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From Symplectic Measurements to the Mahler Conjecture

Shiri Artstein-Avidan, Roman Karasev, Yaron Ostrover

Abstract

In this note we link symplectic and convex geometry by relating two seemingly dif-

ferent open conjectures: a symplectic isoperimetric-type inequality for convex domains,

and Mahler’s conjecture on the volume product of centrally symmetric convex bodies.

More precisely, we show that if for convex bodies of fixed volume in the classical phase

space the Hofer–Zehnder capacity is maximized by the Euclidean ball, then a hypercube

is a minimizer for the volume product among centrally symmetric convex bodies.

1 Introduction and Main Results

The purpose of this note is to relate a symplectic isoperimetric-type conjecture for sym-

plectic capacities of convex domains in the classical phase space with the renowned Mahler

conjecture regarding the volume product of symmetric convex bodies. The main ingredient

in the proof, which is of independent interest in the context of symplectic geometry, is the

fact that in a centrally symmetric and strictly convex body K ⊆ R
n the shortest (measured

with respect to ‖ · ‖K) periodic K◦-billiard trajectory is a 2-bouncing trajectory. In par-

ticular, this implies that for any centrally symmetric convex body K the Hofer–Zendher

capacity of the configuration K ×K◦ in the classical phase space R
2n equals 4.

Before we state our main results more precisely, we first recall some relevant background

and definitions from convex and symplectic geometry.

1.1 Mahler Conjecture

Let (X, ‖ · ‖) be an n-dimensional normed space and let (X∗, ‖ · ‖∗) be its dual space.

The product space X × X∗ carries a canonical symplectic structure, given by the skew-

symmetric bilinear form ω
(
(x, ξ), (x′, ξ′)

)
= ξ(x′)− ξ′(x), and a canonical volume form, the

Liouville volume, given by ωn/n!. A fundamental question in the field of convex geometry,

raised by Mahler in [18], is to find upper and lower bounds for the Liouville volume of

B ×B◦ ⊂ X ×X∗, where B and B◦ are the unit balls of X and X∗ respectively. In what

follows we shall denote this volume by ν(X). Note that ν(X) is an affine invariant of X

i.e., it is invariant under invertible linear transformations. We remark that in the context

of convex geometry ν(X) is also known as the Mahler volume or the volume product of X.

The Blaschke–Santaló inequality asserts that the maximum of ν(X) is attained if and

only if X is a Euclidean space. This was proved by Blaschke [3] for dimensions two and
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three, and generalized by Santaló [27] for higher dimensions. The following sharp lower

bound for ν(X) was conjectured by Mahler [18] in 1939:

Mahler Conjecture: For an n-dimensional normed space X one has ν(X) ≥ 4n/n!

The conjecture has been verified by Mahler [18] in the two-dimensional case. In higher

dimensions it is proved only in some very special cases, namely, when the unit ball of X is

a zonoid [9, 24], when X has a 1-unconditional basis [20, 26, 25], and when the unit ball of

X is sufficiently close to the unit cube in the Banach–Mazur distance [22].

The first major breakthrough towards answering Mahler’s conjecture was a result due to

Bourgain and Milman [4], who used sophisticated tools from functional analysis to show that

the conjecture holds asymptotically, i.e., up to a factor γn, where γ is a universal constant.

This result has been re-proved later on, by entirely different methods, by Kuperberg [17],

using differential geometry, and independently by Nazarov [21], using the theory of functions

of several complex variables. A new proof using simpler asymptotic geometric analysis tools

has been recently discovered by Giannopoulos, Paouris, and Vritsiou [8]. The best known

constant nowadays, γ = π/4, is due to Kuperberg [17]. Despite great efforts to deal with

the general case, a proof of Mahler’s conjecture has been insistently elusive thus far, and is

currently the subject of intensive research efforts. We remark that in contrast with the above

mentioned Blaschke–Santaló inequality, the equality case in Mahler’s conjecture, which is

obtained for example for the space ln∞ of bounded sequences with the standard maximum

norm, is not unique.

