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Abstract

We study the class of norms on the space of smooth functions on a closed

symplectic manifold, which are invariant under the action of the group of Hamil-

tonian diffeomorphisms. Our main result shows that any such norm that is

continuous with respect to the C∞-topology, is dominated from above by the

L∞-norm. As a corollary, we obtain that any bi-invariant Finsler pseudo-metric

on the group of Hamiltonian diffeomorphisms that is generated by an invariant

norm that satisfies the aforementioned continuity assumption, is either identi-

cally zero or equivalent to Hofer’s metric.

1 Introduction and Main Results

A remarkable fact, which is among the cornerstones of symplectic rigidity theory,

is that the group of Hamiltonian diffeomorphisms of a symplectic manifold can be

equipped with an intrinsic geometry given by a bi-invariant Finsler metric known as

Hofer’s metric. In contrast with finite-dimensional Lie groups, the existence of such

a metric on an infinite-dimensional group of transformations is highly unusual due to

the lack of compactness. In the past twenty years, Hofer’s metric has been intensively

studied with many new discoveries covering a wide range of aspects in Hamiltonian

dynamics and symplectic geometry.

The purpose of this note is to show that under some mild assumption, Hofer’s

metric is, in a sense, the only bi-invariant Finsler metric on the group of Hamiltonian

diffeomorphisms of closed symplectic manifolds. In order to state this result precisely

we proceed with some standard definitions and notations, and refer the reader to the

books [7, 11, 15] for symplectic preliminaries, and further discussions on the group of

Hamiltonian diffeomorphisms and Hofer’s geometry.

Let (M,ω) be a closed 2n-dimensional symplectic manifold, and denote by C∞
0 (M)

the space of smooth functions that are zero-mean normalized with respect to the
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canonical volume form ωn. For every smooth time-dependent Hamiltonian function

H : M × [0, 1] → R, we associate a vector field XHt
via the equation iXHt

ω = −dHt,

where Ht(x) = H(t, x). The flow of XHt
is denoted by φt

H and is defined for all

t ∈ [0, 1]. The main object of this note is the group of Hamiltonian diffeomorphisms,

which consists of all the time-one maps of such Hamiltonian flows i.e.,

Ham(M,ω) = {φ1
H | where φt

H is a Hamiltonian flow}

When equipped with the standard C∞-topology, the group Ham(M,ω) is an infinite-

dimensional Fréchet Lie group, whose Lie algebra A can be identified with the space

C∞
0 (M). Moreover, the adjoint action of Ham(M,ω) on A is the standard action

of diffeomorphisms on functions i.e., Adφf = f ◦ φ−1, for every f ∈ A and φ ∈

Ham(M,ω). Next, we define a Finsler (pseudo) distance on Ham(M,ω). Given any

norm ‖·‖ on the Lie algebra A, we define the length of a path α : [0, 1] → Ham(M,ω)

as

length{α} =

∫ 1

0

‖α̇‖dt =

∫ 1

0

‖Ht‖dt,

where Ht(x) = H(t, x) is the unique normalized Hamiltonian function generating the

path α. Here H is said to be normalized if
∫
M
Htω

n = 0 for every t ∈ [0, 1]. The

distance between two Hamiltonian diffeomorphisms is given by

d(ψ, ϕ) := inf length{α},

where the infimum is taken over all Hamiltonian paths α connecting ψ and ϕ. It

is not hard to check that d is non-negative, symmetric and satisfies the triangle

inequality. Moreover, a norm on A which is invariant under the adjoint action yields

a bi-invariant pseudo-distance function, i.e. d(ψ, φ) = d(θ ψ, θ φ) = d(ψ θ, φ θ) for

every ψ, φ, θ ∈ Ham(M,ω). From now on we will deal solely with such norms1 and

we will refer to d as the pseudo-distance generated by the norm ‖ · ‖.

Remark 1.1. When one studies the geometric properties of the group of Hamilto-

nian diffeomorphisms, it is convenient to consider smooth paths [0, 1] → Ham(M,ω),

among which, those that start at the identity correspond to smooth Hamiltonian

flows. Moreover, for a given Finsler metric on Ham(M,ω), a natural assumption

from a geometric point of view is that every smooth path [0, 1] → Ham(M,ω) is of a

finite length. As it turns out, the latter assumption is equivalent to the continuity of

the norm on A corresponding to the Finsler metric in the C∞-topology2. We prove

1We remark that a fruitful study of right-invariant Finsler metrics on Ham(M,ω), motivated

in part by applications to hydrodynamics, was initiated in a well known paper by Arnold [1] (see

also [2], [8] and the references within). Moreover, non-Finslerian bi-invariant metrics on Ham(M,ω)

have been intensively studied in the realm of symplectic geometry, starting with the works of

Viterbo [18], Schwarz [17], and Oh [12], and followed by many others.
2We thank A. Katok for his illuminating remark regarding the naturalness of the assumption

that the norm is continuous in the C∞-topology.
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this fact in the Appendix to the paper. Throughout the text we shall consider only

such norms.

It is highly non-trivial to check whether a distance function generated by such

a norm, is non-degenerate, that is d(1l, φ) > 0 for φ 6= 1l. In fact, for closed sym-

plectic manifolds, a bi-invariant pseudo-metric d on Ham(M,ω) is either a genuine

metric or identically zero. This is an immediate corollary of a well known theorem

by Banyaga [3], which states that Ham(M,ω) is a simple group, combined with the

fact that the null-set

null(d) = {φ ∈ Ham(M,ω) | d(1l, φ) = 0}

is a normal subgroup of Ham(M,ω). A distinguished result by Hofer [6] states that

the L∞-norm on A gives rise to a genuine distance function on Ham(M,ω) known as

Hofer’s metric. This was discovered and proved by Hofer for the case of R2n, then

generalized by Polterovich [14], and finally proven in full generality by Lalonde and

McDuff [10]. In a sharp contrast to the above, Eliashberg and Polterovich [5] showed

that for 1 ≤ p < ∞, the pseudo-distances on Ham(M,ω) corresponding to the Lp-

norms on A vanishes identically. A considerable generalization of the latter result

was given by Ostrover-Wagner [13] who proved that for a closed symplectic manifold:

Theorem 1.2 (Ostrover-Wagner [13]). Let ‖ · ‖ be a Ham(M,ω)-invariant norm on

A such that ‖·‖ ≤ C‖·‖∞ for some constant C, but the two norms are not equivalent.

Then the associated pseudo-distance d on Ham(M,ω) vanishes identically.

In [5], the authors started a discussion regarding the uniqueness of Hofer’s metric

(cf. [4], [15]). For the case of closed symplectic manifolds, one question they arose is:

Question: Does there exist a Finsler bi-invariant metric on Ham(M,ω) which is not

equivalent to Hofer’s metric.

In this paper we provide an answer to the above question under the natural con-

tinuity assumption mentioned in Remark 1.1. More precisely, our main result is:

Theorem 1.3. Let (M,ω) be a closed symplectic manifold. Any Ham(M,ω)-invariant

pseudo norm ‖·‖ on A that is continuous in the C∞-topology, is dominated from above

by the L∞-norm i.e., ‖ · ‖ ≤ C‖ · ‖∞ for some constant C.

Combining together Theorem 1.3 and Theorem 1.2, we conclude that:

Corollary 1.4. For a closed symplectic manifold (M,ω), any bi-invariant Finsler

pseudo metric on Ham(M,ω), obtained by a pseudo norm ‖·‖ on A that is continuous

in the C∞-topology, is either identically zero or equivalent3 to Hofer’s metric. In

3Here two metrics d1, d2 are said to be equivalent if 1

C
d1 6 d2 6 Cd1 for some constant C > 0.
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particular, any non-degenerate bi-invariant Finsler metric on Ham(M,ω), which is

generated by a norm that is continuous in the C∞-topology, gives rise to the same

topology on Ham(M,ω) as the one induced by Hofer’s metric.

Remark 1.5. Let us emphasize that any norm ‖ · ‖ on A can be turned into a

Ham(M,ω)-invariant pseudo-norm via the invariantization procedure ‖f‖ 7→ ‖f‖inv,

where:

‖f‖inv = inf
{∑

‖φ∗
i fi‖ ; f =

∑
fi, and φi ∈ Ham(M,ω)

}

Note that ‖ · ‖inv ≤ ‖ · ‖. Thus, if ‖ · ‖ is continuous in the C∞-topology, then so is

‖ · ‖inv. Moreover if ‖ · ‖′ is a Ham(M,ω)-invariant norm, then:

‖ · ‖′ ≤ ‖ · ‖ =⇒ ‖ · ‖′ ≤ ‖ · ‖inv

In particular, the above invariantization procedure provides a plethora of Ham(M,ω)-

invariant genuine norms on A, e.g., by taking the homogenization of the ‖·‖Ck-norms.

Structure of the paper: In Section 2 we sketch an outline of the proof of Theo-

rem 1.3. In Section 3 we prove a local version of this theorem, which would serve as

the main ingredient in the proof of the general case given in Section 4.

Notations: Let x1, . . . , xn be the Cartesian coordinates in R
n. For any multi-index

α = (α1, . . . , αn), set ∂
α = ∂α1

1 ∂α2
2 . . . ∂αn

n , where ∂i = ∂/∂xi. For an open set Ω ⊂ R
n

we denote Cc(Ω) the space of compactly supported continuous functions on Ω, and let

‖ · ‖∞ stands for the L∞-norm. For an integer k, define Ck
c (Ω) the class of functions

f from Cc(Ω) such that ∂αf ∈ Cc(Ω) for all |α| ≤ k. The Ck-norm of u ∈ Ck
c (Ω) is

given by

‖u‖Ck = max
|α|≤k

sup
Ω

|∂αu|

As usual, C∞
c (Ω) is the intersection of all the Ck

c (Ω) and is endowed with the C∞-

topology. We denote by supp(f) the support of the function f i.e., the closure of the

set {x | f(x) 6= 0}, and by int(D) the interior of a domain D ⊂ R
n. For an open do-

main U ⊂ R
2n, we denote by Hamc(D,ω) the group of Hamiltonian diffeomorphisms

of R2n, which are generated by Hamiltonian functions H : R2n × [0, 1] → R, whose

support is compact and contained in U × [0, 1]. Here ω is the standard symplectic

form on R
2n given by ω = dp ∧ dq, where {q1, p1, . . . , qn, pn} are the canonical coor-

dinates in R
2n. We say that a function f : R2n → R is a product function, if it is of

the form f(q, p) =
∏n

i=1 fi(qi, pi). Finally, the letters C,C1, C2, . . . are used to denote

positive constants that depend solely on the dimension of the ambient space relevant

in each particular context.

Acknowledgements: Both authors are grateful to H. Hofer and L. Polterovich, for

their interest in this work and helpful comments. This article was written during

visits of the first author at the Institute for Advanced Study (IAS) in Princeton, and
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visits of the second author at the Mathematical Sciences Research Institute (MSRI),

Berkeley. We thank these institutions for their stimulating working atmospheres and

for financial support. The first author was supported by the Mathematical Sciences

Research Institute. The second author was supported by NSF Grant DMS-0635607,

and by the Israel Science Foundation grant No. 1057/10. Any opinions, findings and

conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the NSF or the ISF.

2 Outline of the Proof

Here we briefly describe the strategy of the proof of Theorem 1.3. For technical

reasons, we shall prove Theorem 1.3 for norms on the space C∞(M), instead of the

space A. The original claim would follow from this result since any Ham(M,ω)

invariant pseudo-norm ‖ · ‖ on A can be naturally extended to an invariant pseudo-

norm ‖ · ‖′ on C∞(M) by setting

‖f‖′ = ‖f −Mf‖, where Mf = 1
V ol(M)

∫
M
fωn

Note that if ‖ · ‖ is continuous in the C∞-topology, then so is ‖ · ‖′. Moreover, the

norm ‖ · ‖′ coincides with ‖ · ‖ on the space A. By a standard partition of unity

argument, we reduce the proof of the theorem to a “local result”, i.e., we show that it

is sufficient to prove Theorem 1.3 for Hamc(W,ω)-invariant norms on C∞
c (W ), where

W = (−L, L)2n is a 2n-dimensional cube in R
2n. As a first step toward this end, we

introduce a special Hamc(W,ω)-invariant norm ‖ · ‖F ,max on C∞
c (W ), which depends

on a given finite collection F ⊂ C∞
c (W ). More precisely:

Definition I. For a non-empty finite collection F ⊂ C∞
c (W ), let

LF :=
{∑

i

ci Φ
∗
i fi | ci ∈ R, Φi ∈ Hamc(W,ω), fi ∈ F , and #{i | ci 6= 0} <∞

}
,

be equipped with the norm

‖f‖LF
= inf

∑
|ci|,

where the infimum is taken over all the representations f =
∑
ci Φ

∗
i fi as above.

