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Shiri Artstein-Avidan∗ and Yaron Ostrover

February 2, 2008

Abstract: In this work we present an improvement to a theorem by C. Viterbo,

relating the symplectic capacity of a convex body and its volume. This provides one

more step towards the proof of the following conjecture: among all convex bodies in

R
2n with a given volume, the Euclidean ball has maximal symplectic capacity. More

precisely, the conjecture states that the best possible constant γn such that for any

choice of a symplectic capacity c and any convex body K ⊂ R2n we have

c(K)

c(B2n)
≤ γn

(
Vol(K)

Vol(B2n)

)1/n

is 1. Until this work, the best estimate known to hold for general convex bodies, coming

from Viterbo’s work was γn = 32n, and γn = 2n in the case of centrally symmetric

bodies. Our main result in this text is that there exists a universal constant A for

which γn ≤ A log2(n) for all convex bodies in R2n. Moreover, we show wide classes of

convex bodies for which the inequality holds without the logarithmic term.

1 Introduction and Main results

This paper lies at the meeting point of Asymptotic Geometric Analysis and Sym-

plectic Geometry. In particular we use methods from Asymptotic Convex Geometry

(sometimes called the Local Theory of Banach Spaces), to improve a result of Viterbo

concerning symplectic capacities of convex bodies. These methods are linear in na-

ture, and the reader should not expect any difficult symplectic analysis. However,

we stress that the naive linear approach provides a significant improvement to the

known results. The type of improvement we provide is a reduction from order n to
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Foundation.
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order log(n) of a dimension-dependent isoperimetric constant, where n is the dimen-

sion of the space involved. Clearly, this reduction becomes especially relevant in large

dimensions. Understanding the behavior of convex bodies in dimension tending to

infinity is the main subject of Asymptotic Geometric Analysis, which we here join

with the symplectic notion of capacity.

Consider the 2n-dimensional Euclidean space R2n with the standard linear co-

ordinates (x1, y1, . . . , xn, yn). One equippes this space with the standard symplectic

structure ωst =
∑n

j=1 dxj ∧ dyj, and with the standard inner product gst = 〈·, ·〉.
Note that under the identification (see notations below) between R2n with Cn these

two structures are the real and the imaginary part of the standard Hermitian inner

product in Cn. In this work we consider the class of convex bodies in R2n. We are

interested in comparing the symplectic way of measuring the size of a convex body, us-

ing what is called “symplectic capacities”, with the standard Riemannian way limited

here to volume. In order to make this more precise we need some preliminaries.

Definition 1.1. A symplectic capacity on (R2n, ωst) associates to each subset U ⊂ R2n

a non-negative number c(U) such that the following three properties hold:

(P1) c(U) ≤ c(V ) for U ⊆ V (monotonicity)

(P2) c
(
ψ(U)

)
= |α| c(U) for ψ ∈ Diff(R2n) such that ψ∗ωst = αωst (conformality)

(P3) c
(
B2n(r)

)
= c
(
B2(r) × Cn−1

)
= πr2 (nontriviality and normalization),

where B2k(r) is the open 2k-dimensional ball of radius r. Note that the third property

disqualifies any volume-related invariant, while the first two properties imply that

every two sets U, V ⊂ R2n will have the same capacity provided that there exists a

symplectomorphism sending U onto V . Recall that a symplectomorphism of R2n is

a diffeomorphism which preserves the symplectic structure i.e., ψ ∈ Diff(R2n) such

that ψ∗ωst = ωst. We will denote by Symp(R2n) = Symp(R2n, ωst) the group of all

the symplectomorphisms of (R2n, ωst).

A priori, it is not clear that symplectic capacities exist. The celebrated non-

squeezing theorem of Gromov [6] shows that for R > r the ball B2n(R) does not

admit a symplectic embedding into the symplectic cylinder Z2n(r) := B2(r) × Cn−1.

This theorem led to the following definitions:

Definition 1.2. The symplectic radius of a non-empty set U ⊂ R2n is

cB(U) := sup
{
πr2 | There exists ψ ∈ Symp(R2n) with ψ

(
B2n(r)

)
⊂ U

}
.

The cylindrical capacity of U is

cZ(U) := inf
{
πr2 | There exists ψ ∈ Symp(R2n) with ψ(U) ⊂ Z2n(r)

}
.
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Note that both the symplectic radius and the cylindrical capacity satisfy the

axioms of Definition 1.1 by the non-squeezing theorem. Moreover, it follows from

Definition 1.1 that for every symplectic capacity c and every open set U ⊂ R
2n we

have cB(U) ≤ c(U) ≤ cZ(U).

The above axiomatic definition of symplectic capacities is originally due to Ekeland

and Hofer [3]. Nowadays, a variety of symplectic capacities can be constructed in

different ways. For several of the detailed discussions on symplectic capacities we

refer the reader to [2], [8], [9], [11], [14] and [24].

In this work we are interested in an inequality relating the symplectic capacity of a

convex body in R2n and its volume. By a convex body we mean a convex bounded set

in R
2n with non-empty interior. This inequality supports the conjecture that among

all convex bodies in R2n with a given volume, the symplectic capacity is maximal for

the Euclidean ball. Note that by monotonicity this is obviously true for the symplectic

radius cB. More precisely, denote by Vol(K) the volume of K and abbreviate B2n for

the open Euclidean unit ball in R2n. Following Viterbo [23] we state

Conjecture 1.3. For any symplectic capacity c and for any convex body K ⊂ R
2n

c(K)

c(B2n)
≤
(

Vol(K)

Vol(B2n)

)1/n

and equality is achieved only for symplectic images of the Euclidean ball.

The first result in this direction is due to Viterbo [23]. Using John’s ellipsoid

(which also evolved in Convex Geometric Analysis) he proved:

Theorem 1.4 (Viterbo). For a convex body K ⊂ R2n and a symplectic capacity c

c(K)

c(B2n)
≤ γn

(
Vol(K)

Vol(B2n)

)1/n

where γn = 2n if K is centrally symmetric and γn = 32n for general convex bodies.

In [7], Hermann constructed a starshaped domain in R2n, for n > 1, with arbi-

trarily small volume and some fixed cylindrical capacity. Therefore, in the category

of starshaped domains the above theorem with any constant γn independent of the

body K, must fail. In addition, he proved the above conjecture for a special class of

convex bodies which admit many symmetries, called convex Reinhardt domains (for

definitions see [7]).

