3.1 it follows that

‖ξS‖ψ2 = ‖ξx1,y1 − ξx2,y2‖ψ2 ≤ c√
n

‖S‖1, (11)

where c > 0 is the constant appearing in Lemma 3.1. On the other hand, since by

definition rank(S) ≤ 2, one has ‖S‖1 ≤ √
2 ‖S‖2. Thus, from (10) and (11) we conclude

that

‖ξx1,y1 − ξx2,y2‖ψ2 ≤ 2c‖ηx1,y1 − ηx2,y2‖ψ2 .

The proof now follows from Talagrand’s comparison result (Theorem 2.3 above). �

Corollary 3.3. Let K1,K2 ⊂ R
2n be two centrally symmetric convex bodies, O ∈ SO(2n),

and G̃ = 1√
2n
G, where G is a 2n × 2n matrix whose entries are standard i.i.d. Gaussian

random variables with zero-mean. Then, one has

Eμ‖J(O)‖K1→K2 ≤ C E‖G̃‖K1→K2 ,

for some universal constant C > 0. �

Proof of Corollary 3.3. The proof follows immediately from the fact that for every

linear operator A ∈ L(R2n) one has ‖A‖K1→K2 = sup(x,y)∈K1×K◦
2
〈Ax,y〉, combined with

Proposition 3.2, when one takes the set T to be T = K1 × K◦
2. �

We are now in a position to prove our main results.

Proof of Theorem 1.8. Note first that for every O ∈ SO(2n) one has

α(OK) = sup
x∈K◦

‖J(O)x‖K ≥ ‖J(O)v‖K ≥ sup
w∈K◦∩L

〈J(O)v,w〉. (12)
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Symplectic Size of a Randomly Rotated Convex Body 17

Next, it follows from Corollary 2.2 that for a random (with respect to the Haar measure

μ) rotation O ∈ SO(2n), the vector J(O)v is uniformly distributed over the (2n − 2)-

dimensional sphere S2n−2(r) = S2n−1(r) ∩ L, with radius r = |v| = R(K◦). Thus, after

re-scaling, we obtain that

Eμ

(
sup

w∈K◦∩L
〈J(O)v,w〉

)
= R(K◦)

∫
x∈S2n−2

sup
w∈K◦∩L

〈x,w〉dσ2n−2 = R(K◦)M∗(K◦ ∩ L). (13)

Combining this with (12) we conclude that

R(K◦)M∗(K◦ ∩ L) ≤ Eμ (α(OK)). (14)

To get an upper bound for the expectation Eμ (α(OK)), we consider the symmetric convex

body K◦
L := K◦ ∩ L. We denote by PL the orthogonal projection to the subspace L = {v}⊥,

and by Pv the orthogonal projection to Span{v}. Note that Pvx+PLx = x for every x ∈ R
2n.

From the fact that the vector v is one of the contact points between the body K◦ and its

minimal circumscribed ball it follows that for every x ∈ R
2n one has ‖Pvx‖K◦ ≤ ‖x‖K◦ ,

and hence also ‖PLx‖K◦ ≤ 2‖x‖K◦ . Thus, for every x ∈ R
2n

‖x‖K◦ ≤ ‖Pvx‖K◦ + ‖PLx‖K◦ ≤ 3‖x‖K◦ .

Geometrically, this means that

Conv{±v,K◦
L} ⊆ K◦ ⊆ 3Conv{±v,K◦

L}.

From this it follows that

α(OK) ≤ 9
(

sup
w∈K◦∩L

〈J(O)v,w〉 + sup
u,w∈K◦∩L

〈J(O)u,w〉
)
. (15)

The expectation with respect to the Haar measure μ of the first term on the right-hand

side of (15) is given by (13) above. To estimate the expectation of the second term we

combine Corollary 3.3 with Chevet’s inequality (Theorem 2.4, with K1 = K◦ ∩ L, and

K2 = (K◦ ∩ L)◦) to conclude that

Eμ

(
sup

u,w∈K◦∩L
〈J(O)u,w〉

)
≤ C ′(R(K◦)M∗(K◦ ∩ L)

)
, (16)

for some universal constant C ′ > 0. Hence, from (15), (13), and (16) it follows that

Eμ (α(OK)) ≤ C1R(K
◦)M∗(K◦ ∩ L), (17)
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18 E. D. Gluskin and Y. Ostrover

for some other universal constant C1 > 0. The combination of (14) and (17) completes

the proof of the first part of Theorem 1.8.