1.2 Symplectic Capacities

Consider the 2n-dimensional Euclidean space R
2n = R

n
q × R

n
p , equipped with the linear

coordinates (q1, . . . , qn, p1, . . . , pn), the standard symplectic structure ωst =
∑

i dqi ∧ dpi,

and the standard inner product gst = 〈·, ·〉. In what follows we use this inner product to

identify the tangent space TxR
2n, at a point x ∈ R

2n, with the cotangent space T ∗
xR

2n at

the same point in the usual way. Note that under the identification of R2n with C
n, these

two structures are the real and the imaginary parts of the standard Hermitian inner product

in C
n, and ωst(v, Jv) = 〈v, v〉, where J is the standard complex structure on R

2n ≃ C
n.

Recall that a symplectomorphism of R2n is a diffeomorphism which preserves the symplectic

structure i.e., ψ ∈ Diff(R2n) such that ψ∗ω = ω.

A fundamental result in symplectic geometry states that symplectic manifolds – in a

sharp contrast to Riemannian manifolds – have no local invariants (except, of course, the

dimension). The first examples of global symplectic invariants were introduced by Gromov

in his seminal paper [10], where he used pseudoholomorphic curves techniques to prove a

striking symplectic rigidity result, which is nowadays known as Gromov’s “non-squeezing

theorem”. This result paved the way to the introduction of global symplectic invariants,

called symplectic capacities, which roughly speaking measure the symplectic size of sets in

R
2n. More precisely, let B2k(r) be the open 2k-dimensional ball of radius r.

Definition 1.1. A symplectic capacity on (R2n, ωst) associates to each subset U ⊂ R
2n a
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number c(U) ∈ [0,∞], such that the following three properties hold:

(P1) c(U) ≤ c(V ) for U ⊆ V (monotonicity),

(P2) c
(
ψ(U)

)
= |α| c(U) for ψ ∈ Diff(R2n) such that ψ∗ωst = αωst (conformality),

(P3) c
(
B2n(r)

)
= c

(
B2(r)× C

n−1
)
= πr2 (nontriviality and normalization).

Note that the third property disqualifies any volume-related invariant, while the first two

imply that for U, V ⊂ R
2n, a necessary condition for the existence of a symplectomorphism

ψ with ψ(U) = V is that c(U) = c(V ) for any symplectic capacity c.

It is a priori unclear that symplectic capacities exist. The above mentioned non-

squeezing result naturally leads to the definition of two symplectic capacites: the Gro-

mov width, defined by c(U) = sup{πr2 |B2n(r)
s
→֒ U}; and the cylindrical capacity, de-

fined by c(U) = inf{πr2 |U
s
→֒ Z2n(r)}, where

s
→֒ stands for symplectic embedding, and

Z2n(r) = B2(r)×C
n−1 is the standard symplectic cylinder of radius r. These two capacities

are known to be the largest and the smallest possible symplectic capacities, respectively.

Since Gromov’s work, several other symplectic capacities were constructed, such as the

Hofer–Zehnder capacity [15], Ekeland–Hofer capacities [6], the displacement energy [14],

spectral capacities [7, 23, 28], and Hutchings’ embedded contact homology capacities [16].

Moreover, there has been a great progress in understanding their properties, interrelations,

and applications to symplectic topology and Hamiltonian dynamics. We note that usually

computing these capacities, even for relatively simple sets, is notoriously difficult. We refer

the reader to [5] for a detailed survey on the theory of symplectic capacities.

1.3 A Symplectic Isoperimetric Conjecture

Let K2n be the class of convex domains in R
2n. The following isoperimetric-type conjecture

for symplectic capacities of convex bodies was raised by Viterbo in [29].

Conjecture 1.2. (Symplectic isomperimetric conjecture): For any symplectic capacity c

and any convex body Σ ∈ K2n,

c(Σ)

c(B)
≤

(Vol(Σ)

Vol(B)

)1/n
, where B = B2n(1). (1.3.1)

In other words, the symplectic isoperimetric conjecture states that among the convex

domains in R
2n with a given volume, the Euclidean ball has the maximal symplectic capacity.

The conjecture is known to hold for certain classes of convex bodies, including ellipsoids and

convex Reinhardt domains (see [12]). Moreover, up to a universal constant, Conjecture 1.2

holds for any symplectic capacity. More precisely, the following theorem was proved in [1].

Theorem 1.3. There is a universal constant A0, such that for any n, any Σ ∈ K(R2n),

and any symplectic capacity c,

c(Σ)

c(B)
≤ A0

(Vol(Σ)
Vol(B)

)1/n
, where B = B2n(1). (1.3.2)
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This theorem improves a previous result of Viterbo in [29], where inequality (1.3.2) was

proved up to a factor depending linearly on the dimension.