Here we provide one more step towards the proof of the above conjecture. Be-

fore we state our main results we wish to emphasize that we work exclusively in the

category of linear symplectic geometry. That is, we restrict ourselves to the concrete
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class of linear symplectic transformations. It turns out that even in this limited cat-

egory, there are tools which are powerful enough to obtain a significant improvement

of Theorem 1.4 above. More precisely, let Sp(R2n) = Sp(R2n, ωst) denote the group

of linear symplectic transformation of R2n. We consider a more restricted notion of

linearized cylindrical capacity, which is similar to cZ but where the transformation ψ

is taken only in Sp(R2n) namely

cZlin(U) := inf
{
πr2 | There exists ψ ∈ Sp(R2n) with ψ(U) ⊂ Z2n(r)

}
.

Of course, it is always true that for every symplectic capacity c we have c ≤ cZ ≤ cZlin.

Our main result is the following

Theorem 1.5. There exists a universal constant A1 such that for every even dimen-

sion 2n and any convex body K ⊂ R
2n we have

cZlin(K)

c(B2n)
≤ A1 log2(n)

(
Vol(K)

Vol(B2n)

)1/n

.

The theorem clearly implies that Theorem 1.4 holds with γn = A1 log2(n). We remark

that the methods Viterbo used to prove Theorem 1.4 were also linear.

In addition we show that there are certain, quite general, families of convex bodies

for which the above inequality is true without the logarithmic factor. Such examples

are the unit balls of ℓnp for 1 ≤ p ≤ ∞, all zonoides (symmetric convex bodies which

can be approximated by Minkowski sums of line segments in the Hausdorff sense,

in particular all the projections of cubes), and all bodies which satisfy some more

complicated geometric conditions called bounded type-p constant for p > 1. The

precise definitions and results for special classes of convex bodies will be given in

Section 5 below.

Some of the above mentioned examples are based on a strengthened formulation of

Theorem 1.5. This strengthening is attained by bounding from above the symplectic

capacity of a convex body K by some parameter of the body which measures, roughly

speaking, the “difference” between the Banach space XK whose unit ball is the body

K and a Hilbert space. In order to be more precise we need to introduce the notion

of the K-convexity constant of a Banach space X, known also as the Rademacher

projection constant. We begin with the following preliminaries. Consider the group

Ωm = (Z/2Z)m ≃ {−1, 1}m and let µ denote the uniform probability measure on Ωm

(i.e., normalized counting measure). For each A ⊆ {1, . . . , m} we define the Walsh

function WA ∈ L2(Ωm,R) by

WA(t) =
∏

i∈A

ri(t) =
∏

i∈A

ti,

4



where ri : Ωm → {−1, 1} are the Rademacher functions ri(t) = ti, i.e., the ith

coordinate function (so, ri = W{i}). We set W∅ ≡ 1. Note that |WA| = 1 for all

A ⊆ {1, . . . , m}, and for every A 6= B the functions WA,WB are orthogonal, namely

〈WA,WB〉 =

∫

Ωm

∏

i∈A

ri

∏

j∈B

rj dµ =

∫

Ωm

∏

k∈A△B

rk dµ =
∏

k∈A△B

∫

Ωm

rk dµ = 0

The Walsh functions form an orthonormal basis of L2(Ωm,R). Alternatively,

(WA)A⊆{1,...,m} is the group of characters of the multiplicative group (Z/2Z)m. For a

Banach space X define

L2(Ωm, X) =
{
f : Ωm → X ; ‖f‖L2(Ωm,X) =

(∫

Ωm

‖f‖2
X dµ

)1/2}
.

The space L2(Ωm, X) is always a Banach space, and it is a Hilbert space if and only

if X is. Still, every f ∈ L2(Ωm, X) can be represented as

f =
∑

A⊆{1,...,m}
f̂(A)WA, where f̂(A) =

∫

Ωm

fWA dµ =
1

2m

∑

t∈Ωm

f(t)WA(t).

We will be interested in one special subspace of L2(Ωm, X) namely the one spanned

by the m-Rademacher functions:

RadmX =
{ m∑

i=1

xiri ; xi ∈ X , i = 1, . . . , m
}
,

equipped with the L2-norm. Consider the Rademacher projection operator Rm :

L2(Ωm, X) → RadmX defined by

Rm(f) =
m∑

i=1

f̂({i})ri.

Definition 1.6. The Rademacher projection constant of a Banach space X is the

supremum of the operator norms of the projections Rm, i.e.

‖Rad‖X := sup
m

‖Rm‖.

This is also known in the literature as the K-convexity constant of X. Note that

for an infinite dimensional Banach space X, this constant may be infinite. When for

some (infinite dimensional) Banach space X the number ‖Rad‖X = C is finite, X

is called K-convex with K-convexity constant C. In what follows we shall deal only

with finite dimensional spaces, and it is not difficult to check that they are always

K-convex. However, the dependence of the K-convexity constant on the dimension

of the space will be of interest to us. For example, if we consider a family of finite
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dimensional Banach spaces Xk (with increasing dimension, say) which all arise as

subspaces of some fixed infinite dimensional Banach space X which is K-convex, then

we know that the K-convexity constants of the spaces Xk are uniformly bounded by

the K-convexity constant of X.

In the special case where X is a Hilbert space, each Rm is an orthogonal projection

of norm equal to 1. A fundamental theorem of Pisier, see [18], states that for every

Banach space X which is isomorphic to a Hilbert space H ,

‖Rad‖X ≤ c log[d(X,H) + 1],

where c is a universal constant and d denotes the Banach-Mazur distance, defined

for two isomorphic normed spaces as inf{‖T‖ ‖T−1‖} where the infimum runs over

all isomorphisms T : X → H . Notice that for a k-dimensional X, John’s Theorem

(see [16]) implies that d(X, ℓk2) ≤
√
k. Thus, combining John’s Theorem and Pisier’s

result we obtain that Theorem 1.5 actually follows from

Theorem 1.7. There exists a universal constant A2 such that for every even dimen-

sion 2n and any convex body K ⊂ R2n

cZlin(K)

c(B2n)
≤ A2‖Rad‖2

XK

(
Vol(K)

Vol(B2n)

)1/n

where XK is the Banach space whose unit ball is the body K.