Definition II. For any compactly supported function f ∈ C∞
c (W ), let

‖f‖F ,max = inf
{
lim inf
i→∞

‖fi‖LF

}
,

where the infimum is taken over all subsequences {fi} in LF which converge to f in

the C∞-topology. As usual, the infimum of the empty set is set to be +∞.
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The main feature of the norm ‖ · ‖F ,max is that it dominates from above any other

Hamc(W,ω)-invariant norm that is continuous in the C∞-topology (see Lemma 3.3).

The next step, which is also the main part of the proof, is to show that for a suitable

collection of functions F ⊂ C∞
c (W ), the norm ‖ · ‖F ,max is in turn dominated from

above by the L∞-norm. This is proved in Theorem 3.4, and in light of the above, it

completes the proof of Theorem 1.3. The proof of Theorem 3.4 is divided into two

main steps which we now turn to describe:

The local two-dimensional case: Here, we shall construct a collection F of smooth

compactly supported functions on a two-dimensional cube W 2 ⊂ R
2n, such that any

f ∈ C∞
c (W 2) satisfies ‖f‖F ,max 6 C‖f‖∞ for some absolute constant C. There

are two independent components in the proof of this claim. First, we show that

one can decompose any f ∈ C∞
c (W 2) with ‖f‖∞ 6 1 into a finite combination

f =
∑N0

i=1 ǫjΨ
∗
jgj . Here, ǫj ∈ {−1, 1}, Ψj ∈ Hamc(W

2, ω), and gj are smooth radial

functions whose L∞-norm is bounded by an absolute constant, and which satisfy

certain other technical conditions (see Proposition 3.5 for the precise statement). In

what follows we call such functions by “simple functions”. We emphasize that N0

is a constant independent of f . Thus, we can restrict ourselves to the case where

f is a “simple function”. In the second part of the proof, we construct an explicit

collection F = {f0, f1, f2}, where fi ∈ C∞
c (W 2), and i = 0, 1, 2. Using an averaging

procedure (Proposition 3.6), we show that every “simple function” f ∈ C∞
c (W 2) can

be approximated arbitrarily well in the C∞-topology by a sum of the form

∑

i,k

αi,kΨ̃
∗
i,kfk, where Ψ̃i,k ∈ Hamc(W

2, ω), k ∈ {0, 1, 2},

and such that
∑

|αi,k| ≤ C‖f‖∞ for some absolute constant C. Combining this with

the above definiton of ‖ · ‖F ,max, we conclude that ‖f‖F ,max ≤ C‖f‖∞, for every

f ∈ C∞
c (W 2). This completes the proof of Theorem 3.4 in the 2-dimensional case.

The local higher-dimensional case: The proof of Theorem 3.4 for arbitrary di-

mension strongly relies on the 2-dimensional case. We extend (in a natural way) the

construction of the above mentioned collection F = {f0, f1, f2} to the 2n-dimensional

case. By abuse of notation, we shall denote the new collection by F as well. Based

on the proof of Theorem 3.4 in the 2-dimensional case, and on the construction of the

class F , we show that Theorem 3.4 holds for “product functions”, i.e., for f ∈ C∞
c (W )

of the form f =
∏n

i=1 fi(qi, pi), where fi ∈ C∞
c (W 2). From this we derive, using a

Fourier series argument, that the norm ‖ · ‖F ,max is dominated from above by the

‖ · ‖C2n+1-norm, i.e., for any f ∈ C∞
c (W ) one has

‖f‖F ,max ≤ C‖f‖C2n+1, (2.1)

for some constant C (see Proposition 3.14 for the proof of the above two claims).

Next, for any ǫ > 0, we construct a partition of unity function Rǫ : R2n → R, with

6



supp(Rǫ) ⊂ (−ǫ, ǫ)2n, and such that
∑

v∈ǫZ2n

Rǫ(x− v) = 1l(x)

For any w ∈ X := {0, 1, 2, 3}2n, we consider a finite grid Γǫ
w ⊂W given by:

Γǫ
w = ǫw + 4ǫZ2n ∩ (−L+ 3ǫ, L− 3ǫ)2n,

and define

fw(x) =
∑

v∈Γǫ
w

Rǫ(x− v)f(x)

Note, that for ǫ sufficiently small such that supp (f) ⊂ (−L+ 4ǫ, L− 4ǫ)2n, one has

f(x) =
∑

w∈X

fw(x)

For any w ∈ X, the function fw is a finite sum of smooth functions that lie near the

points of the grid Γǫ
w. Moreover, these functions have mutually disjoint supports,

which are spaced commodiously. Next, we fix w ∈ X, and for any v ∈ Γǫ
w we

consider the decomposition of f ∈ C∞
c (W ) as a Taylor polynomial of order 2n + 1

and a remainder, around the point v (this specific choice of the order ensure, based

on (2.1 ), the estimate (2.2 ) below):

f(x) = P v
2n+1(x− v) +Rv

2n+1(x− v).

We decompose each fw as fw(x) = gw(x) + hw(x), where

gw(x) =
∑

v∈Γǫ
w

Rǫ(x− v)P v
2n+1(x− v), and hw(x) =

∑

v∈Γǫ
w

Rǫ(x− v)Rv
2n+1(x− v).

Based on (2.1 ), in Lemma 3.16 (cf. Corrolary 3.17) we show that the ‖ · ‖F ,max-norm

of the reminder parts {hw} can be taken to be arbitrarily small. More precisely,

‖hw‖F ,max 6 C1‖hw‖C2n+1 6 C2ǫ‖f‖C2n+2 , (2.2)

for some constants C1 and C2. On the other hand, using a combinatorial argument

and the above mentioned fact that Theorem 3.4 holds for “product functions”, we

prove the estimate

‖gw‖F ,max 6 C3

(2n+1∑

i=0

‖f‖Ciǫi
)

(2.3)

for some constnat C3. Combining the above estimates (2.2 ) and (2.3 ) for all w ∈ X,

and taking ǫ → 0, we conclude that for every f ∈ C∞
c (W ) one has

‖f‖F ,max 6 C4‖f‖∞,

for some absolute constant C4. This completes the proof of the theorem.
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3 A Local Version of the Main Result

In this section we prove a local version of our main result (Theorem 3.4 below), which

would later serve as the main component in the proof of Theorem 1.3.

Consider an open cube W = I2n ⊂ R
2n, where I = (−L, L) ⊂ R is an open

interval. Endow W with linear coordinates (q1, p1, . . . , qn, pn), and with the standard

symplectic structure ω = dp ∧ dq descending from R
2n. For a finite non-empty

collection F of functions in C∞
c (W ), we define the space

LF :=
{∑

i

ci Φ
∗
i fi | ci ∈ R, Φi ∈ Hamc(W,ω), fi ∈ F , and #{i | ci 6= 0} <∞

}

We equip LF with the norm

‖f‖LF
:= inf

∑
|ci|,

where the infimum is taken over all the representations f =
∑
ci Φ

∗
i fi as above.

Definition 3.1. For any compactly supported function f ∈ C∞
c (W ), let

‖f‖F ,max = inf
{
lim inf
i→∞

‖fi‖LF

}
, (3.1)

where the infimum is taken over all subsequences {fi} in LF which converge to f in

the C∞-topology. If such sequence do not exists, we set ‖f‖F ,max ≡ +∞.

Remark 3.2. It follows from the definition above that ‖ · ‖F ,max is homogeneous,

Hamc(W,ω)-invariant, and satisfies the triangle inequality4. Moreover, let {fk} be a

sequence of smooth functions that converge in the C∞-topology to f , and such that

for every k > 1 one has ‖fk‖F ,max 6 C for some constant C. Then ‖f‖F ,max 6 C.

The fact that ‖ · ‖F ,max is non-degenerate (i.e., ‖f‖F ,max = 0 if and only if f = 0)

follows from the next lemma.

Lemma 3.3. Let F ⊂ C∞
c (W ) be a non-empty finite collection of smooth compactly

supported functions in W . Then, any Hamc(W,ω)-invariant norm ‖ · ‖ on C∞
c (W )

which is continuous in the C∞-topology, satisfies ‖ · ‖ 6 C‖ · ‖F ,max for some absolute

constant C.

Proof of Lemma 3.3. Let C = max{‖g‖; g ∈ F}. For any f =
∑
ci Φ

∗
i fi ∈ LF ,

one has:

‖f‖ ≤
∑

|ci|‖Φ
∗
i fi‖ ≤ C

∑
|ci| ≤ C‖f‖F ,max (3.2)

The lemma now follows from combining (3.2 ), definition (3.1 ), and the fact that the

norm ‖ · ‖ is assumed to be continuous in the C∞-topology.

4When ‖ · ‖F ,max ≡ +∞, these statements are trivially true.
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The following theorem, which is a “local version” of Theorem 1.3, shows that

for a suitable choice of a collection F , the subspace LF ⊂ C∞
c (W ) is dense in the

C∞-topology, and moreover, that the norm ‖ · ‖F , max on C∞
c (W ) is dominated from

above by the ‖ · ‖∞-norm.

Theorem 3.4. There is a finite collection F ⊂ C∞
c (W ), such that ‖ · ‖F ,max is a

genuine norm on C∞
c (W ), and ‖ · ‖F ,max ≤ C ‖ · ‖∞ for some absolute constant C.

The remainder of this section is devoted to the proof of Theorem 3.4, which we

split into two separate cases:

3.1 Theorem 3.4 - the two-dimensional case

We assume that n = 1, and hence W = (−L, L) × (−L, L). We set z = x + iy,

where {x, y} are local coordinates on W , and denote by Da = {|z| ≤ a} the disc with

radius a centered at the origin, and by Da,A = {a ≤ |z| ≤ A} the annulus with radii

a, A. The proof of Theorem 3.4 in the two-dimensional case follows from the next

two propositions, the proof of which we postpone to Subsections 3.1.1 and 3.1.2.

Proposition 3.5. There are positive constants a, A, C such that a < A < L; a smooth

radial function f1 with supp(f1) = DA; and an integer number N0 ∈ N, such that every

f ∈ C∞
c (W ) with ‖f‖∞ 6 1 can be decomposed as

f =

N0∑

j=1

ǫj Φ
∗
jgj,

where Φj ∈ Hamc(W,ω), ǫj ∈ {−1, 1}, and gj are smooth radial functions that satisfy:

supp(gj) = DA, gj ≡ f1 on Da, and ‖gj‖∞ 6 C (3.1.3)

Proposition 3.6. Let 0 < a < A be positive numbers. Then there exists a smooth

function Fa,A : R2 → R with supp(Fa,A) ⊂ DA, such that the following holds: for

every smooth radial function f : R2 → R, that satisfies

‖f‖∞ 6 1, supp(f) ⊂ Da,A, and

∫

R2

fω = 0, (3.1.4)

there exists an area-preserving diffeomorphism Φ : R2 → R
2, with supp(Φ) ⊂ Da,A,

and such that: ∫

Dr

Φ∗Fa,A ω =

∫

Dr

fω, for any r > 0

We are now in a position to prove Theorem 3.4 in the two-dimensional case.
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Proof of Theorem 3.4 (the 2-dimensional case): Let f ∈ C∞
c (W ) with ‖f‖∞ 6 1.

It follows from Proposition 3.5 above that there are positive constants a, A, C, an

integer N0, and a smooth radial function f1 with supp(f1) = DA, such that f can be

written as

f =

N0∑

j=1

ǫj Φ
∗
jgj,

where Φj ∈ Hamc(W,ω), ǫj ∈ {−1, 1}, and {gj} are smooth radial functions that

satisfy (3.1.3 ). Next, let f2 be a smooth radial function with supp(f2) = Da,A such

that
∫
W 2 f2 ω = 1. Moreover, let f0 = Fa,A be the function provided by Proposition 3.6

above. We consider the function

hj := gj − f1 − cjf2, where cj =

∫

W

(gj − f1)ω

Note that there exists a constant C ′ such that ‖hj‖∞ ≤ C ′. Indeed:

‖hj‖∞ ≤ C + ‖f1‖∞ + |cj|‖f2‖∞ ≤ C + ‖f1‖∞ + ‖f2‖∞
(
π CA2 +

∫

W

|f1|ω
)

From Proposition 3.6 it follows that there are area-preserving diffeomorphisms Φ̃j

with supp(Φ̃j) ⊂ Da,A, such that for any r > 0 one has

∫

Dr

(Φ̃∗
j f0)ω =

1

C ′

∫

Dr

hj ω (3.1.5)

To complete the proof of the theorem, we shall need the following technical lemma:

Lemma 3.7. Let f ∈ C∞
c (D) be a compactly supported function in a disk D. Then

1

N

N∑

i=1

f(ze
2πi
N )

N→∞
−−−→

1

2π

∫ 2π

0

f(zeiθ) dθ, in the C∞ topology

Postponing the proof of Lemma 3.7, we first finish the proof of the theorem.