Remark 1.4. It is a long standing open question (see, e.g., [12, 13, 29]) whether all sym-

plectic capacities coincide on the class of convex domains in R
2n. Note that an affirmative

answer to this question would immediately prove Conjecture 1.2 above, as it is not hard to

check that inequality (1.3.1) trivially holds for the Gromov width capacity.

1.4 Main Results

Consider the classical phase space R
2n = R

n
q × R

n
p equipped with the standard symplectic

structure ωst. Let Ks(R
n
q ) be the class of centrally symmetric convex bodies in R

n
q i.e.,

bounded convex domains which are symmetric with respect to the origin and with non-

empty interior. For K ∈ Ks(R
n
q ), we define its polar body K◦ ∈ Ks(R

n
p ) to be

K◦ = {p ∈ R
n
p | p(q) ≤ 1, for every q ∈ K}.

Here we identified R
n
p with the dual space (Rn

q )
∗. Note that if K is considered to be the

unit ball of a certain norm ‖ · ‖ on R
n
q , then K

◦ can be interpreted as the unit ball of the

dual space R
n
p ≃ (Rn

q )
∗ equipped with the dual norm ‖ · ‖∗. In these notations, letting Vol

denote the standard volume in R
2n = R

n
q × R

n
p , the Mahler conjecture reads:

Conjecture 1.5 (Mahler). For every K ∈ Ks(R
n
q ), one has Vol(K ×K◦) ≥ 4n/n!.

Note that, by the continuity of volume and the denseness of smooth bodies in Ks(R
n
q )

(say, with respect to the Hausdorff metric), it is enough to prove Conjecture 1.5 for smooth

K. We are finally in a position to state our main result:

Theorem 1.6. The symplectic isoperimetric conjecture implies the Mahler conjecture.

The proof of Theorem 1.6 follows immediatly from the following estimate of the sym-

plectic size of the configuration K×K◦ ⊂ R
n
q ×R

n
p , for K ∈ Ks(R

n
q ), which is of independent

interest for symplectic geometry. Let c
HZ

denote the Hofer–Zehnder capacity, which we shall

define in detail in Section 2. It is known (see, e.g., §3.5 in [15], and Section 2 below), that

on the class of convex domains in R
2n the capacity c

HZ
(Σ) is given by the minimal action

of closed characteristics on the boundary ∂Σ.

Theorem 1.7. For every centrally symmetric convex body K ∈ Ks(R
n
q ),

c
HZ
(K ×K◦) = 4.

In fact, Theorem 1.7 can be strengthened to show that for any two centrally symmetric

convex bodies K ⊂ R
n
q , and T ⊂ R

n
p , one has

c
HZ
(K × T ) = c(K × T ) = 4 inradT ◦(K), (1.4.3)

where inradT ◦(K) = max{r > 0 | rT ◦ ⊂ K}. See Remark 4.2 in Section 4 for the explanation

of this fact.
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The proof of Theorem 1.7 is based on the relation established in [2] between the Hofer–

Zehnder capacity of certain convex Lagrangian products in the classical phase space, and the

minimal length of periodic Minkowski billiard trajectories associated with these products.

The precise details of this relation will be given in Section 2 below. We shall prove

Theorem 1.8. Let K ⊂ R
n
q be a centrally symmetric strictly convex body. The shortest

(with respect to ‖ · ‖K) periodic K◦-billiard trajectory in K is attained exclusively by two-

bouncing orbits. In particular, the minimal ‖ · ‖K-length of a periodic K◦-billiard trajectory

in K is 4.

We now turn to showing that Theorem 1.6 follows from Theorem 1.7.

Proof of Theorem 1.6. Assume that the symplectic isoperimetric conjecture holds. Then,

from inequality (1.3.1) and Theorem 1.7 it follows that

4n

πn
=
cn
HZ

(K ×K◦)

πn
≤

Vol(K ×K◦)

Vol(B2n)
=
n! Vol(K ×K◦)

πn
,

which is exactly the lower bound for Vol(K ×K◦) required by Mahler’s conjecture.

Remark 1.9. It is clear from the above argument that we do not require the full strength of

the symplectic isoperimetric conjecture to deduce Mahler’s conjecture. Namely, it is enough

to know that the symplectic isoperimetric conjecture holds for the Hofer–Zehnder capacity,

and for the special class of convex domains in R
2n of the form K ×K◦, where K ∈ Ks(R

n
q ).