There are wide classes of Banach spaces which are K-convex, and this implies that

so are all of their subspaces, with a uniform bound on their K-convexity constant.

Thus they will generate families of convex bodies for which we will have a better

bound on γn in Theorem 1.4. In fact, X not being K-convex is equivalent to having

an ε-isometric copy, with respect to the above mentioned Banach-Mazur distance, of

ℓm1 inside X for every ε > 0 and every m (see e.g. [17]). In particular the (infinite

dimensional) space ℓp of infinite p-summable sequences for 1 < p < ∞ is K-convex

(with a K-convexity constant depending on p) and therefore for each 1 < p < ∞,

for all finite dimensional ℓnp we will have a uniform bound on γn which will depend

only on p. In Section 5 we shall discuss these examples together with other families

of convex bodies for which Theorem 1.7 holds without the logarithmic factor (and in

particular show that for ℓnp we can have γn independent also of p).

Symmetric vs. non-symmetric case: Since affaine translations in R2n are sym-

plectic maps, we shall assume throughout the text that any convex body K has the

origin in its interior. Moreover, it would be enough to assume in what follows that

our body K is centrally symmetric i.e., K = −K. Indeed, assume we have a gen-

eral convex body K ⊂ R2n, we consider the difference body K ′ = K − K, that is,
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K ′ = {x − y : x, y ∈ K}. Of course, K ⊂ K ′, so that for any symplectic capac-

ity c(K) ≤ c(K ′), and K ′ is centrally symmetric. Moreover, the Rogers-Shephard

inequality [19] implies that

Vol(K ′) ≤ 42nVol(K),

Thus, knowing the inequalities in Theorem 1.5 and Theorem 1.7 for K ′ implies the

same inequalities with an extra factor 16 for a general convex body K.

Non-linear methods: It is worthwhile to mention that there are non-linear methods

of symplectic embedding constructions, known as “symplectic folding” and “symplec-

tic wrapping”, which one might use when approaching Conjecture 1.3. We refer the

reader to [12], [20] for more details on this subject. These methods have been suc-

cessfully used in some symplectic embedding constructions of concrete convex bodies,

see e.g. [20], [22].

Notations: In this paper the letters A0, A1, . . . are used to denote universal positive

constants which do not depend on the dimension nor the body involved. In what

follows we identify R2n with Cn by associating to z = x + iy, where x, y ∈ Rn,

the vector (x1, y1, . . . , xn, yn), and consider the standard complex structure given by

complex multiplication by i, i.e., i(x1, y1, . . . , xn, yn) = (−y1, x1, . . . ,−yn, xn). Note

that under this identification ω(v, iv) = 〈v, v〉, where 〈·, ·〉 is the standard Euclidean

inner product on R2n. We will use the notion “holomorphic plane” for a real 2-

dimensional plane generated by two vectors of the form v, iv. We shall denote PEK

the orthogonal projection of a body K on a subspace E, and by αBE ≡ BE(α)

the open ball of radius α in the subspace E. We will denote the volume of the

2n-dimensional Euclidean ball by κ2n, and sometimes use the estimates

(πe
n

)n ( 1√
2πne

)
≤ κ2n =

πn

n!
≤
(πe
n

)n ( 1√
2πn

)
≤
(πe
n

)n

. (1.1)

We will use the notation ℓp with 1 ≤ p < ∞ for the space of infinite p-summable

sequences endowed with the norm (
∑

i |xi|p)1/p, and ℓ∞ for the space of bounded

infinite sequences with norm given by supi |xi|. We use ℓnp to denote Rn with the

norm (
∑n

i=1 |xi|p)1/p for 1 ≤ p <∞ and supi=1,...,n |xi| for p = ∞.

Structure of the paper: The paper is organized as follows. We first consider some

concrete examples, where we can show directly the validity of Conjecture 1.3 up to

a universal constant. In Section 3 we introduce some of the main ingredients in the

proof of Theorem 1.7. In Section 4 we show how the method that works in the concrete

examples of Section 2 enables us to use some simple linear algebra, together with the

bounds following from the deep work of Pisier mentioned above and the ingredients

from Section 3, to prove Theorem 1.7. Finally, in the last section we discuss some

families of convex bodies where Theorem 1.5 holds in improved form, i.e., without

the logarithmic factor.
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2 Some Concrete Examples

In this section we estimate the cylindrical capacity of some concrete convex bodies.

We show that for these examples Conjecture 1.3 holds up to a constant factor. These

examples, in particular the techniques used for the examples of the ellipsoid and of

the cross polytope, will guide us in the proof of the general case. Other, more general

examples, will be discussed in Section 5.

2.1 Ellipsoids

The fact that for an ellipsoid E one has cB(E) = cZ(E) (and therefore Conjecture 1.3

holds) is well known (see, e.g., [9], [15]). However, we wish to remark on its proof

since it provides some preliminary intuition for the general case.

First of all, consider the case where E is a symplectic ellipsoid, given by E = DB2n

where D = diag(r1, r1, r2, r2 . . . , rn, rn) with 0 < r1 < r2 < . . . < rn. In this case

we clearly have that E lies “between” a ball and a cylinder of the same radii, i.e.,

B2n(r1) ⊂ E ⊂ Z2n(r1), and hence, cB(E) = cZ(E).

For E an ellipsoid in general position, one can find suitable (linear) symplectic

coordinates in which E becomes a symplectic ellipsoid. We discuss this well known

fact in Section 1.7, and as in the proof of Corollary 4.3 below, it means that one

has SE = DB2n for some symplectic matrix S and a positive diagonal matrix D =

diag(r1, r1, r2, r2 . . . , rn, rn). Using the above we see that

cB(E) = cB(SE) = cB(DB2n) = cZ(DB2n) = cZ(SE) = cZ(E).

2.2 The Cube

Let Q = [−1, 1]2n be the unit cube in R2n. In this case it is not hard to check that

cZ(Q) ≤ 2π, while

(
Vol(Q)

Vol(B2n)

)1/n

=
4

n
√
κ2n

≥ 4n

πe
.

Indeed, the inequality on the left follows since Q ⊂ Z2n(
√

2) and the inequality on the

right follows from the estimate (1.1 ) above. Thus, in the case of the cube, we see that
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Theorem 1.4 holds with a constant γn ≃ 1/n, in particular (at least asymptotically,

but it is not hard to check the constants in general) with constant 1.