Consider a compactly supported Hamiltonian isotopy TA
θ : W → W , where θ ∈ R,

and such that TA
θ (z) = eiθz in DA. From Lemma 3.7 and (3.1.5 ) it follows that:

C ′

N

N∑

k=1

(TA
2πk
N

)∗Φ̃∗
j f0

N→∞
−−−→ hj, in the C∞ topology (3.1.6)

We set F = {f0, f1, f2}. From (3.1.6 ) and Remark 3.2 it follows that ‖hj‖F ,max ≤ C ′.

Moreover, by definition one has: ‖f1‖F ,max, ‖f2‖F ,max ≤ 1. This implies that

‖gj‖F ,max ≤ C ′′,

10



where C ′′ is an absolute constant given by:

C ′′ = C ′ + 1 + πCA2 +

∫

W

|f1|ω

Thus, we conclude that ‖f‖F ,max ≤ N0C
′′. This completes the proof of the theorem.

Proof of Lemma 3.7. We shall prove the convergence

1

N

N∑

i=1

f(ze
2πi
N )

N→∞
−−−→

1

2π

∫ 2π

0

f(zeiθ) dθ

in Ck
c (D), for any k ∈ N. Note that the operators PN (f) =

1
N

∑N
i=1 f(ze

2πi
N ), defined

on the space Ck
c (D), have a bounded operator norm which is independent on N .

Therefore, it is enough to check that

PNf
N→∞
−−−→

1

2π

∫ 2π

0

f(zeiθ) dθ,

in Ck
c (D) only on some dense subspace. We choose this subspace to be consists of all

the finite sums:

sm(z) =
m∑

l=0

ul(r) cos(lθ) + vl(r) sin(lθ),

where ul and vl are smooth radial functions supported in the disk D. Note that for

N > m one has

PNsm(z) = u0(r) =
1

2π

∫ 2π

0

sm(ze
iθ) dθ,

and hence the statement of the lemma is satisfied in a trivial way. The proof of the

lemma is now complete.

We now return to complete the proof of Proposition 3.5 and Proposition 3.6.

3.1.1 Proof of Proposition 3.5

For the sake of clarity, we fragment the proof of the proposition in several steps:

Step I: We choose a = L
4
, A = L

2
. The area of the sector

{z ∈ W | a < |z| < A ; 0 < Arg z <
π

2
}

equals to
π

4

(
L2

4
−
L2

16

)
=

3π

64
L2 >

L2

8
=
Area(W )

32

11



Using a smooth partition of unity, one can decompose f as f =
∑33

k=1 fk, where the

support of each fk lies in an open sub-rectangle of the square W of area Area(W )
32

,

and ‖fk‖∞ ≤ 1. Next, we take compactly supported area-preserving diffeomorphisms

Φ̃k : W →W , such that fk = Φ̃∗
kf

′
k, for k = 1, . . . , 33, and supp(f ′

k) ⊂ (0, L
4
)× (0, L

2
).

Denote L1 =
L
4
and L2 =

L
2
. From the above we conclude that it is enough to restrict

ourselves to the case where supp(f) ⊂ (0, L1)×(0, L2). Indeed, if the proposition holds

for such functions, then by replacing N0 with 33N0, it will hold for any compactly

supported function f ∈ C∞
c (W ).

Step II: Following Step I, we assume that supp(f) ⊂ (0, L1) × (0, L2). Next, we

apply the following lemma to the function f .

Lemma 3.8. Let R = [0, L1] × [0, L2] ⊂ R
2 be a rectangle, and let f : R2 → R

be a smooth function with supp(f) ⊂ int(R), and ‖f‖∞ 6 1. Then there exists a

decomposition f =
∑8

i=1 fi, and compactly supported diffeomorphisms Ψi : R → R,

i = 1, 2, ..., 8, such that the functions gi := Ψ∗
i fi satisfy | ∂

∂x
gi| 6

12
L1
.

The proof of Lemma 3.8 will be given in Subsection 3.1.3.

Remark 3.9. Analogously to Step I, Lemma 3.8 reduces the proposition to the

case where supp(f) ⊂ (0, L1)× (0, L2), and moreover that there is a diffeomorphism

Ψ :W →W with supp(Ψ) ⊂ (0, L1)× (0, L2), such that g = Ψ∗f satisfies | ∂
∂x
g| 6 12

L1
.

Indeed, the general case would follow by replacing N0 with 8 · 33 ·N0 = 264N0. Thus,

we assume in what follows the existence of f, g and Ψ as above.

Step III: Denote by R the rectangle [0, L1]× [0, L2]. From the fact that

Area(R) < Area({z ∈ W | a < |z| < A ; 0 < Arg z <
π

2
}),

one can easily find an area preserving diffeomorphism Φ : W →W with

Φ(R) = {z ∈ W | a < |z| < A1 ; 0 < Arg z <
π

2
},

for an appropriate a < A1 < A; and such that on R, the diffeomorphism Φ takes

the form Φ(x+ iy) = r1(x)e
θ1(y), where r1(x) is a monotone increasing function. Let

C1 = minx∈[0,L1] r
′
1(x) > 0, and define h = (Φ−1)∗g. Note that one can bound the

radial derivative of h by:

max |
∂

∂r
h| ≤

1

C1

max |
∂

∂x
g| ≤

12

L1C1

Next, we set C2 =
12

L1C1
, and fix a smooth radial function f1 such that

supp(f1) ⊂ DA,
∂
∂r
f1(z) < −C2 for z ∈ Da,A1 ,

∂
∂r
f1(z) < 0 for z ∈ int(DA) \ {0},

12



and such that the point z = 0 is a non-degenerate maximum for the function f1. We

denote H = h+ f1(z), and observe that H satisfies:

supp(H) ⊂ DA,
∂
∂r
H < 0 in int(DA) \ {0}, H(z) ≡ f1(z) in Da ∪DA1,A,

and that the point z = 0 is a unique non-degenerate critical point of H , which is

a maximum point. Consider the gradient flow of H . By a standard Morse theory

argument one can find a diffeomorphism Υ : W → W , with supp(Υ) ⊂ Da,A, and

such that K := Υ∗H is a radial function. Finally, we have

f = (Ψ−1)∗g = (Ψ−1)∗Φ∗h = (Ψ−1)∗Φ∗H − (Ψ−1)∗Φ∗f1

= (Ψ−1)∗Φ∗(Υ−1)∗K − (Ψ−1)∗Φ∗f1.

Note, that for z ∈ W \Da,A, one has

ΨΦ−1Υ(z) = ΨΦ−1(z) = Φ−1(z)

Indeed, this follows from the fact that supp(Ψ) ⊂ R ⊂ Φ−1(Da,A), and that Υ is the

identity on the complement W \Da,A. Thus, we conclude that

(ΨΦ−1Υ)∗ω = (ΨΦ−1)∗ω = ω, on the complement W \Da,A

Next, let Sr = {z ∈ W | |z| = r}. We shall need the following lemma:

Lemma 3.10. Let ω′ be a symplectic form on W which coincides with the standard

symplectic form ω on the complement W \Da,A, and such that
∫
W
ω′ =

∫
W
ω. Then,

there exists a diffeomorphism Λ : W → W supported in Da,A, such that for every

a < r < A, one has Λ(Sr) = SR, for some a < R < A, and such that Λ∗ω = ω′.

Proof of Lemma 3.10. Consider the function S : [0, L) → [0,∞), defined by

S(r) =
∫
Dr
ω′. Note that S is a smooth function, and that S(r) = πr2 for every

r ∈ [0, a] ∪ [A,L). Define a diffeomorphism ∆1 :W →W , supported in Da,A, by

∆1(r, θ) =

(√
S(r)

π
, θ

)
, for r ∈ [0, L),

and extend it by the identity diffeomorphism to the wholeW . Denote ω′′ = (∆−1
1 )∗ω′,

and note that
∫
Dr
ω′′ = πr2 for r 6 A, and ω′′ = ω′ = ω on W \ Da,A. Next, we

explicitly construct a diffeomorphism ∆2 : W → W supported in Da,A, such that

ω′′ = ∆∗
2ω, and for 0 < r < L, it takes the form ∆2(r, θ) = (r, F (r, θ)), for some

smooth map F : (0, L)× S1 → S1. To this end, note that ω′′ = Gω for some positive

function G :W → (0,∞), such that G = 1 on W \Da,A. Moreover,

πr2 =

∫

Dr

ω′′ =

∫

Dr

Gω, for all 0 < r < L

13



After differentiating this equality we obtain

∫ 2π

0

G(r, θ) dθ = 2π, for every 0 < r < L (3.1.7)

On the other hand, we require ∆2 to satisfy:

∆∗
2ω = rFθ(r, θ)dr ∧ dθ = Fθ(r, θ)ω, for every r ∈ (0, L)

Thus, the condition ω′′ = ∆∗
2ω is equivalent to Fθ(r, θ) = G(r, θ), for r ∈ (0, L). We

define

F (r, θ) =

∫ θ

0

G(r, s) ds, for r ∈ (0, L), θ ∈ [0, 2π) (3.1.8)

In light of (3.1.7 ), we obtain a smooth map F : (0, L) × S1 → S1. Moreover, since

G = 1 on W \ Da,A, one has F (r, θ) = θ for r ∈ (0, a] ∩ [A,L). Therefore, defining

∆2(r, θ) = (r, F (r, θ)) for 0 < r < L, where F is given in (3.1.8 ), we obtain a

diffeomorphism of DL supported in Da,A. We extend ∆2 to the whole W by the

identity diffeomorphism. Note that ω′′ = ∆∗
2ω, and hence ω′ = ∆∗

1ω
′′ = ∆∗

1∆
∗
2ω.

Denoting Λ = ∆2∆1, we conclude the statement of the lemma.

We return now to the proof of the Proposition. By applying Lemma 3.10 to the

forms ω′ = (ΨΦ−1Υ)∗ω and ω′′ = (ΨΦ−1)∗ω, we obtain two diffeomorphisms Λ′,Λ′′

such that Λ′∗ω = (ΨΦ−1Υ)∗ω, and Λ′′∗ω = (ΨΦ−1)∗ω. Denote Φ′ := Λ′Υ−1ΦΨ−1,

Φ′′ := Λ′′ΦΨ−1. Note that Φ′,Φ′′ ∈ Hamc(W,ω), and that

f = (Ψ−1)∗Φ∗(Υ−1)∗K − (Ψ−1)∗Φ∗f1 = (Ψ−1)∗Φ∗(Υ−1)∗(Λ′)∗K − (Ψ−1)∗Φ∗(Λ′′)∗f1

= (Φ′)∗K − (Φ′′)∗f1

The decomposition f = (Φ′)∗K − (Φ′′)∗f1 shows that the proposition holds for f as

in Remark 3.9, with only two summands in the decomposition, and with C = ‖f1‖∞.

Therefore, we obtain the conclusion of Proposition 3.5 with N0 = 264 · 2 = 528.

3.1.2 Proof of Proposition 3.6

We start with a construction of a function F , such that for any smooth radial function

f : R2 → R, satisfying the conditions (3.1.4 ) one can find a diffeomorphism (not

necessarily area-preserving) Ψ : R2 → R
2 supported in DA such that for any r > 0:

∫

Dr

Ψ∗ω =

∫

Dr

ω = πr2, (3.1.9)

and, ∫

Dr

Ψ∗(Fω) =

∫

Dr

fω. (3.1.10)
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We shall take the function F to be of the form F (r, θ) = φ(r)ψ(θ), where φ, ψ are

smooth functions. We assume that φ(r) = 0, for small enough r, and that φ(r) = 1 for

r > a. The function ψ is assumed to satisfy
∫ 2π

0
ψ(θ)dθ = 0, and would be determined

in the sequel. Moreover,





R(r, θ) =
√
u(r)µ(θ) + v(r)ν(θ),

u(r) = v(r) = r2 for r 6 a or r > A,

u′(r), v′(r) > 0 for r > 0,

µ(θ), ν(θ) > 0,

µ(θ) + ν(θ) = 1

(3.1.11)

Here, µ, ν, u and v, are smooth functions that would be determined explicitly in

the sequel. Note that conditions (3.1.11 ) ensure that Ψ is a diffeomorphism of R2

supported in Da,A. Next, we compute

Ψ∗ω = R(r, θ)R′
r(r, θ)dr ∧ dθ =

1

2

(
u′(r)µ(θ) + v′(r)ν(θ)

)
dr ∧ dθ,

and

Ψ∗(Fω) = F (R(r, θ), θ)R(r, θ)R′
r(r, θ)dr ∧ dθ

=
1

2
φ(R(r, θ))ψ(θ)

(
u′(r)µ(θ) + v′(r)ν(θ)

)
dr ∧ dθ.