Structure of the paper: In Section 2 we explain the relation between the Hofer–Zehnder

capacity and the minimum length of periodic billiard orbits. In Section 3 we provide the

main geometric ingredients of the proof of Theorem 1.7 and Theorem 1.8, which are given

in Section 4.

Acknowledgments: We thank the referees for their useful comments. The first named

author was partially supported by ISF grant No. 247/11. The second named author was

supported by the Dynasty Foundation, the President’s of Russian Federation grant MD-

352.2012.1, and the Russian government project 11.G34.31.0053. The third named author

was partially supported by a Reintegration Grant SSGHD-268274 within the 7th European

community framework programme, and by the ISF grant No. 1057/10.

2 The Hofer-Zehnder Capacity and Minkowski Billiards

In this section we describe the relation established in [2] between the Hofer–Zehnder ca-

pacity [15], restricted to the class of convex domains, and the minimal length of periodic

Minkowski billiard trajectories. For the reader’s convenience, we recall first some of the

relevant definitions and notations. For a detailed exposition and proofs, see [2].

The restriction of the symplectic form ωst to a smooth closed connected hypersurface

Σ ⊂ R
2n defines a 1-dimensional subbundle ker(ωst|Σ) whose integral curves comprise the
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characteristic foliation of Σ. In other words, a closed characteristic γ on ∂Σ is an embedded

circle in ∂Σ tangent to the characteristic line bundle

SΣ = {(x, ξ) ∈ T∂Σ | ωst(ξ, η) = 0 for all η ∈ Tx∂Σ}.

The classical geometric problem of finding a closed characteristic has a well-known dy-

namical interpretation: if the boundary ∂Σ is represented as a regular energy surface

{x ∈ R
2n | H(x) = const} of a smooth Hamiltonian function H : R

2n → R, then the

restriction to ∂Σ of the Hamiltonian vector field XH , defined by iXH
ωst = −dH, is a sec-

tion of SΣ. Thus, the image of the periodic solutions of the classical Hamiltonian equation

ẋ = XH(x) = J∇H(x) on ∂Σ are precisely the closed characteristics of ∂Σ. Recall that the

action of a closed curve γ is defined by A(γ) =
∫
γ λ, where λ = pdq is the Liouville 1-form,

whose differential is dλ = ωst. Also, the action spectrum of Σ is defined as

L(Σ) = { |A(γ) | ; γ closed characteristic on ∂Σ} .

The following theorem, which serves here also as the definition of the Hofer–Zehnder

capacity for the class of smooth convex bodies, can be found, e.g., in [15].

Theorem 2.1. Let Σ ⊆ R
2n be a convex bounded domain with smooth boundary ∂Σ. Then

there exists at least one closed characteristic γ∗ ⊂ ∂Σ satisfying

c
HZ
(Σ) = A(γ∗) = minL(Σ).

We remark that although the above definition of closed characteristics, as well as The-

orem 2.1, were given only for the class of convex bodies with smooth boundary, they can

naturally be generalised to the class of convex sets in R
2n with non-empty interior (see [2]).

We now switch gears and turn to mathematical billiards in Minkowski geometry. The

general study of billiard dynamics in Finsler and Minkowski geometries was initiated in [11].

From the point of view of geometric optics, Minkowski billiard trajectories describe the prop-

agation of waves in a homogeneous, anisotropic medium that contains perfectly reflecting

mirrors (see [11]). Below, we focus on the special case of Minkowski billiards in a smooth

convex body K ⊂ R
n. Roughly speaking, we equip K with a metric given by a certain

norm ‖ · ‖, and consider billiards in K with respect to the geometry induced by ‖ · ‖.

More precisely, let K ⊂ R
n
q , and T ⊂ R

n
p be two convex bodies with smooth boundary,

and consider the unit cotangent bundle

U∗
TK := K × T = {(q, p) | q ∈ K, and gT (p) ≤ 1} ⊂ T ∗

R
n
q = R

n
q ×R

n
p .

Here gT is the gauge function of T i.e., gT (x) = inf{r |x ∈ rT}, and in particular when T is

centrally symmetric i.e., T = −T , one has gT (x) = ‖x‖T . For p ∈ ∂T , the gradient vector

∇gT (p) is the outer normal to ∂T at the point p, and is naturally considered to be in R
n
q .