Remark 2.1. In fact, using that Q ⊂ [−1, 1]2 × R2n−2, we see that cZ(Q) = 4;

however, to embed the cube into Z2n(r) with πr2 = 4 one steps out of the linear

category.

For the following linear image of a cube: Q̃ = DQ, whereD = diag(a1, b1, . . . , an, bn)

for some positive real numbers ai, bi we have

cZ(Q̃) ≤ 2πmin
i
aibi while

(
Vol(Q̃)

Vol(B2n)

)1/n

=
4

n
√
κ2n

n

√∏
aibi ≥

4n

πe
n

√∏
aibi

Indeed, the linear symplectic transformation S = diag
(√

b1
a1

,
√

a1

b1
, . . . ,

√
bn

an
,
√

an

bn

)

satisfies that SQ̃ ⊂ Z2n(min
√

2aibi) (Again, the bound can be improved by using a

non-linear symplectomorphism to cZ(Q̃) ≤ mini 4aibi). We see thus that applying a

diagonal transformation to the cube improves the inequality, and Theorem 1.4 holds

for this body with a constant γn ≃ 1/n.

2.3 The Cross-Polytope

The cross-polytope in dimension 2n is the polytope corresponding to the convex hull of

the 4n points ±ei, i = 1, . . . , 2n formed by permuting the coordinates (±1, 0, 0, ..., 0).

Since this is the unit ball of the ℓ1 norm on R2n, we shall denote it by B2n
1 , so,

B2n
1 = Conv{±ei}. We claim that

cZ(B2n
1 ) ≤ π

n
and

(
Vol(B2n

1 )

Vol(B2n)

)1/n

=

(
22n

2n!

κ2n

)1/n

≥ 2

πn
.

The inequality on the right hand side follows from a direct computation (using

the above estimate (1.1 )). In order to estimate from above the cylindrical capacity

of B2n
1 we will find a holomorphic 2-dimensional plane E such that the projection

PEB
2n
1 of B2n

1 into E is “small”. More precisely, consider the following unit vectors

v =
1√
2n

(1, . . . , 1), iv =
1√
2n

(−1, 1, . . . ,−1, 1).

Note that v ⊥ iv and that ωstd(v, iv) = 1. Denote E0 = span{e1, e2} and E =

span{v, iv}. Note that E = UE0 for some U ∈ U(n). Next we consider the projection

of B2n
1 to the subspace E. It follows from the definition that

PEB
2n
1 = PEConv{±ei} = ConvPE{±ei}.

9



A direct computation shows that

PEej = 〈ej, v〉v + 〈ej, iv〉iv =

{
1
n
(1, 0, . . . , 1, 0) j is odd,

1
n
(0, 1, . . . , 0, 1) j is even.

For every j we have that the Euclidean norm ‖PEej‖ = 1√
n
, and thus the diameter of

PEB
2n
1 is equal to 1√

n
which in turn implies that cZ(B2n

1 ) = cZ(U−1B2n
1 ) ≤ π

n
.

Moreover, a direct calculation shows that the cross-polytope B2n
1 includes the

Euclidean ball 1√
2n
B2n, so that cB(B2n

1 ) ≥ π
2n

. In particular, we get that up to

constant 2 the two capacities cB and cQ are equivalent, and hence Theorem 1.4 holds

with γ = 2. By using the bound (1.1 ) for the volume of the Euclidean ball we get

the slightly better constant γ = e/π.

Next we consider the linear image B̃2n
1 = DB2n

1 where D = diag(a1, b1, . . . , an, bn)

for some positive real numbers ai, bi such that detD = 1. By applying the linear

symplectomorphism S from the above example of the cube we can assume without

loss of generality that ai = bi for i = 1, . . . , n. As before we are looking for a 2-

dimensional holomorphic plane E such that the projection of B̃2n
1 into E has small

diameter. We choose the direction

v̂ = γ(a−1
1 , a−1

1 , . . . , a−1
n , a−1

n ), where γ =
( n∑

i=1

2a−2
i

)− 1

2

,

which is easily checked to be a direction on which the projection of B̃2n
1 has minimal

length. Together with it we take iv̂ = γ(−a−1
1 , a−1

1 , . . . ,−a−1
n , a−1

n ) (both are unit

vectors). Note that v̂ ⊥ iv̂ and ωstd(v̂, iv̂) = 1. Let E = span{v̂, iv̂}. In order to

bound the diameter of the projection of B̃2n
1 into the subspace E we compute the

projections:
{
PEake2k−1 = ak〈e2k−1, v̂〉v̂ + ak〈e2k−1, iv̂〉iv̂ = γ2(2a−1

1 , 0, . . . , 2a−1
n , 0)

PEake2k = ak〈e2k, v̂〉v̂ + ak〈e2k, iv̂〉iv̂ = γ2(0, 2a−1
1 , . . . , 0, 2a−1

n )

It follows that the Euclidean lengths ‖PEake2k−1‖ = ‖PEake2k‖ =
√

2γ for k =

1, . . . , n. We notice that n(
√

2γ)2 is the harmonic mean of the numbers ai, i =

1, . . . , n, and therefore is smaller than their geometric mean which equals 1. Thus,

γ
√

2 ≤ 1/
√
n, and hence, as in the not-distorted B2n

1 , we have that cZ(B̃2n
1 ) ≤ π

n
. So,

in this case, again, Theorem 1.5 holds with a constant instead of a logarithmic factor.

3 First estimates

One of the main ingredients in the proof of Theorem 1.7 is a connection between the

symplectic measure of a convex bodyK, given by its symplectic capacity, and classical
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notions of the “width” of a convex bodyK. To be more precise we need several further

definitions. For a non-empty centrally symmetric convex body K in R2n we denote

by ‖ · ‖K the norm on R
2n induced by K, that is, ‖x‖K = inf{r : x ∈ rK}. We set

M(K) =

∫

S2n−1

‖x‖Kσ(dx),

for the average of the norm ‖ · ‖K on the sphere S2n−1, and define M∗(K) := M(K◦)

where K◦ is the polar body of K defined by K◦ := {x ∈ R2n : 〈x, y〉 ≤ 1, ∀y ∈ K}.
The number M∗(K) is called half the mean width of K because

M∗(K) =

∫

S2n−1

sup
y∈K

〈x, y〉σ(dx),

where we integrate over all unit directions x half the distance between two parallel

hyperplanes touching K and perpendicular to the vector x (which is called the width

of K in direction x). We may assume without loss of generality that K is indeed

centrally symmetric, as was explained in the introduction.