After differentiating by r and some simplification, conditions (3.1.9 ), (3.1.10 ) become

u′(r)

∫ 2π

0

µ(θ)dθ + v′(r)

∫ 2π

0

ν(θ)dθ = 4πr (3.1.12)

and,

u′(r)

∫ 2π

0

φ(R(r, θ))ψ(θ)µ(θ)dθ+ v′(r)

∫ 2π

0

φ(R(r, θ))ψ(θ)ν(θ)dθ = 4πrf(r) (3.1.13)

Note that when r > a, one has R(r, θ) > a, and condition (3.1.13 ) turns to:

u′(r)

∫ 2π

0

ψ(θ)µ(θ)dθ + v′(r)

∫ 2π

0

ψ(θ)ν(θ)dθ = 4πrf(r) (3.1.14)

Next, we choose the functions ψ, µ, ν to be any smooth functions satisfying:




∫ 2π

0
ψ(θ)µ(θ)dθ = 2π,

∫ 2π

0
ψ(θ)ν(θ)dθ = −2π,

∫ 2π

0
µ(θ)dθ =

∫ 2π

0
ν(θ)dθ = π,

µ(θ), ν(θ) > 0,

µ(θ) + ν(θ) = 1

(3.1.15)
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Note that this choice of ψ, µ, ν do not depend on the function f . Moreover, with the

above choice, for r > a, equations (3.1.12 ) and (3.1.14 ) become

{
u′(r) + v′(r) = 4r,

u′(r)− v′(r) = 2rf(r)
(3.1.16)

Next, we consider equations (3.1.16 ) for every r > 0, with initial conditions u(0) =

v(0) = 0. There is no difficulty in checking that the solutions of this system are

{
u(r) =

∫ r

0
s(2 + f(s))ds,

v(r) =
∫ r

0
s(2− f(s))ds

(3.1.17)

One can easily check, that as required, the function u and v satisfy

{
u′(r), v′(r) > 0, for r > 0,

u(r) = v(r) = r2, for r 6 a and r > A
(3.1.18)

Moreover, by definition, they satisfy equations (3.1.12 ) and (3.1.13 ) when r > a.

Let us now show that these equations hold for r < a as well. First, note that

equation (3.1.12 ) clearly holds when r < a. Second, by defintion, for r < a one has

u(r) = v(r) = r2, and R(r, θ) = r. Hence, we compute

u′(r)

∫ 2π

0

φ(R(r, θ))ψ(θ)µ(θ)dθ + v′(r)

∫ 2π

0

φ(R(r, θ))ψ(θ)ν(θ)dθ

= u′(r)φ(r)

∫ 2π

0

ψ(θ)µ(θ)dθ + v′(r)φ(r)

∫ 2π

0

ψ(θ)ν(θ)dθ

= 2rφ(r)
(∫ 2π

0

ψ(θ)µ(θ)dθ +

∫ 2π

0

ψ(θ)ν(θ)dθ
)

= 2rφ(r)(2π − 2π) = 0

Combining this with the fact that supp(f) ⊂ Da,A, we obtain that the functions u

and v, satisfy (3.1.12 ) and (3.1.13 ) for all r > 0. We conclude that the resulting

diffeomorphism Ψ satisfies conditions (3.1.9 ) and (3.1.10 ). Furthermore, since the

diffeomorphism Ψ satisfies (3.1.9 ), and supp(Ψ) ⊂ Da,A, by using a similar arguments

as in the proof of Lemma (3.1.5) from [16], we conclude that there exists an area-

preserving diffeomorphism Φ : R2 → R
2, with supp(Φ) ∈ Da,A, such that Φ(D(r)) =

Ψ(D(r)) for any r > 0. Thus, we obtain

∫

Dr

(Φ∗F )ω =

∫

Dr

Φ∗(Fω) =

∫

Φ(Dr)

Fω =

∫

Ψ(Dr)

Fω =

∫

Dr

Ψ∗(Fω) =

∫

Dr

fω,

and the proof of the Proposition in now complete.
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3.1.3 Technical Lemmata

In this subsection we prove Lemma 3.8 which was used in the proof of Proposition 3.5.

We start with the following preparation:

Lemma 3.11. There is a smooth function φ : R → R with the following properties:

1. supp(φ) = [0, 3],

2. φ(t) > 0, for t ∈ (0, 3),

3. φ′(t) > 0, for t ∈ (0, 3/2), and φ′(t) < 0 for t ∈ (3/2, 3),

4. sup
t∈(0,3)

(
φ′(t)
φ(t)

)′
= sup

t∈(0,3)

φ′′(t)φ(t)−φ′(t)2

φ(t)2
< 0,

5.
∑

n∈Z φ(t+ n) ≡ 1

Proof of Lemma 3.11. Consider first the smooth function f : R → R, defined by

f(x) =

{
e−

2
x , for x > 0,

0, for x 6 0

Note that for x > 0, one has

f ′′(x) =
4

x4
e−

2
x (1− x),

and hence f ′′(x) > 0 for x ∈ (0, 1), and f ′′(0) = f ′′(1) = 0. Note moreover that

f ′′(x)f(x)− f ′(x)2 =
(f ′(x)

f(x)

)′

f(x)2 = −
4

x3
e−

4
x < 0, for x ∈ (0,+∞)

We approximate, in the C0-norm, the function f ′′|[0,1] arbitrarily close by a smooth

positive function h : [0, 1] → [0,∞), such that h(x) = f ′′(x) for x ∈ [0, 1
2
], and such

that h(x) = 0 near x = 1. Next, consider the smooth function F : [0, 1] → R, that is

uniquely determined by the requirements F ′′(x) = h(x), and F (0) = F ′(0) = 0. Note

that the function F is arbitrary close, in the C2-topology, to f |[0,1], and F (x) = f(x)

for x ∈ [0, 1
2
]. Moreover, the requirement that h is C0-sufficiently close to f ′′|[0,1]

ensures that F ′′(x)F (x) − F ′(x)2 < 0, for every x ∈ (0, 1). We further observe that

by definition, F ′′(x) + F ′′(1 − x) > 0 for all x ∈ (0, 1), and that F (x) is a linear

function near x = 1. Finally, we define φ : R → R as follows:

φ(x) =





F (x)
2F (1)

for x ∈ [0, 1],

2F (1)−F (x−1)−F (2−x)
2F (1)

for x ∈ (1, 2],

F (3−x)
2F (1)

for x ∈ (2, 3],

0 for x /∈ [0, 3]
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It follows immediately from the definition that φ is a non-negative smooth function,

with supp(φ) = [0, 3]. Note moreover that φ(x) = φ(3− x), and that for x ∈ (1, 2):

(φ|(1,2))
′′(x) =

−F ′′(x− 1)− F ′′(2− x)

2F (1)
< 0 (3.1.19)

Combining this with the fact that φ′(3/2) = 0, we obtain that φ′(x) > 0 for x ∈

(1, 3/2), and φ′(x) < 0 for x ∈ (3/2, 3). Furthermore, from the definition of the

function F , it follows that φ′(x) > 0 for x ∈ (0, 1] and φ′(x) < 0 for x ∈ [2, 3). Thus,

we conclude that φ satisfies the first three requirements of the lemma. We next turn

to show that φ satisfies the forth one. Note that φ′′(x)φ(x)−φ′(x)2 < 0 for x ∈ (0, 3).

This follows from the analogous property of F for x ∈ (0, 1)∪ (2, 3); from (3.1.19 ) for

x ∈ (1, 2); and from the fact that φ′′(x0)φ(x0)− φ′(x0)
2 = −φ′(x0)

2 < 0 for x0 = 1, 2.

Moreover, from the definition of the function φ it follows that φ(x) ≃ e−
2
x for x

close to 0, and φ(x) ≃ e−
2

3−x for x close to 3, where ≃ means arbitrary close in the

C2-topology. Therefore, we obtain:

lim
x→0+

φ′′(x)φ(x)− φ′(x)2

φ(x)2
= lim

x→3−

φ′′(x)φ(x)− φ′(x)2

φ(x)2
= −∞.

From the above we conclude that:

sup
x∈(0,3)

φ′′(x)φ(x)− φ′(x)2

φ(x)2
< 0,

as required. Finally, there is no difficulty in checking that
∑

n∈Z φ(x + n) = 1. The

details of this last step are left to the reader.

Lemma 3.12. Let R = [α1, β1] × [α2, β2] ⊂ R
2 be a rectangle, and consider two

smooth non-negative functions u : [α1, β1] → R, and v : [α2, β2] → R, positive on

(α1, β1) and (α2, β2) respectively, such that u(x) = e
−1

x−α1 near α1; u(x) = e
−1

β1−x near

β1, v(y) = e
−1

y−α2 near α2; and v(y) = e
−1

β2−y near β2. Moreover, let φ(x) be the

function described in Lemma 3.11 above, and let F : R2 → R be any smooth function

that satisfies:

1. supp(F ) = R

2. F (x, y) > 0 for (x, y) ∈ int(R)

3. F (x, y) = u(x)v(y) near the boundary of R

Then there exists an ǫ0 > 0, such that for any 0 < ǫ < ǫ0, and a ∈ R, the following

holds: denote by G(x, y) = F (x, y)φ(x−a
ǫ
), and assume that G 6= 0 (this holds when

(α1, β1) ∩ (a, a + 3ǫ) 6= ∅). Moreover, set U = supp(G) = [a1, a2] × [α2, β2]. Then,
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there exists a smooth function c : [α2, β2] → (a1, a2), which is constant near α2, β2,

such that for any y ∈ (α2, β2) one has:

{
∂
∂x
G(x, y) > 0, for a1 < x < c(y),

∂
∂x
G(x, y) < 0, for c(y) < x < a2

Proof of Lemma 3.12. From the above assumptions it follows that there exists

α1 < γ1 < δ1 < β1, such that u(x) = e
−1

x−α1 for α1 < x < γ1, u(x) = e
−1

β1−x for

δ1 < x < β1, and F (x, y) = u(x)v(y) when x ∈ (α1, γ1] ∪ [δ1, β1). Pick some γ′1, δ
′
1,

such that α1 < γ′1 < γ1 < δ1 < δ′1 < β1, and denote ǫ1 = min{
γ1−γ′

1

3
,
δ′1−δ1

3
}. Next, take

any 0 < ǫ < ǫ1, and any a ∈ R, and consider the function G(x, y) = F (x, y)φ(x−a
ǫ
).

Case I: Assume a ∈ [γ′1, δ1]. Then, one has γ′1 6 a < a + 3ǫ 6 δ′1, and therefore

supp(G) = [a, a+ 3ǫ]× [α2, β2]. Fix some y0 ∈ (α2, β2). Our goal is to show that for

sufficiently small ǫ (which is independent of y0), there exists a value c(y0) ∈ (a, a+3ǫ),

such that ∂
∂x
G(x, y0) > 0, for a < x < c(y0), and

∂
∂x
G(x, y0) < 0, for c(y0) < x < a+3ǫ.

For this end, we compute:

∂
∂x
G(x, y0)

G(x, y0)
=

∂
∂x
F (x, y0)

F (x, y0)
+

1

ǫ

φ′(x−a
ǫ
)

φ(x−a
ǫ
)
.

Note that, the function x 7→ G(x, y0) is a positive function, supported in [a, a + 3ǫ].