Motivated by the classical correspondence between closed geodesics in a Riemannian

manifold and closed characteristics of its unit cotangent bundle, the following definition of

(K,T )-billiard trajectories, which are essentially closed billiard trajectories in K when the

bouncing rule is determined by the geometry induced from the body T , was given in [2].
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w2 = ∇‖q2‖K

w1 = ∇‖q1‖K

q2

q1

q0

K

v1 = ∇‖p1‖T

v0 = ∇‖p0‖T

p0

p2 p1

T

Figure 1: A proper (K,T )-Billiard trajectory.

Definition 2.2. A closed (K,T )-billiard trajectory is the image of a piecewise smooth map

γ : S1 → ∂(K × T ) such that for every t /∈ Bγ := {t ∈ S1 | γ(t) ∈ ∂K × ∂T} one has

γ̇(t) = dX(γ(t)),

for some positive constant d and the vector field X given by

X(q, p) =

{
(−∇gT (p), 0), (q, p) ∈ int(K)× ∂T,

(0,∇gK(q)), (q, p) ∈ ∂K × int(T ).

Moreover, for any t ∈ Bγ, the left and right derivatives of γ(t) exists, and

γ̇±(t) ∈ {α(−∇gT (p), 0) + β(0,∇gK(q)) | α, β ≥ 0, (α, β) 6= (0, 0)}. (2.1)

Remark 2.3. Although in Definition 2.2 there is a natural symmetry between the bodies

K and T , in what follows K shall play the role of the billiard table, while T induces the

geometry that governs the billiard dynamics inK. It will be useful to introduce the following

notation: for a (K,T )-billiard trajectory γ, the curve πq(γ), where πq : R
2n → R

n
q is the

natural projection, shall be called a T -billiard trajectory in K.

Definition 2.4. A closed (K,T )-billiard trajectory γ is said to be proper if the set Bγ is

finite, i.e., γ is a broken characteristic that enters, and instantly exits, the product ∂K×∂T

at the reflection points. In the case where Bγ = S1, i.e., γ is traveling solely along the

product ∂K × ∂T , we say that γ is a gliding trajectory.

For a proper billiard trajectory, when we follow the flow of the vector field X, we move

in K × ∂T from (q0, p0) to (q1, p0) following the opposite of the outer normal to ∂T at p0.

When we hit the boundary ∂K at the point q1, the vector field changes, and we start to

move in ∂K × T from (q1, p0) to (q1, p1) following the outer normal to ∂K at the point q1.
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Next, we move from (q1, p1) to (q2, p1) following the opposite of the normal to ∂T at p1, and

so forth (see Figure 1). Note that this reflection law is a natural variation of the classical one

(i.e., equal impact and reflection angles) when the Euclidean structure on R
n
q is replaced by

the metric induced by the norm ‖ · ‖T . Moreover, it is not hard to check that when T is the

Euclidean unit ball, the bouncing rule described above is the classical one. Also, similarly

to the Euclidean case, one can check that (K,T )-billiards correspond to critical points of

the length functional given by the support function hT , where hT (u) = sup{〈x, u〉 ; x ∈ T}.

We remark that in [2] is was proved that every (K,T )-billiard trajectory is either a

proper trajectory or a gliding one, and that the following holds:

Theorem 2.5 ([2]). Let K ∈ K(Rn
q ) and T ∈ K(Rn

p ) be two smooth strictly convex bodies.

Then the Hofer–Zehnder capacity c
HZ
(K × T ) equals the length, with respect to the support

function hT , of the shortest periodic T -billiard trajectory in K.

3 Two Geometric Facts

Here we provide the geometric ingredients needed for the proof of Theorem 1.7, which may

be of independent interest in the realm of convex geometry. Throughout this section, we

assume that K ⊂ R
n is a centrally symmetric convex body. Moreover, it will be convenient

to use the following notation. For a set of pointsX, we denote by Conv(X) the convex hull of

X; and for a closed oriented polygonal path P ⊂ R
n, specified by vertices x1, . . . , xm ∈ R

n,

we set

LengthK(P) := LengthK(x1x2 · · · xm) := ‖x1 − xm‖K +

m−1∑

i=1

‖xi+1 − xi‖K .