To prove the second part of the theorem, we shall use the Gromov–Milman con-

centration inequality (Theorem 2.6 above), and an estimation of the Lipschitz constant

of the function O �→ α(OK) defined on SO(2n). For this end, note that

α(OK) = sup
A∈S

Tr(J(O)A),

where the supremum is taken over all element in the set S = K◦⊗K◦ = {x⊗y : x,y ∈ K◦}.
Thus, for every O1,O2 ∈ SO(2n), one has

α(O1K)− α(O2K) ≤ ‖J(O1)− J(O2)‖K◦→K = sup
A∈S

Tr
(
(J(O1)− J(O2))A

)
. (18)

Using the fact that for two square matrices one has Tr(AB) ≤ ‖A‖2‖B‖2, and ‖AB‖2 ≤
‖A‖2‖B‖ (where ‖B‖ is the operator norm), it follows that for a fixed A ∈ S,

Tr((J(O1)− J(O2))A) = Tr(J(O1)A)− Tr(OT
1 JO2A)+ Tr(OT

1 JO2A)− Tr(J(O2)A)

= Tr(OT
1 J(O1 − O2)A))+ Tr((OT

1 − OT
2 )JO2A))

≤ ‖OT
1 J(O1 − O2)‖2‖A‖2 + ‖(OT

1 − OT
2 )JO2‖2‖A‖2

� 2‖A‖2‖O1 − O2‖2.

Using this estimate, we conclude from (18) that

α(O1K)− α(O2K) ≤ 2 sup
A∈S

‖A‖2‖O1 − O2‖2.

On the other hand, from the definition of the set S it follows that

sup
A∈S

‖A‖2 = sup
x,y∈K◦

|x||y| = R(K◦)2.

Combining the above two inequalities we conclude that

α(O1K)− α(O2K) ≤ 2R(K◦)2‖O1 − O2‖2. (19)

The concentration inequality in Theorem 1.8 now follows from estimate (19) and

Theorem 2.6 above. This completes the proof of the theorem. �
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Symplectic Size of a Randomly Rotated Convex Body 19

Proof of Theorem 1.4. From the assumption that K◦ ∩ L is (C,q)-non-degenerate it

follows that

∫
x∈S2n−2(r)

sup
w∈K◦∩L

〈x,w〉dσ2n−2 ≤ C

⎛⎜⎝ ∫
x∈S2n−2(r)

(
sup

w∈K◦∩L
〈x,w〉)−qdσ2n−2

⎞⎟⎠
−1/q

, (20)

where S2n−2(r) = S2n−1(r) ∩ L is a (2n− 2)-dimensional sphere of radius r = |v| = R(K◦).

From (12) and Corollary 2.2 we conclude that for every p > 0

Eμ

((
α(OK)

)−p) ≤
∫

x∈S2n−2(r)

(
sup

w∈K◦∩L
〈x,w〉

)−p
dσ2n−2(x).

This together with (20) and (14) gives that for every 0 < p ≤ q

(
Eμ

((
α(OK)

)−p))1/p ≤
(
Eμ

((
α(OK)

)−q))1/q ≤ C

R(K◦)M∗(K◦ ∩ L)
, (21)

where the first inequality follows from Hölder’s inequality.

On the other hand, for any strictly positive random variable X and any p > 0,

one has E(X−p) ≥ (E(X))−p (e.g., via Jensen’s inequality). This together with (17) above

immediately imply that

(
Eμ

((
α(OK)

)−p))1/p ≥ C0

R(K◦)M∗(K◦ ∩ L)
, (22)

where C0 = (C1)
−1, and C1 is the constant appearing in inequality (17) above. The combi-

nation of (21), (22), Theorem 1.1, and the fact that for a centrally symmetric convex body

r(K) = R(K◦)−1 completes the proof of the Theorem 1.4. �

Proof of Corollary 1.6. The second part of Corollary 1.6 follows immediately from

Theorem 1.4. For the concentration estimate, we use again the Gromov–Milman concen-

tration inequality (Theorem 2.6), this time combined with an estimate of the Lipschitz

constant of the map ζK : SO(2n) → R given by

ζK(O) = (α(OK))−1 .

From the definition of α, it follows that for every O ∈ SO(2n), one has the lower bound:

α(OK) ≥ r2(K◦) = R−2(K). Combining this with estimate (19) we conclude that for any
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20 E. D. Gluskin and Y. Ostrover

O1,O2 ∈ SO(2n) one has

ζK(O1)− ζK(O2) = α(O2K)− α(O1K)

α(O1K)α(O2K)
≤ 2R2(K◦)R4(K)‖O1 − O2‖2. (23)

The proof of the corollary now follows from Theorem 2.6. �
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