Thus,
∂
∂x

G(x,y0)

G(x,y0)
= 0 at least at one point x ∈ (a, a+ 3ǫ) (e.g., at the maximum point

of x 7→ G(x, y0)). Let us show next that:

∂

∂x

∂
∂x
G(x, y0)

G(x, y0)
< 0, for all x ∈ (a, a+ 3ǫ) (3.1.20)

We start by claiming that ∂
∂x

∂
∂x

F (x,y)

F (x,y)
is bounded on [γ′1, δ

′
1] × (α2, β2). Indeed, from

the assumptions of the lemma it follows that F (x, y) = u(x)v(y) near the boundary

of R, and therefore there exist α2 < γ2 < δ2 < β2, such that F (x, y) = u(x)v(y) for

y ∈ [α2, γ2] ∪ [δ2, β2]. Thus, for a point (x, y) near the boundary of R, one has

∂

∂x

∂
∂x
F (x, y)

F (x, y)
=

∂

∂x

u′(x)

u(x)
=
u′′(x)u(x)− u′(x)2

u(x)2
(3.1.21)

Restricting ourselves to the case where x ∈ [γ′1, δ
′
1] and y ∈ [α2, γ2] ∪ [δ2, β2], and by

noticing that u|(α1,β1) is strictly positive smooth function, we obtain that the function
∂
∂x

∂
∂x

F (x,y)

F (x,y)
is bounded on [γ′1, δ

′
1] × ((α2, γ2] ∪ [δ2, β2)). On the other hand, because

of compactness, the function ∂
∂x

∂
∂x

F (x,y)

F (x,y)
is bounded on [γ′1, δ

′
1] × [γ2, δ2]. Hence, we

conclude that ∂
∂x

∂
∂x

F (x,y)

F (x,y)
is bounded on [γ′1, δ

′
1]× (α2, β2). Next, note that

∂

∂x

1

ǫ

φ′(x−a
ǫ
)

φ(x−a
ǫ
)
=

1

ǫ2
φ′′(x−a

ǫ
)φ(x−a

ǫ
)− φ′(x−a

ǫ
)2

φ(x−a
ǫ
)2

(3.1.22)
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From Lemma 3.11 it follows that

sup
t∈(0,3)

φ′′(t)φ(t)− φ′(t)2

φ(t)2
< 0, (3.1.23)

and hence (3.1.22 ) can be chosen to be arbitrarily negative. As a conclusion, we

obtain that for sufficiently small ǫ, say 0 < ǫ < ǫ2, one has

∂

∂x

∂
∂x
G(x, y)

G(x, y)
< 0, for every (x, y) ∈ supp(G) = [a, a+ 3ǫ]× (α2, β2) (3.1.24)

Moreover, for any y ∈ (α2, β2), there exists therefore a unique x := c(y) ∈ (a, a+3ǫ),

such that
∂
∂x

G(x,y)

G(x,y)
= 0. It follows from (3.1.24 ) and the implicit function theorem,

that the function y 7→ c(y) is smooth for y ∈ (α2, β2). Moreover, since
∂
∂x

G(x,y)

G(x,y)
is

independent of y, when y is close to α2 or to β2, it follows that y 7→ c(y) is constant

near the endpoints α2, β2. This completes the proof of the Lemma in Case I.

Case II: Assume that a < γ′1 or a > δ1. Here we have [a, a+3ǫ] ⊂ (−∞, γ1)∪(δ1,+∞).

Therefore, the function
∂
∂x
F (x, y)

F (x, y)
=
u′(x)

u(x)

is independent of y, as well as

∂
∂x
G(x, y)

G(x, y)
=
u′(x)

u(x)
+

1

ǫ

φ′(x−a
ǫ
)

φ(x−a
ǫ
)
,

for (x, y) ∈ supp(G). Also, for (x, y) ∈ supp(G) one has

∂

∂x

∂
∂x
F (x, y)

F (x, y)
=

∂

∂x

u′(x)

u(x)
=
u′′(x)u(x)− u′(x)2

u(x)2

Thus, since u(x) = e
−1

x−α1 for x ∈ (α1, γ1), and u(x) = e
−1

β1−x for x ∈ (δ1, β1), we obtain

∂

∂x

∂
∂x
F (x, y)

F (x, y)
< 0, for (x, y) ∈ supp(G)

As in Case I, by combining (3.1.22 ) and (3.1.23 ), one has

∂

∂x

1

ǫ

φ′(x−a
ǫ
)

φ(x−a
ǫ
)
< 0, for (x, y) ∈ supp(G)

Therefore, we conclude that

∂

∂x

∂
∂x
G(x, y)

G(x, y)
< 0, for (x, y) ∈ supp(G)
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As in the previous case, since x → G(x, y0) is positive in the interior of its support

supp(G) = [a1, a2] × [α2, β2], for each fixed y0 ∈ (α2, β2) there exists x ∈ (a1, a2)

such that ∂
∂x
G(x, y0) = 0. Therefore for each fixed y0 ∈ (α2, β2), there is a unique

x = c(y0) ∈ (a1, a2), such that
∂
∂x

G(x,y)

G(x,y)
= 0. Moreover, since the function

∂
∂x

G(x,y)

G(x,y)

is independent of y for (x, y) ∈ supp(G), we conclude that the function y 7→ c(y) is

constant on (α2, β2). This completes the proof of lemma 3.12.

Lemma 3.13. In the same setting as in Lemma 3.12, for any open neighborhood V of

U = supp(G) = [a1, a2]× [α2, β2], there exists a compactly supported diffeomorphism

Φ : V → V , such that H = Φ∗G satisfies | ∂
∂x
H| 6 3‖G‖∞

a2−a1
, and supp(H) = supp(G).

Proof of Lemma 3.13. We divide the proof of the lemma into two steps:

Step I: Let V be an open neighborhood of U = supp(G) = [a1, a2]× [α2, β2]. Take

α̃2 < α2 < β2 < β̃2, such that [a1, a2]× [α̃2, β̃2] ⊂ V . Moreover, take ã1, ã2 such that

a1 < ã1 < min
[α2,β2]

c(y) ≤ max
[α2,β2]

c(y) < ã2 < a2,

and,

ã1 <
a1 + a2

2
< ã2.

One can easily find a smooth family of diffeomorphisms f t : (a1, a2) → (a1, a2),

t ∈ (ã1, ã2), such that: 



supp(f t) ⊂ [ã1, ã2],

f t(a1+a2
2

) = t,

f
a1+a2

2 = 1l(a1,a2)

We extend the function c(y) to a smooth function on the interval (α̃2, β̃2), such that

c(y) = a1+a2
2

, for y close enough to the points α̃2, β̃2. Next, define a diffeomorphism

Ψ1 : (a1, a2)× (α̃2, β̃2) → (a1, a2)× (α̃2, β̃2)

by the requirement:

Ψ1(x, y) = (f c(y)(x), y).

It is not hard to check that the diffeomorphism Ψ1 is the identity near the boundary

of the rectangle (a1, a2) × (α̃2, β̃2), and therefore one can extend it by the identity,

allowing ourselves a slight abuse of notation, to a diffeomorphism Ψ1 : V → V .

Denote G1 = Ψ∗
1G. It follows from the definition of Ψ1 that for y ∈ (α2, β2), one has:

{
∂
∂x
G1(x, y) > 0, for a1 < x < a1+a2

2
,

∂
∂x
G1(x, y) < 0, for a1+a2

2
< x < a2,

(3.1.25)
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and moreover that supp(G1) = [a1, a2] × [α2, β2], and G1(x, y) = u1(x)v1(y) for x ∈

[a1, a2] and y being near α2 or β2, where u1(x) = (f c(α2))∗(u(x)φ(x−a
ǫ
)), v1(x) = v(x).

Step II:

Let 0 < ǫ < a2−a1
10

, and consider three families of smooth positive functions χǫ
j :

[a1, a2] → [0, 1], where j = 1, 2, 3, such that the following holds:

χǫ
1(x) =

{
1, for x ∈ [a1, a1 + ǫ] ∪ [a1+a2

2
− ǫ, a1+a2

2
+ ǫ] ∪ [a2 − ǫ, a2],

0, for x ∈ [a1 + 2ǫ, a1+a2
2

− 2ǫ] ∪ [a1+a2
2

+ 2ǫ, a2 − 2ǫ],

χǫ
2(x) =

{
0, for x ∈ [a1, a1 + ǫ] ∪ [a1+a2

2
− ǫ, a2],

1, for x ∈ [a1 + 2ǫ, a1+a2
2

− 2ǫ],

χǫ
3(x) =

{
0, for x ∈ [a1,

a1+a2
2

+ ǫ] ∪ [a2 − ǫ, a2],

1, for x ∈ [a1+a2
2

+ 2ǫ, a2 − 2ǫ],

and moreover, {
χǫ
2(x) > 0, for x ∈ (a1 + ǫ, a1+a2

2
− ǫ),

χǫ
3(x) > 0, for x ∈ (a1+a2

2
+ ǫ, a2 − ǫ).

Next, denote by C∞
0 ([a1, a2]) the set of smooth functions [a1, a2] → R, such that

the derivatives of any order (including zero) vanish at the boundary points a1 and a2.

Fix g ∈ C∞
0 ([a1, a2]), and define hǫ(x) by:

hǫ(x) = g′(x)χǫ
1(x) + Aχǫ

2(x)−Bχǫ
3(x),

where A and B are two constants given by:

A =
g(a1+a2

2
)−

∫ a1+a2
2

a1
g′(x)χǫ

1(x) dx
∫ a1+a2

2
a1

χǫ
2(x) dx

,

and

B =
g(a1+a2

2
) +

∫ a2
a1+a2

2

g′(x)χǫ
1(x) dx∫ a2

a1+a2
2

χǫ
3(x) dx

.

Note that one has: ∫ a1+a2
2

a1

hǫ(x)dx = g(
a1 + a2

2
),

and ∫ a2

a1+a2
2

hǫ(x)dx = −g(
a1 + a2

2
).
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Let gǫ : [a1, a2] → R be the unique function such that g′ǫ(x) = hǫ(x), and gǫ(a1) = 0.

It follows from the definition that

gǫ(x) = g(x), for x ∈ [a1, a1 + ǫ] ∪ [
a1 + a2

2
− ǫ,

a1 + a2
2

+ ǫ] ∪ [a2 − ǫ, a2],

and in particular, gǫ ∈ C∞
0 ([a1, a2]). Note moreover that if g(x) satisfies g′(x) > 0 for

x ∈ (a1,
a1+a2

2
) and g′(x) < 0 for x ∈ (a1+a2

2
, a2), then so is gǫ(x) i.e., g′ǫ(x) > 0 for

x ∈ (a1,
a1+a2

2
) and g′ǫ(x) < 0 for x ∈ (a1+a2

2
, a2).

Next, we define a family of operators Lǫ : C∞
0 ([a1, a2]) → C∞

0 ([a1, a2]), by the

requirement that Lǫg = gǫ. It is not hard to check that Lǫ is linear, and continuous

in the C∞-topology. Moreover, let

Iǫ := [a1, a1 + 2ǫ] ∪ [
a1 + a2

2
− 2ǫ,

a1 + a2
2

+ 2ǫ] ∪ [a2 − 2ǫ, a2]

Then, from the definition of gǫ, and the fact that χǫ
2 and χ

ǫ
3 has disjoint support, one

has the following estimate:

max
[a1,a2]

|g′ǫ(x)| 6 max
x∈Iǫ

|g′(x)|+max{|A|, |B|}.

Furthermore, from the definition of A and B one has:

|A|, |B| 6
|g(a1+a2

2
)|+ 4ǫmaxx∈Iǫ |g

′(x)|
a2−a1

2
− 4ǫ

.

Therefore, we conclude that

max
[a1,a2]

|g′ǫ(x)| 6
|g(a1+a2

2
)|

a2−a1
2

− 4ǫ
+

(
1 +

4ǫ
a2−a1

2
− 4ǫ

)
max
x∈Iǫ

|g′(x)|. (3.1.26)

Next, define Hǫ : [a1, a2]× [α2, β2] → R by Hǫ(·, y) = LǫG1(·, y) for every y ∈ [α2, β2].

Note that Hǫ|[a1,a2]×[α2,β2] is a smooth function. Moreover, if ǫ > 0 is small enough,

then from (3.1.26 ) we conclude that

|
∂

∂x
Hǫ(x, y)| 6

3‖G1‖∞
a2 − a1

=
3‖G‖∞
a2 − a1

, for every (x, y) ∈ [a1, a2]× [α2, β2]

We fix such an ǫ, and set H := Hǫ. From the definition of H and (3.1.25 ) one has:

{
∂
∂x
H(x, y) > 0, for a1 < x < a1+a2

2
,

∂
∂x
H(x, y) < 0, for a1+a2

2
< x < a2,

(3.1.27)

for any y ∈ (α2, β2). Furthermore,

H(x, y) = G1(x, y) (3.1.28)

23



for x ∈ [a1, a1+ ǫ]∪ [a1+a2
2

− ǫ, a1+a2
2

+ ǫ]∪ [a2− ǫ, a2], and y ∈ (α2, β2). Note moreover

that since the operator Lǫ is linear, one has that H(x, y) = (Lǫu1)(x)v1(y) for any

x ∈ [a1, a2] and y being near the boundary points α2 or β2.