3.1 First Geometric Fact

Theorem 3.1. Let K ⊂ R
n be a centrally symmetric convex body, and consider points

{x1, . . . , xm} ⊂ R
n \ int(K) with m ≥ 2, xi 6= xi+1 for i = 1, . . . ,m− 1 and x1 6= xm, such

that 0 ∈ Conv{xi}
m
i=1. Then,

LengthK(x1x2 · · · xm) ≥ 4.

Moreover, this minimium is attained for m = 2 and x1 = −x2 ∈ ∂K, and when the body K

is strictly convex, this is the only equality case.

In order to prove Theorem 3.1 we shall need the following lemmas.

Lemma 3.2. Let K be a centrally symmetric convex body, and let P be an oriented polygonal

closed path in R
2n which satisfies the following two properties:

• It passes through two points, x, y, outside K i.e., ‖x‖K ≥ 1, ‖y‖K ≥ 1,

8



• It passes through two points z,−z, such that x and y do not lie in the same connected

component of P \ {−z, z}.

Then, LengthK(P) ≥ 4.

Proof of Lemma 3.2. We will show that each of the two parts of the polygonal path,

between the points z and −z, has length at least 2. Indeed, call one of these paths P ′, then

consider the new path P ′∪−P ′, which is a closed path that joins x and −x. By the triangle

inequality, the length of each part between x and −x is at least ‖x− (−x)‖K ≥ 2. Since we

have doubled the path P ′, we get that LengthK(P ′) ≥ 2. In a similar way, the other part of

the path P joining −z and z has length at least 2, and we conclude that LengthK(P) ≥ 4

as claimed, and the proof of the lemma is complete.

Lemma 3.3. Let x1, . . . , xm be points in R
n, and let z ∈ Conv{x1, . . . , xm}. Then

LengthK(x1x2 · · · xm) ≥ LengthK(x1zxm).

x2

x3

x1

d

z

zz

xk−1

x2

x1

xk

d

Figure 2: The 2-dimensional case (left), and the k-dimensional case (right).

Proof of Lemma 3.3. We proceed by induction on the number m. The case m = 2 is

trivial. Next, we assume that the claim holds for m − 1. Since z ∈ Conv{x1, . . . , xm}, it

can be written as a convex combination of the form

z =

m∑

j=1

λjxj , where

m∑

j

λj = 1 and λj ≥ 0.

We put d =
∑m−1

j=1

λj

1−λm
xj. Thus, z = λmxm + (1− λm)d (see Figure 2). In particular, one

has

‖xm − d‖K = ‖xm − z‖K + ‖d− z‖K . (3.1.1)

By the inductive hypothesis, LengthK(x1dxm−1) ≤ LengthK(x1x2 · · · xm−1). Equivalently,

‖d− x1‖K + ‖xm−1 − d‖K ≤
m−2∑

j=1

‖xj+1 − xj‖K . (3.1.2)
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Combining (3.1.2) and (3.1.2), we conclude that

LengthK(x1zxm) = ‖z − x1‖K + ‖xm − z‖K + ‖x1 − xm‖K

≤ ‖d− x1‖K + ‖z − d‖K + ‖xm − z‖K + ‖x1 − xm‖K

= ‖d− x1‖K + ‖xm − d‖K + ‖x1 − xm‖K

≤ ‖d− x1‖K + ‖xm−1 − d‖K + ‖xm − xm−1‖K + ‖x1 − xm‖K

≤
m−2∑

j=1

‖xj+1 − xj‖K + ‖xm − xm−1‖K + ‖x1 − xm‖K

= LengthK(x1x2 · · · xm).

The proof of Lemma 3.3 is thus complete.

Remark: In the next lemma we denote the indices j = j(mod(m)), so that m + 1 = 1.

Also, by {xk}
i
k=j, where i < j, we mean {x1, . . . , xi} ∪ {xj , . . . , xm}.

Lemma 3.4. Let x1, . . . , xm ∈ R
n, where m ≥ 3, such that 0 ∈ Conv({xi}

m
i=1). Then there

exist two indices i0 < j0 for which

Conv({xk}
j0
k=i0

)
⋂

−Conv({xk}
i0−1

k=j0
) 6= ∅. (3.1.3)

Proof of Lemma 3.4. Since 0 ∈ Conv({xi}
m
i=1), there are ηi ≥ 0 such that

m∑

i=1

ηixi = 0 and
m∑

i=1

ηi = 1. (3.1.4)

We assume, without loss of generality, that η1, ηm < 1/2, and we shall show that the claim

holds with i0 = 1. We choose j to be the maximal possible index so that
∑j−1

i=1
ηi ≤ 1/2. In

particular,
∑j

i=1
ηi > 1/2. Further, since ηm < 1/2, we know that j 6= m. Let ηj = η′j + η′′j

such that
∑j−1

i=1
ηi + η′j = 1/2. Of course in this case

m∑

i=j+1

ηi + η′′j = 1/2.