We will sometimes prefer to use instead of the mean width M∗(K) a discrete

analogue called the (normalized) Rademacher average, which is defined as

s∗(K) = Aveεi=± 1√
2n

sup
{∑

i

εixi : x ∈ K
}

= Aveε∈{ −1√
2n

, 1√
2n

}2n‖ε‖K◦

That is, we average the dual norm of the body K (or half the width of K), not on the

whole sphere of directions as in the definition of the mean width M∗(K), but only

on the vertices of the normalized cube (in Banach Space theory one usually uses the

non-normalized version, r∗ =
√

2ns∗).

This parameter is much more similar to M∗ than it seems at first. Indeed one can

show (see [16]) that there exists a universal constant A3 such that for every dimension

2n and every symmetric convex body K ⊂ R
2n one has

A−1
3 s∗(K) ≤M∗(K) ≤ A3‖Rad‖XK

s∗(K), (3.1)

where XK is the Banach space with unit ball K. Below we use only the left hand

side inequality, which is not difficult to prove, and is true with constant A3 =
√
π/2.

In fact, we could instead use below the trivial fact that
∫

U(n)
s∗(UK) = M∗(K). The

following theorems give an upper bound for the cylindrical capacity of a convex body

K in terms of M∗(K) and s∗(K) respectively. (Notice that by the above remarks

Theorem 3.2 is formally stronger than Theorem 3.1. However, they admit an almost

identical proof).

Theorem 3.1. There exists a universal constant A4 such that for every even dimen-

sion 2n and any centrally symmetric convex body K ⊂ R2n, there exist a holomorphic

plane E ⊂ R2n such that

PE(K) ⊂ A4B
2
E(M∗(K)).

11



In particular, it follows from the monotonicity property of symplectic capacities that

c(K) ≤ πA2
4M

∗(K)2.

Theorem 3.2. There exists a universal constant A5 such that for every even dimen-

sion 2n and any centrally symmetric convex body K ⊂ R2n, there exist a holomorphic

plane E ⊂ R
2n such that

PE(K) ⊂ A5B
2
E(s∗(K)).

In particular, it follows from the monotonicity property of symplectic capacities that

c(K) ≤ πA2
5s

∗(K)2.

Before we prove these two theorems let us discuss the relation between Theo-

rem 3.1 and Theorem 1.7. First notice that the estimate in Theorem 3.1 is weaker

than Conjecture 1.3: Indeed, Urysohn’s inequality (see e.g. Corollary 1.4 in [17]) gives

(
Vol(K)

Vol(B2n)

)1/2n

≤ M∗(K).

However, one can ask whether there are bodies for which there is equivalence of the

two. In some sense this is indeed the case. In particular, there exists a universal

constant A6 such that every symmetric convex body K ⊂ R2n has a position K ′ (that

is, a volume preserving linear transformation T of R2n and K ′ = TK) in which

M∗(K ′) ≤ A6‖Rad‖XK

(
Vol(K)

Vol(B2n)

)1/2n

,

where XK is the Banach space whose unit ball is K. We will discuss this well known

fact in more detail in Section 4. Recall that for a body K ⊂ R
2n we have ‖Rad‖XK

≤
c log(2n+ 1) for a universal c. Unfortunately, the above mentioned transformation T

need not be symplectic, and we will address this problem too in Section 4. Further,

for some classes of bodies, the term ‖Rad‖XK
above can be eliminated. We discuss

this in Section 5.

In the remainder of this section we prove Theorems 3.1 and 3.2. Recall that

Markov’s inequality states that if (X,S, µ) is a measure space, f is a measurable

real-valued function, and t > 0, then

µ({x ∈ X | |f(x)| ≥ t}) ≤ 1

t

∫

X

|f |dµ.

Proof of Theorem 3.1. Consider the unit sphere S2n−1 ⊂ R
2n equipped with the

canonically defined normalized Haar measure µ. Define f : S2n−1 → R by f(x) =

‖x‖K◦. It follows from Markov’s inequality above that for t = αM∗(K)

µ({x ∈ S2n−1
∣∣∣ ‖x‖K◦ ≥ αM∗(K)}) ≤ 1

αM∗(K)

∫

S2n−1

‖x‖K◦dµ = 1/α. (3.2)

12



Next, for every unit vector x = (x1, x2, x3, x4, . . . , x2n−1, x2n) ∈ S2n−1 consider ix =

(−x2, x1,−x4, x3, . . . ,−x2n, x2n−1) ∈ S2n−1. Note that x ⊥ ix and ω(x, ix) = 1. By

substituting α large enough, say 3, in (3.2 ) above, we get that for at least measure

1− 1/α = 2/3 of the vectors x on the sphere we have that ‖x‖K◦ ≤ αM∗(K). So, at

least 1 − 2/α = 1/3 of the couples (x, ix) satisfy that this is true for both of them.

Hence, for at least 1/3 of the vectors x ∈ S2n−1 we have

PEK ⊂ α
√

2M∗(K)B2
E , where E = span{x, ix}.

Note that the subspace E is a unitary image of the subspace E0 = span{e1, e2},
where e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0). Since a unitary transformation preserves

the symplectic structure and since the symplectic capacity is monotone, we have that

the capacity cZ(K) is at most the capacity of a ball of radius α
√

2M∗(K). This

completes the proof of the theorem, with A4 = 3
√

2.

Remark 3.3. Actually, this theorem can be deduced directly from Dvoretzky’s the-

orem (see e.g. [16]) about random sections or projections of convex bodies which

implies, roughly speaking, that most projections of a convex body K of the appropri-

ate dimension or lower are Euclidean balls of diameter approximately M∗(K). This

can be made precise: for 2-dimensional sections given by UE0 for U ∈ U(n) and

E0 = span{e1, e2}, it can be shown that under mild assumptions the above is true for

large (Haar) measure of U ∈ U(n) (see, e.g., [1]). However, since all we need is a 2-

dimensional subspace, and since we are willing to sacrifice universal constants (such

as
√

2 above), a much more low-tech approach based only on Markov’s inequality

worked equally well.