It follows from (3.1.27 ) and (3.1.28 ) above, that there is a unique diffeomorphism

Ψ2 : (a1, a2)× (α2, β2) → (a1, a2)× (α2, β2), of the form Ψ2(x, y) = (w(x, y), y), such

that

H|(a1,a2)×(α2,β2) = Ψ∗
2G1|(a1,a2)×(α2,β2),

and supp(Ψ) ⊂
(
[a1 + ǫ, a1+a2

2
− ǫ] ∪ [a1+a2

2
+ ǫ, a2 − ǫ]

)
× [α2, β2]. Moreover, we have

G1(x, y) = u1(x)v1(y), H(x, y) = (Lǫu1)(x)v1(y) for x ∈ [a1, a2] and y being near α2

or β2. From this we conclude that w(x, y) is independent of y, for y being close to

α2, β2. From Step I, we have α̃2 < α2 < β2 < β̃2, such that [a1, a2] × [α̃2, β̃2] ⊂ V .

One can easily extend the diffeomorphism Ψ2 to

Ψ2 : (a1, a2)× (α̃2, β̃2) → (a1, a2)× (α̃2, β̃2),

such that Ψ2 is the identity diffeomorphism near the boundary of (a1, a2)× (α̃2, β̃2).

Then we can extend Ψ2 by the identity to be a diffeomorphism Ψ2 : V → V . We have

H = Ψ∗
2G1.

Finally, denote Φ = Ψ1Ψ2 : V → V . The diffeomorphism Φ is compactly sup-

ported inside V , and H = Φ∗G satisfies

|
∂

∂x
H| 6

3‖G‖∞
a2 − a1

, and supp(H) = supp(G)

This completes the proof of the lemma.

We are finally in a position to prove Lemma 3.8.

Proof of Lemma 3.8. Let f : R2 → R be a smooth function with ‖f‖∞ 6 1, and

supp(f) ⊂ int(R). We fix some parameters αi, α
′
i, βi, β

′
i, where i = 1, 2, such that

0 < αi < α′
i < β ′

i < βi < Li, for i = 1, 2; β1 − α1 >
3
4
L1; and

supp(f) ⊂ int([α′
1, β

′
1]× [α′

2, β
′
2]) ⊂ int([α1, β1]× [α2, β2]) ⊂ int(R)

Moreover, we choose a smooth function u : [0, L1] → R, such that u(x) = e
−1

x−α1 near

α1, u(x) = e
−1

β1−x near β1, u(x) = 1 on [α′
1, β

′
1], and ‖u‖∞ = 1. Similarly, we take

v : [0, L2] → R, with v(y) = e
−1

y−α2 near α2, v(y) = e
−1

β2−y near β2, v(y) = 2 on [α′
2, β

′
2],

and ‖v‖∞ = 2. Next, we consider the decomposition f = F1 − F2, where

F1(x, y) = f(x, y) + u(x)v(y), and F2(x, y) = u(x)v(y)

We have ‖Fς(x, y)‖∞ 6 3 for ς ∈ {1, 2}. From Lemma 3.13 it follows that there is

ǫ0 > 0 such that for any 0 < ǫ < ǫ0, and any a ∈ R, the following holds: let Gς(x, y) =

24



Fς(x, y)φ(
x−a
ǫ
), where ς ∈ {1, 2} (we may and shall assume in what follows that

Gς 6= 0). Take V ς to be any open neighborhood of U ς := supp(Gς) = [aς1, a
ς
2]×[α2, β2].

Then, there is a compactly supported diffeomorphism Φς : V ς → V ς , such that

Hς = (Φς)∗Gς satisfies

∣∣ ∂
∂x
Hς

∣∣ 6 9
aς2−aς1

, and supp(Hς) = supp(Gς) (3.1.29)

Fix 0 < ǫ < ǫ0 as above. For n ∈ Z and ς ∈ {1, 2} denote Gς,n = Fς(x, y)φ(
x−nǫ

ǫ
).

Note that Fς =
∑

n∈ZGς,n, and that only finitely many summands are not identically

zero. For i = 1, 2, 3, 4, let Kς,i =
∑

j∈ZGς,i+4j. Note moreover that the supports of all

the non-zero summands ofKς,i are pairwise disjoint, and Fς =
∑4

i=1Kς,i, and thus f =∑2
ς=1

∑4
i=1Kς,i. Next, we fix 1 6 i0 6 4. Consider Kς,i0 =

∑
j∈ZGς,i0+4j, and choose

pairwise disjoint open neighborhoods V ς
i0,j

⊃ supp(Gς,i0+4j) of those summands which

are not identically zero. Now, apply Lemma 3.13 to each element in the decomposition

Kς,i0 =
∑

j∈ZGς,i0+4j . We obtain that for any non-zero summand Gς,i0+4j , there is

a compactly supported diffeomorphism Φς
i0,j

: V ς
i0,j

→ V ς
i0,j

, such that the function

H ς
i0,j

= (Φς
i0,j

)∗Gς,i0+4j satisfies

∣∣ ∂
∂x
H ς

i0,j

∣∣ 6 9

µ(πx(supp(Gς,i0+4j)))
, and supp(H ς

i0,j
) = supp(Gς,i0+4j) (3.1.30)

Here πx denotes the projection to the interval [0, L1], and µ is the Lebesgue measure.

Note that the supports {supp(Φς
i0,j

)} are mutually disjoint. We shall denote by Φ̃ς
i0

the composition of all the Φς
i0,j

’s for which Gς,i0+4j 6= 0. Moreover, we denote by Πς
i0,k

,

k = 1, 2, ...,Mi0 all the non-empty supports among {supp(Gς,i0+4j)}. Note that each

Πς
i0,k

is a rectangle contained in [α1, β1]× [α2, β2]. Consider a sequence of rectangles

Π̃ς
i0,k

:= [α1, β1]× [α2 + (2k − 1)
β2 − α2

2Mi0

, α2 + 2k
β2 − α2

2Mi0

]

It is not hard to check that there exists a diffeomorphism Ψς
i0

: R → R, such that

Ψς
i0
(Π̃ς

i0,k
) = Πς

i0,k
, and moreover that on each Π̃ς

i0,k
it coincides with a linear con-

traction on the directions of the axes, composed with a translation. As a result, for

kς,i0 := (Ψς
i0
)∗(Φ̃ς

i0
)∗Kς,i0, one has | ∂

∂x
kς,i0 | 6

9
β1−α1

< 12
L1
. The proof of Lemma 3.8 is

now complete.

3.2 Theorem 3.4 - the higher-dimensional case

The proof of Theorem 3.4 for arbitrary dimension relies on the 2-dimensional case,

and on the following proposition, the proof of which we postpone to Subsection 3.2.1.

Proposition 3.14. There is a finite family of functions F ⊂ C∞
c (W ), such that:
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(i) Any f ∈ C∞
c (W ) that can be represented as a product f(q, p) =

∏n

i=1 fi(qi, pi),

for some fi ∈ C∞
c (I2), satisfies that ‖f‖F ,max 6 C‖f‖∞, for some constant C.

(ii) For any f ∈ C∞
c (W ), one has ‖f‖F ,max 6 C‖f‖C2n+1, for some constant C.

Remark 3.15. In what follows, we fix F to be the collection of functions given by

Proposition 3.14 above. Moreover, in order to simplify the presentation, we shall use

x1 = q1, x2 = p1, ..., x2n−1 = qn, x2n = pn, as another notation for the coordinates of a

point x = (q1, p1, ..., q2n, p2n) in the 2n-dimensional cube W = (−L, L)2n.

Proof of Theorem 3.4 (the higher dimensional case). For simplicity, the proof of

the theorem is divided into two steps:

Step I (Decomposing the function): We consider a smooth function r : [−1, 1] → R,

satisfying:

r(t) =

{
1 for t ∈ [−1

3
, 1
3
],

0 for t ∈ [−1,−2
3
] ∪ [2

3
, 1],

and such that
∑

i∈Z r(t+ i) = 1, and ‖r‖∞ = 1. For any ǫ > 0, we denote

Rǫ(x) = Rǫ(x1, x2, ..., x2n) =
2n∏

i=1

r
(xi
ǫ

)

Clearly, one has
∑

v∈ǫZ2n Rǫ(x − v) = 1l(x). Moreover, for a sufficiently small ǫ > 0,

and a point w ∈ X := {0, 1, 2, 3}2n, we consider a finite grid Γǫ
w ⊂ W given by

Γǫ
w = ǫw + 4ǫZ2n ∩ (−L+ 3ǫ, L− 3ǫ)2n (3.2.31)

Furthermore, we define a partition function Rǫ
w(x) by:

Rǫ
w(x) =

∑

v∈Γǫ
w

Rǫ(x− v)

Note that
∑

w∈XR
ǫ
w(x) = 1l(x) for any x ∈ (−L + 4ǫ, L − 4ǫ)2n. Next, consider an

arbitrary function f ∈ C∞
c (W ). Take ǫ0 > 0 with supp (f) ⊂ (−L + 4ǫ0, L − 4ǫ0)

2n,

and fix ǫ < ǫ0. For any w ∈ X, denote fw(x) = Rǫ
w(x)f(x). Note that

f(x) =
∑

w∈X

fw(x)

Moreover, for a fix w ∈ X one has

fw(x) =
∑

v∈Γǫ
w

Rǫ(x− v)f(x), (3.2.32)

where the support of each summand satisfies

supp
(
Rǫ(x− v)f(x)

)
⊂ v +

[
−
2ǫ

3
,
2ǫ

3

]2n
, for v ∈ Γǫ

w
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Step II (Estimating the norm ‖f‖F ,max): Fix v ∈ Γǫ
w, and consider the decomposi-

tion of f ∈ C∞
c (W ) to a Taylor polynomial of order 2n+ 1 and a remainder, around

the point v:

f(x) = P v
2n+1(x− v) +Rv

2n+1(x− v)

It follows from (3.2.32 ) above that fw(x) = gw(x) + hw(x), where

gw(x) =
∑

v∈Γǫ
w

Rǫ(x− v)P v
2n+1(x− v), and hw(x) =

∑

v∈Γǫ
w

Rǫ(x− v)Rv
2n+1(x− v)

Lemma 3.16. With the above notations, there is a constant C = C(n) such that

‖hw‖C2n+1 6 Cǫ‖f‖C2n+2

Proof of Lemma 3.16. From the fact that the family {Rǫ(x−v)Rv
2n+1(x−v)}v∈Γǫ

w

has mutually disjoint support, and the definition of the norm ‖ ·‖C2n+1 , it follows that

there is a constant C (depending on the dimension) such that

‖hw(x)‖C2n+1 ≤ max
v∈Γǫ

w

‖Rǫ(x− v)Rv
2n+1(x− v)‖C2n+1

≤ C(n) max
v∈Γǫ

w

(
max

0≤k≤2n+1
‖Rǫ(x− v)‖Ck ‖Rv

2n+1(x− v)‖C2n+1−k

)

Note that from the definition of Rǫ it follows that for every 0 ≤ k ≤ 2n+ 1, one has

‖Rǫ(x− v)‖Ck 6 C ′ ǫ−k,

for some constant C ′ (independent of k). Note moreover, that for 0 ≤ k ≤ 2n+ 1,

‖Rv
2n+1(x− v)‖C2n+1−k 6 C ′′ ‖f‖C2n+2 ǫ1+k, (3.2.33)

for some constant C ′′. Indeed, let α be a multiindex with |α| = 2n + 1 − k, and

consider the order-k Taylor’s expension of ∂αf near the point v. The remainder

equals to ∂αRv
2n+1(x−v), and the estimate (3.2.33 ) follows from the standard bound

on the size of the remainder. This completes the proof of the lemma.

Corollary 3.17. From Proposition 3.14 (ii), and Lemma 3.16, we conclude that:

‖hw‖F ,max 6 Cǫ‖f‖C2n+2 , for some constant C = C(n) (3.2.34)

To complete the proof of the theorem we shall need the following proposition:

Proposition 3.18. There is a constant C = C(n) such that

‖gw‖F ,max 6 C
(2n+1∑

i=0

‖f‖Ciǫi
)

(3.2.35)

Postponing the proof of Proposition 3.18 to Subsection 3.2.2, we first complete

the proof of Theorem 3.4. From (3.2.34 ) and (3.2.35 ), letting ǫ → 0, we conclude

that

‖f‖F ,max ≤ C‖f‖∞,

for some absolute constant C, and the proof is complete.

27



3.2.1 Proof of Proposition 3.14

Part (i): Let W =
∏n

i=1W
2
i , where W

2
i = (−L, L)2 ⊂ R

2(qi, pi), and denote by

F2 = {f0, f1, f2} the collection of functions constructed in the proof of Theorem 3.4

in the 2-dimensional case. For any multi-index β = (l1, . . . , ln) ∈ X′ := {0, 1, 2}n, we

set fβ(q, p) =
∏n

k=1 flk(qk, pk). In what follows we denote by F the set {fβ ; β ∈ X′}.

Consider f ∈ C∞
c (W 2n) of the form f(q, p) =

∏n

i=1 fi(qi, pi), where fi ∈ C∞
c (Wi).

Let ǫ > 0. From the proof of Theorem 3.4 in the 2-dimensional case it follows that

there exists functions fi,k ∈ LF2, i = 1, 2, ..., n; k ∈ N, such that fi,k
k→∞
−−−→ fi in the

C∞-topology, and such that ‖fi,k‖LF2 < ‖fi‖F2, max + ǫ. Next, for every 1 ≤ i ≤ n

and k ∈ N, we decompose

fi,k =
∑

j,l

cj,li,k(Φ
j,l
i,k)

∗fl, (3.2.36)

where Φj,l
i,k ∈ Hamc(Wi, ω); l ∈ {0, 1, 2}, and,

∑

j,l

|cj,li,k| < ‖fi,k‖LF2
+ ǫ (3.2.37)

Denote fk(q, p) =
∏n

i=1 fi,k(qi, pi). Clearly, f
k k→∞
−−−→ f ∈ C∞

c (W ) in the C∞-topology.

Moreover, from (3.2.36 ) it follows that

fk =
∑

β=(l1,...,ln)
γ=(j1,...,jn)

cγ,βk (Φγ,β
k )∗fβ,

where

cγ,βk =
n∏

i=1

cji,lii,k , and Φγ,β
k (q1, p1, ..., qn, pn) =

(
Φj1,l1

1,k (q1, p1), ...,Φ
jn,ln
n,k (qn, pn)

)

This shows that fk ∈ LF , and moreover that

‖fk‖LF
6

∑

β=(l1,...,ln)
γ=(j1,...,jn)

|cγ,βk | =
n∏

i=1

(
∑

ji,li

|cji,lii,k |

)
<

n∏

i=1

(
‖fi,k‖LF2

+ ǫ
)

6

n∏

i=1

(‖fi‖F2, max + 2ǫ)

(3.2.38)

Recall, that from the proof of Theorem 3.4 in the 2-dimensional case one has

‖fi‖F2, max 6 C‖fi‖∞,

for some absolute constant C. Combining this with (3.2.38 ) we conclude that

‖fk‖LF
6

n∏

i=1

(C‖fi‖∞ + 2ǫ) ,
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and therefore

‖f‖F ,max 6 lim inf
k→∞

‖fk‖LF
6

n∏

i=1

(C‖fi‖∞ + 2ǫ)

In particular, for any ǫ > 0, one has

‖f‖F ,max 6

n∏

i=1

(C‖fi‖∞ + 2ǫ)

Taking ǫ→ 0, we obtain

‖f‖F ,max 6 Cn

n∏

i=1

‖fi‖∞ = Cn‖f‖∞

This completes the proof of part (i) of Proposition 3.14.

For the proof of the second part of Proposition 3.14 we shall need the following

preliminaries. Let f be an integrable function on the m-dimensional torus Tm, and

denote its Fourier coefficients by

f̂r =
1

(2π)m

∫

Tm

f(t) eir·t dt,

where r = (r1, . . . , rm) ∈ Z
m, and t = (t1, . . . , tm) ∈ T

m. We denote the jth-partial

sum of the Fourier series of f by

Sj(f, t) =
∑

max |rl|≤j

f̂r e
ir·t

The next lemma is a well known result in Fourier analysis.

Lemma 3.19. Let f ∈ C∞(Tm). Then Sj(f)
j→∞
−−−→ f in the C∞-topology and

∑

r∈Zm

|f̂r| ≤ A‖f‖C2n+1, (3.2.39)

for some universal constant A.

Proof of Lemma 3.19. The fact that Sj(f)
j→∞
−−−→ f in the C∞-topology follows,

e.g., from Theorem 33.7 in Section 79 of [9], and the fact that ∂αSj(f) = Sj(∂
αf)

for every multi-index α and j ≥ 0. For the estimate (3.2.39 ), we use Lemma 9.5 in

Section 79 of [9] to obtain the following upper bound for the Fourier coefficients:

|f̂r| ≤ A1
‖f‖C2n+1

‖r‖2n+1
for all r 6= 0, (3.2.40)

for some constant A1. From this we conclude that
∑

r∈Zm

|f̂r| ≤ A2‖f‖C2n+1

∫

S2n−1

∫ ∞

1

ρ−2n−1ρ2n−1 dρ dθ ≤ A3 ‖f‖C2n+1,

where A = A3 is a constant which depends solely on the dimension.
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Remark 3.20. We remark that Lemma 3.19 holds (with different constants) for

any torus of the form Tm = (R/aZ)m, where a > 0. Moreover, the lemma holds if

instead of the basis {e
2πi
a

rt}, we choose the trigonometric basis consists of products

of {cos(2π
a
riti)} or {sin(2π

a
riti)} for i = 1, . . . , m.

We now turn to complete the proof of the second part of Proposition 3.14:

Proposition 3.14, Part (ii): Let f ∈ C∞
c (W ). By gluing together the boundary

of the cube W in an appropriate way, we obtain a well defined smooth function on

the torus T 2n = (R/2LZ)2n, which by abuse of notation we still denote by f . We

apply Lemma 3.19 to the function f (note the comment regarding the trigonometric

basis in Remark 3.20). We order the trigonometric basis in Remark 3.20 by {ek}
∞
k=1.

Note that each ek is a product function with ‖ek‖∞ = 1. Denoting the corresponding

Fourier sums of f by Sk =
∑k

i=1 ciei. We have Sk → f in the C∞-topology and∑∞
k=1 |ck| 6 A‖f‖C2n+1 for some A = A(n). We turn back to the situation where we

consider f defined on W . Take any smooth cutoff function ρ :W → R, which equals

1 on supp(f), equals 0 near the boundary ∂W , and which has ‖ρ‖∞ = 1 (one can

easily find such ρ, since supp(f) ⊂ W ). Then we have ρSk =
∑k

i=1 ciρei → ρf = f

in C∞
c (W ), in the C∞ topology as well. Moreover, the functions {ρek} are product

functions with ‖ρek‖∞ 6 1. From part (i) or Proposition 3.14, and Lemma 3.19, it

follows that for a suitable collection F , one has

‖Sk‖F ,max 6

k∑

i=1

|ci|‖ρei‖F , max 6 C

k∑

i=1

|ci| 6 CA‖f‖C2n+1.

Hence, from Remark 3.2 we conclude that

‖f‖F ,max 6 CA‖f‖C2n+1 .

The proof of the second part of the proposition is now complete.

3.2.2 Proof of Proposition 3.18

For any multi-index α = (i1, i2, ..., i2n), where |α| 6 2n+ 1, denote

gαw(x) =
∑

v=(v1,v2,...,v2n)∈Γǫ
w

1

i1!i2!...i2n!

∂f |α|

∂xi11 ∂x
i2
2 ...∂x

i2n
2n

(v)
( 2n∏

j=1

(xj − vj)
ij

)
Rǫ(x− v)

Note that the function gw is the sum of gαw, for α = (i1, i2, ..., i2n) with |α| 6 2n+ 1.

Note moreover that each summand of gαw is a constant multiple of the function

Ξα(x− v) :=
( 2n∏

j=1

(xj − vj)
ij

)
Rǫ(x− v),
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where

Ξα(x) = xi11 x
i2
2 ...x

i2n
2n R

ǫ(x) =
n∏

l=1

q
i2l−1

l pi2ll r
(ql
ǫ

)
r
(pl
ǫ

)

We shall need the following lemma which will be proven in Subsection 3.2.3

Lemma 3.21. Let ξ ∈ C∞
c ((−ǫ, ǫ)2n) be a compactly supported smooth function which

can be represented as a product ξ =
∏n

j=1 ξj(qj , pj), where ξj ∈ C∞
c ((−ǫ, ǫ)2). Then,

for every function H(x) =
∑

v∈Γǫ
w
avξ(x− v), where av are real coefficients and Γǫ

w is

the grid defined in (3.2.31 ), one has

‖H‖F ,max 6 C‖H‖∞, for some absolute constant C

Applying Lemma 3.21, with ξ = Ξα, to the function H = gαw, we conclude that

‖gαw‖F ,max 6 C‖gαw‖∞ 6
C

i1!i2! . . . i2n!
‖Ξα‖∞ max

v∈Γǫ
w

∂f |α|

∂xi11 ∂x
i2
2 . . . ∂x

i2n
2n

(v)

6 C ‖Ξα‖∞‖f‖C|α|

Since ‖r‖∞ = 1, and supp(r) ⊂ (−ǫ, ǫ), it follows that ‖Ξα‖∞ ≤ ǫ|α|. Thus, we obtain

‖gαw‖F ,max 6 C ǫ|α| ‖f‖C|α|,

and hence

‖gw‖F ,max 6
∑

|α|62n+1

C ǫ|α| ‖f‖C|α| 6 C ′

2n+1∑

k=0

ǫk ‖f‖Ck

This completes the proof of Proposition 3.18.

3.2.3 Proof of Lemma 3.21

Note first that the grid Γǫ
w = ǫw+4ǫZ2n∩ (−L+3ǫ, L−3ǫ)2n admits a decomposition

into the product Γǫ
w =

∏n
i=1 γi, where γi = γǫ,wi ⊂ (−L + 3ǫ, L− 3ǫ)2 ⊂ (−L, L)2 are

grids on the plane. Next, let H be as in Lemma 3.21. Given a bijection τ : Γǫ
w → Γǫ

w,

we denote

Hτ (x) =
∑

v∈Γǫ
w

aτ(v)ξ(x− v)

Lemma 3.22. For any bijection τ : Γǫ
w → Γǫ

w, one has ‖Hτ‖F ,max = ‖H‖F ,max.

Proof of Lemma 3.22. It is not hard to check that every bijection τ : Γǫ
w → Γǫ

w,

can be written as a product of transpositions that interchange two neighboring points

of Γǫ
w (here, by neighboring points we mean v′, v′′ ∈ Γǫ

w, such that |v′ − v′′| = 4ǫ).

Therefore it is enough to prove the lemma for the case of such a transposition.
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Let v′ = (z′1, ..., z
′
n), v

′′ = (z′′1 , ..., z
′′
n) ∈ Γǫ

w be a pair of neighboring points, where

z′i, z
′′
i ∈ γi for i = 1, 2, ..., n. There exists 1 6 k 6 n, such that z′i = z′′i for i 6= k,

and moreover z′′k = z′k ± 4ǫ or z′′k = z′k ± 4ǫi. The union of the neighboring squares

Q′ := z′k + [−ǫ, ǫ]2, and Q′′ := z′′k + [−ǫ, ǫ]2 is a rectangle S = Q′ ∪ Q′′. Since the

support supp(ξk) ⊂ (−ǫ, ǫ)2, there exists 0 < ǫ1 < ǫ, such that supp(ξk) ⊂ [−ǫ1, ǫ1]
2.

Looking on Q′
1 = z′k + [−ǫ1, ǫ1]

2, Q′′
1 = z′′k + [−ǫ1, ǫ1]

2 ⊂ int(S), one can clearly

move Q′
1 to Q′

2 and Q′
2 to Q′

1 simultaneously, using affine translations, such that at

every moment the images of Q′
1, Q

′
2 will not intersect, and are contained in int(S).