Proof of Theorem 3.2. This proof is almost identical to the above. Instead of

considering the unit sphere we consider {−1/
√

2n, 1/
√

2n}2n ⊂ R2n equipped with

the uniform (normalized) counting measure µ. It follows from Markov’s inequality

that for t = αs∗(K)

µ({ε ∈ {±1/
√

2n}2n
∣∣∣ ‖ε‖K◦ ≥ αs∗(K)}) ≤ 1/α. (3.3)

As before, for every vector x = (x1, x2, x3, x4, . . . , x2n−1, x2n) ∈ {±1/
√

2n}2n we con-

sider ix = (−x2, x1,−x4, x3, . . . ,−x2n, x2n−1), which is also in {±1/
√

2n}2n. Again

x ⊥ ix and ω(x, ix) = 1, and with α = 3 in (3.3 ) above we get that at least

1 − 2/α = 1/3 of the 22n couples (x, ix) satisfy that this is true for both of them. In

particular we have one such couple with

PEK ⊂ α
√

2s∗(K)B2
E , where E = span{x, ix}.

As before the subspace E is a unitary image of the subspace E0 = span{e1, e2}, so the

capacity cZ(K) is at most the capacity of a ball of radius α
√

2s∗(K). This completes

the proof of the theorem, with A5 = 3
√

2.
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4 Proof of Theorem 1.7

As mentioned before, a key ingredient in the proof of Theorem 1.7 is the upper

estimate of the symplectic capacity of a convex body K in terms of its mean width

i.e.,

c(K) ≤ π(A4M
∗(K))2

given by Theorem 3.1. In order to find an upper bound for the mean width of a

convex body in terms of its volume radius we use a result by Figiel and Tomczak-

Jaegermann [4], which uses a previous result of Lewis [13], stating that every centrally

symmetric convex body K ⊂ Rn has a position TK, where T is a volume preserving

linear transformation, such that

M(TK)M∗(TK) ≤ A6‖Rad‖XK
,

where XK is the Banach space whose unit ball is the body K and A6 is universal.

Combining this with the fact that

1

M(TK)
≤
(

Vol(TK)

Vol(Bn)

)1/n

,

where Bn is the n-dimensional Euclidean unit ball, which follows from polar integra-

tion and Hölder’s inequality, we conclude that

Theorem 4.1. There exists a universal constant A6 such that for every symmetric

convex body K ⊂ R2n there exists a position TK, where T is a volume-preserving

linear transformation, for which

M∗(TK) ≤ A6‖Rad‖XK

(
Vol(K)

Vol(B2n)

)1/2n

This is already close to our goal. However, it is important to note that the above

mentioned transformation T need not be symplectic, and hence Theorem 1.7 does

not follow directly from the combination of Theorem 3.1 and Theorem 4.1. However,

these theorems serve as a tool and as motivation for the line of proof of Theorem 1.7.

Our next step is therefore to deal with the “non-symplectivity” of the transformation

T . To this end, we shall need the following well known fact about the simultaneously

normalization of a symplectic form and an inner product, which we already used in

the example of an ellipsoid in Section 2 (see e.g. [15], page 57).

Lemma 4.2. Let (V, ω) be a symplectic vector space and let g : V × V → R be an

inner product. Then there exists a basis {u1, v1, . . . , un, vn} of V which is both g-

orthogonal and ω-standard, that is, g(vi, uj) = 0, g(ui, uj) = cjδi,j, g(vi, vj) = djδi,j,

and ω(ui, uj) = ω(vi, vj) = 0, ω(ui, vj) = δi,j. Moreover, this basis can be chosen such

that cj = dj for all j.
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Straightforward linear algebra gives

Corollary 4.3. Let R2n be equipped with the standard symplectic structure and the

standard inner product. Let T be a volume preserving 2n-dimensional real matrix.

Then there exists a linear symplectic matrix S ∈ Sp(R2n) and an orthogonal transfor-

mation W ∈ O(2n) such that

T = WDS, where 0 < D = diag(r1, r1, r2, r2, . . . , rn, rn), and
∏

i

ri = 1.

We postpone the proof of Corollary 4.3 to the end of this section. Combining

Equation (3.1 ) with Theorem 4.1 and Corollary 4.3, and using the fact that M∗ is

invariant under orthogonal transformations we get

Theorem 4.4. There exist universal constants A3 and A6 such that for any dimen-

sion 2n, for every symmetric convex body K ⊂ R2n there exists a positive diagonal

transformation D = diag(r1, r1, r2, r2, . . . , rn, rn) with
∏
ri = 1 and a symplectic po-

sition K ′ = SK where S is a linear symplectic transformation such that

s∗(DK ′) ≤ A3M
∗(DK ′) ≤ A3A6‖Rad‖XK

(
Vol(K)

Vol(B2n)

)1/2n

.

In order to complete the proof of Theorem 1.7 we shall need the following propo-

sition.

Proposition 4.5. There exists a universal constant A7 such that for any convex

body K ⊂ R2n and for every diagonal matrix D = diag(r1, r1, r2, r2, . . . , rn, rn) with∏
ri = 1 there exists a holomorphic plane E = span{v, iv} such that the orthogonal

projection of the body K to the subspace E satisfies

PE(K) ⊂ A7B
2
E(s∗(DK))

Postponing the proof of Proposition 4.5 we first use it to prove Theorem 1.7.

Proof of Theorem 1.7. Let K ⊂ R
2n be a symmetric convex body. It follows

from Theorem 4.4 that there exists a symplectic linear image K ′ = SK of K where

S ∈ Sp(R2n) and a positive diagonal matrix D = diag(r1, r1, r2, r2, . . . , rn, rn) with∏
ri = 1 such that

s∗(DK ′) ≤ A8‖Rad‖XK

(
Vol(K)

Vol(B2n)

)1/2n

where A8 = A3A6 is universal. Next we apply Proposition 4.5 to the body K ′ and to

the above mentioned diagonal matrix D, and conclude that there exists a holomorphic

plane E such that

PE(K ′) ⊂ A7B
2
E(s∗(DK ′))
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Since E is holomorphic and since the symplectic capacity is monotone, we have that

for every symplectic capacity c we have

c(K) = c(K ′) ≤ cZlin(K ′) ≤ πA2
7A

2
8‖Rad‖2

XK

(
Vol(K)

Vol(B2n)

)1/n

,

and the proof of Theorem 1.7 is complete.

The rest of this section is devoted to the proofs of Proposition 4.5 and of Corol-

lary 4.3.

Proof of Proposition 4.5. Let K be a centrally symmetric convex body and let

D = diag(r1, r1, . . . , rn, rn) be a positive diagonal matrix with detD = 1. It follows

from the proof of Theorem 3.2 applied to the body DK that there exists an holo-

morphic plane Ê = span{v, iv}, where v and iv are vertices of the cube { 1√
2n
, −1√

2n
}2n

such that

‖v‖(DK)◦ = sup
z∈DK

|〈v, z〉| ≤ A5s
∗(DK), ‖iv‖(DK)◦ = sup

z∈DK
|〈iv, z〉| ≤ A5s

∗(DK)

(4.1)

Next, denote by ‖ · ‖2 the Euclidean norm and consider the vectors

v′ =
Dv

‖Dv‖2
=
( n∑n

i=1 r
2
i

)1/2

(v1r1, v2r1, v3r2, v4r2, . . . , v2n−1rn, v2nrn)

and

iv′ =
iDv

‖Dv‖2

=
Div

‖Dv‖2

=
( n∑n

i=1 r
2
i

)1/2

(−v2r1, v1r1,−v4r2, v3r2, . . . ,−v2nrn, v2n−1rn)

Note that these two unit vectors satisfy of course that v′ ⊥ iv′ and ωstd(v
′, iv′) = 1.

Moreover by the geometric arithmetic mean inequality we see that

‖Dv‖2 =
(1

n

n∑

i=1

r2
i

)1/2

≥
( n∏

i=1

r2
i

)1/2n

= 1. (4.2)

Next, denote E = span{v′, iv′}. A straightforward computation shows that

PEK = {αv′ + βiv′ | α = 〈v′, y〉, β = 〈iv′, y〉, where y ∈ K}

= {αv′ + βiv′ | α =
1

‖Dv‖2
〈v,Dy〉, β =

1

‖Dv‖2
〈iv,Dy〉, where y ∈ K}

= {αv′ + βiv′ | α =
1

‖Dv‖2
〈v, z〉, β =

1

‖Dv‖2
〈iv, z〉, where z ∈ DK}

⊆ {αv′ + βiv′ | α = 〈v, z〉, β = 〈iv, z〉, where z ∈ DK},
where the last inclusion follows from inequality (4.2 ) above. Combining this with

Equation (4.1 ) above we get that

PE(K) ⊆
√

2A5s
∗(DK)B2

E .

The proof of the proposition is now complete with A7 =
√

2A5.
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Proof of Corollary 4.3. It follows from the Lemma 4.2 that there exists a linear

symplectic matrix S and a positive diagonal matrix D2 = diag(r2
1, r

2
1, r

2
2, r

2
2, . . . , r

2
n, r

2
n)

such that T tT = StD2S (since T tT is symmetric and positive definite). Note that for

the ellipsoid E = T−1B2n we have

E := {x | 〈x, T tTx〉 ≤ 1} = {x | 〈x, StD2Sx〉 ≤ 1} = S−1{y | 〈S−1y, StD2y〉 ≤ 1}
= S−1D−1{z | 〈S−1D−1z, StDz〉 ≤ 1} = (DS)−1{z | 〈S−1D−1z, (DS)tz〉 ≤ 1}
= (DS)−1{z | 〈DS(DS)−1z, z〉 ≤ 1} = (DS)−1B2n

Thus we get that B2n = TE and DS(E) = B2n, so we conclude that there exists an

orthogonal transformation W ∈ O(2n) such that T (DS)−1 = W . We thus conclude

that T = WDS, as stated.

5 Improvements for special families of bodies

In this section we describe wide classes of convex bodies for which the logarithmic

term in Theorem 1.5 can be disposed of.

We begin with describing the example of zonoids. The class of zonoids consists

of symmetric convex bodies which can be approximated, in the Hausdorff sense, by

Minkowski sums of line segments. Bodies which are Minkowski sums of segments

are called zonotopes, and any zonotope in Rn can be realized as a linear image of

an m-dimensional cube for some m. An example for a zonoid is the Euclidean ball

in Rn, which can be approximated in the Hausdorff distance up to ε by (random)

orthogonal projections of m dimensional cubes for m = C(ε)n (this follows from

Dvoretzky’s Theorem, see [16]). In the paper [5] it was shown that every zonoid

Z ⊂ R
2n with volume 1 has some linear image TZ for T ∈ SL(R2n) such that

M∗(TZ) ≤ A9

√
n for some universal constant A9. After normalization we see that

this means M∗(TZ) ≤ A′
9

( Vol(Z)
Vol(B2n)

)1/2n
. Thus, applying the same methods as in the

proof of Theorem 1.5 we conclude that for zonoids the estimate in Theorem 1.5 is

true without the logarithmic factor.

Next, we consider the unit ball of ℓ2n
p for 1 ≤ p ≤ ∞, denoted B2n

p . The case of

p = 1,∞ was discussed in Section 2 above, where it was shown that Theorem 1.5

holds with a universal constant instead of the logarithmic factor. For 1 < p < ∞,

one option, which we do not use, is to use the well known computations for M∗(B2n
p )

(see e.g. [16]) and for Vol(B2n
p ),

Vol(B2n
p ) =

(2Γ(1
p

+ 1))2n

Γ(2n
p

+ 1)
.

In what follows we take a different, more geometric approach, and avoid using the

above mentioned estimates.
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We begin with the case of 1 < p ≤ 2, where we can invoke the following inclusion

which is easy to check

(2n)1/2−1/pB2n ⊂ B2n
p ⊂ (2n)1−1/pB2n

1 .

The left hand side inclusion implies that

(
Vol(B2n

p )

Vol(B2n)

)1/n

≥ (2n)1−2/p,

and the right have side inclusion together with the results for B2n
1 from Subsection 2.3

implies that

cZ(B2n
p ) ≤ (2n)2−2/pcZ(B2n

1 ) ≤ 2π(2n)1−2/p.

This completes the case 1 < p ≤ 2. Moreover, we see that the constant 2 we get is

universal and does not depend on p.