Moreover, this can be done by a smooth Hamiltonian isotopy Φt
Kk

, supported in S,

where Kk(t, zk) : [0, 1] × Wk → R is the Hamiltonian that generates this isotopy,

and such that we have supp(Kk(t, ·)) ⊂ int(S) for all t ∈ [0, 1]. For any j 6= k,

1 6 j 6 n consider a smooth function Kj(zj) : Wj → R such that Kj(zj) = 1

for zj ∈ z′j + [−ǫ, ǫ]2 and Kj(zj) = 0 for zj ∈ Wj \ (z′j + [−2ǫ, 2ǫ]2). Now define a

Hamiltonian K : [0, 1]×W → R by

K(t; z1, z2, ..., zn) = Kk(t, zk)
∏

16j6n
j 6=k

Kj(zj)

Note that K(t; z1, z2, ..., zn) = Kk(t, zk) for

z = (z1, ..., zn) ∈ U1 :=
k−1∏

j=1

(z′j + [−ǫ, ǫ]2)× S ×
n∏

j=k+1

(z′j + [−ǫ, ǫ]2).

Moreover, U1 is invariant under the flow Φt
K , and

Φt
K(z1, ..., zn) = (z1, ..., zk−1,Φ

t
Kk

(zk), zk+1, ..., zn),

for any z = (z1, ..., zn) ∈ U1. In particular, Φ1
K(z) = z + v′′ − v′ for z ∈ v′ + [−ǫ, ǫ]2n,

and Φ1
K(z) = z + v′ − v′′ for z ∈ v′′ + [−ǫ, ǫ]2n. Furthermore, for

U2 :=

k−1∏

j=1

(z′j + [−2ǫ, 2ǫ]2)× S ×
n∏

j=k+1

(z′j + [−2ǫ, 2ǫ]2)

we have that supp(K(t, ·)) ⊂ U2 for all t ∈ [0, 1]. Therefore, since (v+[−ǫ, ǫ]2n)∩U2 =

∅ for all v ∈ Γǫ
w \ {v′, v′′}, we conclude that Φ1

K(z) = z for z ∈ v + [−ǫ, ǫ]2n for any

v ∈ Γǫ
w \ {v′, v′′}. Hence if τ : Γǫ

w → Γǫ
w is a transposition that interchanges v′ with

v′′, we conclude that Hτ = (Φ1
K)

∗H . Therefore we conclude

‖Hτ‖F ,max = ‖H‖F ,max.

Proof of Lemma 3.21. Consider the decomposition Γǫ
w =

∏n

i=1 γi, and write each

γi explicitly as γi = {zi,1, ..., zi,Ni
} ⊂ (−L, L)2. We order each set γi by setting
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zi,1 < zi,2 < ... < zi,Ni
, for each i, and consider the lexicographic order ≺ on Γǫ

w

induced by these orders. We can arrange all the elements of Γǫ
w by increasing order

v1 ≺ v2 ≺ ... ≺ vN ,

where N =
∏n

i=1Ni. Take a bijection τ : Γǫ
w → Γǫ

w such that

aτ(v′′) 6 aτ(v′) if and only if v′ � v′′, where v′, v′′ ∈ Γǫ
w,

and rewrite Hτ (x) =
∑

v∈Γǫ
w
aτ(v)ξ(x− v) as

Hτ (x) =

N∑

j=1

bjξ(x− vj), and b1 6 b2 6 ... 6 bN (3.2.41)

By Lemma 3.22, one has ‖Hτ‖F ,max = ‖H‖F ,max. Next, write

Hτ (x) = bNKN (x) +
N−1∑

j=1

(bj − bj+1)Kj(x), (3.2.42)

where Kj(x) =
∑j

l=1 ξ(x− vj). Also set K0(x) = 0.

‖Hτ‖F , max 6 |bN |‖KN(x)‖F , max +
N−1∑

j=1

|bj − bj+1|‖Kj‖F ,max

6 |bN |‖KN(x)‖F , max +
N−1∑

j=0

(bj+1 − bj) max
16j6N

‖Kj‖F , max

= |bN |‖KN(x)‖F ,max + (bN − b1) max
16j6N

‖Kj‖F ,max

6 3
(
max
v∈Γǫ

w

|av|
)

max
16j6N

‖Kj‖F ,max

(3.2.43)

Next, consider some Kj , where 1 6 j 6 N . There exist a unique sequence

j0 = 0 6 j1 6 j2 6 ... 6 jn−1 6 jn = j,

such that for any 1 6 m 6 n we have
∏n

l=m+1Nl | jm − jm−1, and we have

kl :=
jm − jm−1∏n

l=m+1Nl

< Nm.

Here we mean
∏n

l=n+1Nl = 1. Take any 1 6 m 6 n. Then provided jm−1 < jm, we

can write

ξm(z) := Kjm −Kjm−1 =

n∏

l=1

ξml (zl),
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where we have

ξml (zl) = ξl(zl − zl,kl) , for l = 1, ..., m− 1,

ξmm(zm) =

km∑

im=1

ξm(zm − zm,im),

ξml (zl) =

Nl∑

il=1

ξl(zl − zl,il) , for l = m+ 1, ..., n.

Moreover, for any 1 6 m 6 n we have

‖ξm‖∞ =
n∏

l=1

‖ξml ‖∞ =
n∏

l=1

‖ξl‖∞ = ‖ξ‖∞.

From this, and from Proposition 3.14 (i), we conclude that

‖ξm‖F , max 6 C‖ξm‖∞ = C‖ξ‖∞,

for some C = C(n). We have

Kj =

n∑

m=1

ξm,

hence

‖Kj‖F , max 6

n∑

m=1

‖ξm‖F ,max 6 nC‖ξ‖∞,

and this holds for any 1 6 j 6 N . Therefore we conclude

‖H‖F ,max = ‖Hτ‖F ,max 6 3

(
max
v∈Γǫ

w

|av|

)
max
16j6N

‖Kj‖F ,max

6 3nC

(
max
v∈Γǫ

w

|av|

)
‖ξ‖∞ = 3nC‖H‖∞.

The proof of the lemma is now complete.

4 Proof of Theorem 1.3

The proof of Theorem 1.3 follows from Theorem 3.4 by a standard partition of unity

argument. For the sake of completeness, we provide the details below.

As explained in Section 2, it is enough to prove Theorem 1.3 for Ham(M,ω)-

invariant pseudo norms on C∞(M). Indeed, any Ham(M,ω)-invariant pseudo norm

‖ · ‖ on A that is continuous in the C∞-topology, can be naturally extended to a
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Ham(M,ω)-invariant pseudo-norm ‖ · ‖′ on C∞(M), which is again continuous in the

C∞-topology, by setting

‖f‖′ = ‖f −Mf‖, where Mf = 1
V ol(M)

∫
M
fωn

Consider a Darboux chart i : U →֒ M , where U ⊂ (R2n, ωstd) is an open set.

Without loss of generality we assume that the origin of R2n lies inside U . Choose

some L > 0, such that W = (−L, L)2n ⊂ U . Since i(W ) ⊂ M , we have a natural

embedding C∞
c (i(W )) →֒ C∞(M), and therefore any Ham(M,ω)-invariant pseudo

norm ‖ · ‖ on C∞(M) restricts to C∞
c (i(W )). From Lemma 3.3 and Theorem 3.4,

we conclude that (when the norm is continuous in the C∞-topology) there exists a

constant C > 0 such that

‖f‖ 6 C‖f‖∞, for every function f ∈ C∞
c (i(W ))

Next, for any point x ∈M there exists an open neighborhood Vx ⊂M , and a smooth

Hamiltonian diffeomorphism Φx ∈ Ham(M,ω), such that Φx(Vx) ⊂W . Consider the

open covering
⋃

x∈M Vx = M . The compactness of M allows us to pass to a finite

subcover
⋃N

i=1 Vxi
= M . Moreover, one can find a partition of unity {ρ1, ρ2, ..., ρN},

such that for every i = 1, 2, ..., N , ρi :M → R is a smooth positive function supported

in Vxi
, and

ρ1 + ρ2 + ... + ρN = 1lM

Finally, let f ∈ C∞(M), and consider the decomposition

f = ρ1f + ρ2f + ...+ ρNf

Since ‖ · ‖ is a Ham(M,ω)-invariant norm, it follows that

‖f‖ 6

N∑

i=1

‖ρif‖ =
N∑

i=1

‖(Φ−1
xi
)∗(ρif)‖

Moreover, it follows from the above that supp
(
(Φ−1

xi
)∗(ρif)

)
⊂W , and hence

‖(Φ−1
xi
)∗(ρif)‖ 6 C‖(Φ−1

xi
)∗(ρif)‖∞ = C‖ρif‖∞ 6 C‖f‖∞.

Therefore we conclude that

‖f‖ 6 C ′‖f‖∞,

where C ′ = NC. The proof of the theorem is now complete.

5 Appendix

Here we prove the claim mentioned in Remark 1.1. More precisely:
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Proposition 5.1. Let M be a closed symplectic manifold, and let ‖ · ‖ be a norm

on the Lie algebra A of Ham(M,ω). Then, smooth paths [0, 1] → Ham(M,ω) have

finite length if and only if the norm ‖ · ‖ is continuous in the C∞-topology.

Proof. The “if” part of the statement is clear. Let us show the “only if” part.

Throughout, we equip M with a Riemmanian metric, and denote ‖ · ‖∞ = ‖ · ‖C0 6

‖ · ‖C1 6 ‖ · ‖C2 6 ... the corresponding C0, C1, C2, ...-norms on C∞(M).

Let ‖ · ‖ be an invariant pseudo-norm on C∞(M) which is not continuous in the

C∞-topology. Consider two sequences {ak}, {bk} in the interval [0, 1], such that

0 < a1 < b1 < a2 < b2 < ... < 1

Next, let c : [0, 1] → [0, 1] be a smooth function such that c(t) = 0 for t ∈ [0, 1
4
]∪ [3

4
, 1],

and c(t) = 1 for t ∈ [1
3
, 2
3
]. For a sequence of smooth functions Hk : M → R, we

define a function H :M × [0, 1] → R in the following way:

H(x, t) =





0 for t ∈ [0, a1] ∪ [b1, a2] ∪ [b2, a3] ∪ ...,

c( t−ak
bk−ak

)Hk(x) for t ∈ [ak, bk],

0 for t = 1.

(5.1)

Note that H is smooth on M × [0, 1). We next show that for a suitable choice of a

sequence Hk ∈ C∞(M), one has H(x, t) ∈ C∞(M × [0, 1]), and moreover
∫ 1

0

‖H(·, t)‖dt = +∞ (5.2)

Thus, the Hamiltonian flow of H has infinite length with respect to the Finsler metric

d‖·‖. Indeed, note that

∫ 1

0

‖H(·, t)‖dt =
∞∑

k=1

(bk − ak)

(∫ 1

0

|c(t)|dt

)
‖Hk‖ >

1

3

∞∑

k=1

(bk − ak)‖Hk‖.

Hence, for the estimate (5.2 ), it is enough to choose Hk such that ‖Hk‖ >
1

bk−ak
.

Moreover, to ensure that H(x, t) is smooth in M × [0, 1], it is enough to have

lim
t→1

‖
∂j

∂tj
H(t, ·)‖Cm = 0, for any j,m > 0 (5.3)

More precisely, assume that t ∈ (ak, bk). Note that in that case

‖
∂j

∂tj
H(t, ·)‖Cm =

(
1

bk − ak

)j ∣∣∣c(j)(
t− ak
bk − ak

)
∣∣∣‖Hk‖Cm 6

(
1

bk − ak

)j

‖c‖Cj‖Hk‖Cm .

Therefore, to show (5.3 ) it is enough to choose Hk such that

lim
k→∞

(
1

bk − ak

)j

‖Hk‖Cm = 0, for any j,m > 0
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In particular, any sequence Hk ∈ C∞(M), that for every k > 1 satisfy

{
‖Hk‖ >

1
bk−ak

,

‖Hk‖Ck 6 (bk − ak)
k,

(5.4)

would give rise (via definition (5.1 )) to a smooth function H :M × [0, 1] → R, such

that
∫ 1

0
‖H(·, t)‖dt = +∞.

Since the norm ‖ · ‖ is assumed to be non-continuous in the C∞-topology, one can

always find a sequence {Hk} which satisfy (5.4 ).
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forme symplectique. Comment. Math. Helv. 53 (1978), no.2, 174-227.

[4] Eliashberg, Y. Symplectic topology in the nineties, Symplectic geometry. Differ-

ential Geom. Appl. 9 (1998), no. 1-2, 59-88.

[5] Eliashberg, Y., Polterovich, L. Bi-invariant metrics on the group of Hamiltonian

diffeomorphisms, Internat. J. Math. 4 (1993), 727-738.

[6] Hofer, H. On the topological properties of symplectic maps. Proceedings of the

Royal Society of Edinburgh, 115 (1990), 25-38.

[7] Hofer, H., Zehnder, E. Symplectic Invariants and Hamiltonian Dynamics,
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