We turn to the case p > 2. Here we are even better off, because we will use the

estimates for the cube from Subsection 2.2 where there was a big difference between

the capacity and the ratio of volumes. Indeed, we may use the inclusions for 2 < p <

∞ (where the cube is denoted now by B2n
∞ )

B2n ⊂ B2n
p ⊂ B2n

∞ .

Therefore (
Vol(B2n

p )

Vol(B2n)

)1/n

≥ 1,

and using the results of Subsection 2.2 we also have

cZ(B2n
p ) ≤ cZ(B2n

∞ ) ≤ 4,

which completes the case 2 < p < ∞ with constant 4
π
. Had we used the exact

estimates for M∗ and for the volume we would have gotten that the theorem holds

with a much better constant (equal to 1, and getting smaller as p grows). We remark

again that we arrived at a universal constant independent of both n and p.

Other examples for which the logarithmic factor can be omitted arise from The-

orem 1.7. Indeed, whenever we have good bounds on ‖Rad‖X we can replace the

logarithmic factor by these bounds. We could have applied this scheme in the ℓ2n
p

case, however that would not guarantee that the constants do not depend on p, and

in fact, since for X = ℓ1, ℓ∞ we know that ‖Rad‖X is not bounded, we would have

gotten constants that depend on p and explode as p→ 1,∞.

We emphasize that K-convexity is an infinite dimensional notion, and indeed

since we are concerned with the dependence on dimension in Theorem 1.5, if we wish

to prove a stronger bound in special cases then these particular cases have to be
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families of convex bodies in dimension tending to infinity. Some such examples are

concrete bodies such as ℓ2n
p , but another way to construct such families is to look at

some infinite dimensional Banach space and to consider for example all of its finite

dimensional subspaces and the convex bodies which are their unit balls. In this case

K-convexity of the original space X will promise a uniform bound, independent of

dimension, in Theorem 1.5, instead of the logarithmic factor.

For example, the Rademacher constant ‖Rad‖X is bounded for X = Lp(Y ) for any

(fixed) Banach space Y and 1 < p <∞, which is defined for a probability measure µ

on a set Ω as

Lp(Ω, Y ) =
{
f : Ω → Y : ‖f‖Lp(Ω,Y ) =

(∫

Ω

‖f‖p
Y dµ

)1/p

<∞
}
.

Thus, all convex bodies which are unit balls of (finite dimensional) subspaces of the

space Lp(Y ) will satisfy the main theorem without the logarithmic factor (but the

bound will depend on the K-convexity constant of Lp(Y )).

More generally, X is K-convex if and only if X is of type-p for some p > 1. The

definition of type-p is as follows (see, e.g. [17]): A Banach space X is called of type-p

for 1 ≤ p ≤ 2 if there is a constant C such that for all m and all x1, . . . , xm ∈ X we

have

‖
m∑

i=1

rixi‖L2(X) ≤ C

(
m∑

i=1

‖xi‖p

)1/p

. (5.1)

The smallest constant C for which this holds is called the type-p constant of X, and

is denoted Tp(X). For a Hilbert space obviously T2(X) = 1, and we remark that

Kahane’s inequality (see e.g. [16]) states that for 1 ≤ p < ∞ there are constants Kp

depending only on p so that for any X and any x1, . . . , xm ∈ X

‖
∑

rixi‖L1(X) ≤ ‖
∑

rixi‖Lp(X) ≤ Kp‖
∑

rixi‖L1(X),

so that the notion of type-p does not depend on the choice of L2-average on the left

hand side of (5.1 ). It is easily seen from the triangle inequality that every Banach

space has type 1 with T1(X) = 1, and it follows easily, say from Khinchine inequality,

that no non-zero normed space has type p > 2.

The theorem we stated above, that X is K-convex if and only if it has some non-

trivial type (i.e., type-p for p > 1) is due to Milman and Pisier, see e.g. Theorem 11.3 in

[17]. Many more equivalent formulations are possible, for example the same theorem

also states thatX isK-convex if and only if it is locally π-Euclidean (for the definitions

see [17]).

One more example for convex bodies where this method shows that the logarithmic

factor is not necessary are unit balls of the Schatten classes Cn
p for 1 < p < ∞. To

define the Schatten class spaces let u be an n × n matrix, so u∗u is positive definite
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and symmetric, thus it is orthogonally diagonalizable with nonnegative eigenvalues

λ1, . . . , λn. The Schatten class Cn
p is the n2-dimensional space of all n×n real matrices

equipped with the norm

‖u‖Cn
p

=

(
n∑

i=1

λ
p/2
i

)1/p

.

(Of course we will consider C2n
p when we want to discuss the symplectic capacity of

the unit ball of this space.) Tomczak-Jaegermann showed in [21] that Schatten classes

Cn
p have the same type/cotype properties as Lp spaces, so that we have a uniform

estimate in Theorem 1.5 also for the unit balls of Cn
p when 1 < p < ∞ (but the

constant which replaces the logarithm can depend on p).

Remark 5.1. In a paper by Giannopoulos, Milman and Rudelson [5] they prove a

theorem which gives a bound on the minimal M∗(TK) over T ∈ SL(n), which is

slightly better than the simple bound we used above. Recall that we argued that

min
T
M∗(TK) ≤ min

T
(M(TK)M∗(TK))

(
Vol(K)

Vol(B2n)

)1/2n

,

and then we used the estimate minT (M(TK)M∗(TK)) ≤ A6‖Rad‖XK
for a universal

A6. They show that (stating their Theorem B in dual form): For every body K there

is a position K ′ = TK for T ∈ SL(n) such that (for a universal constant c), denoting

by d half the diameter of K ′ (so that K ′ ⊂ dB2n) one has

cM∗(K ′)

log(d/M∗(K ′))
≤
(

Vol(K ′)

Vol(B2n)

)1/2n

.

It is easily seen that one always has d(K ′)/M∗(K ′) ≤ C ′√n (since K ′ includes a

segment of length 2d, and so M∗(K ′) ≥M∗([−d, d]) = c′/
√
n). Therefore their result

clearly implies that there is a position for which

M∗(K ′) ≤ C1(logC2n)

(
Vol(K ′)

Vol(B2n)

)1/2n

,

which is exactly the estimate we derived and used above. However, it is plausible

that in many cases the position TK they use has a better ratio of diameter and mean

width, and then the above estimate give an improved result.
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