Since
∑m

i=1
ηixi = 0, one has

j−1∑

i=1

ηixi + η′jxj = −
( m∑

i=j+1

ηixi + η′′j xj

)
.

On both sides the coefficients sum to 1/2, so that letting

p = 2
(
η′jxj +

j−1∑

i=1

ηixi

)
,

we get p ∈ Conv({xi}
j
i=1

) and −p ∈ Conv({xi}
m
i=j), and the claim is proved.
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Remark 3.5. Note that in fact we proved something slightly stronger, namely, that in each

of the subsets {xi0 , . . . , xj0}, {xj0 , . . . , xi0−1} there are at least 2 points.

Proof of Theorem 3.1. Let {x1, . . . , xm} ⊂ R
n \ int(K) with m ≥ 2, and such that

0 ∈ Conv({xi}mi=1). We use Lemma 3.4 to find 1 ≤ i0 < j0 ≤ m and p ∈ Rn such that

p ∈ Conv({xk}
j0
k=i0

) and − p ∈ Conv({xk}
i0−1

k=j0
).

From Lemma 3.3 it follows that

j0−i0∑

k=1

‖xi0+k − xi0+k−1‖K ≥ ‖p− xi0‖K + ‖xj0 − p‖K .

Note that −p is in Conv({xk}
i0−1

k=j0
) and therefore evidently in Conv({xk}

i0
k=j0

). Hence,

i0−j0∑

k=1

‖xj0+k − xj0+k−1‖K ≥ ‖ − p− xj0‖K + ‖xi0 − (−p)‖K .

Combining the last two inequalities yields,

m∑

k=1

‖xk − xk−1‖K ≥ ‖p− xi0‖K + ‖xj0 − p‖K + ‖ − p− xj0‖K + ‖xi0 − (−p)‖K .

We thus bound from below the length we are considering by the length of the closed path

between (xi0 , p, xj0 ,−p), where ‖xi0‖K ≥ 1 and ‖xj0‖K ≥ 1. By Lemma 3.2, the length of

this latter path, with respect to ‖ · ‖K , is at least 4.

In the strictly convex case, where triangle inequalities are sharp unless the points are

on the same line, going through the proof one may easily analyse the equality case, which

is when there are only two points, on ∂K, which are antipodal.

3.2 Second Geometric Fact

Theorem 3.6. Let K ⊂ R
n be a smooth centrally symmetric convex body, and consider

points {q1, . . . , qm} ⊂ ∂K with m ≥ 2, such that 0 ∈ Conv{nK(qi)}
m
i=1, where nK(qi) =

∇gK(qi) is the outer normal to K at qi. Then,

LengthK(q1q2 · · · qm) ≥ 4.

The proof shall make use of Theorem 3.1. We shall construct a new polygonal trajectory,

(q′1q
′
2 · · · q

′
m′) at most as long as the original one, such that 0 ∈ Conv{q′i}

m′

i=1.

We need the following simple lemma about simplices:

Lemma 3.7. Let S denote a non-degenerate simplex in R
k with vertices {xi}

k+1

i=1
, and let

{qi}
k+1
i=1

⊂ R
k such that qi ∈ Conv({xj}j 6=i). Assume 0 ∈ Conv({xi}

k+1
i=1

). Then, for some

subset I ∈ {1, . . . , n+ 1} of cardinality at least 1, the origin 0 lies in the convex hull of the

union {qi}i∈I ∪ {xj}j 6∈I .
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Remark 3.8. It is easy to check that the cardinality of I is at least 2, whenever the

origin 0 is in the interior of S. Indeed, for I = {i0} we have that Conv(qi0 ∪ {xj}j 6=i0) =

Conv({xj}j 6=i0) is a facet of S.

Proof of Lemma 3.7. Let SI be the possibly degenerate simplex given by the convex

hull Conv ({qi}i∈I ∪ {xj}j 6∈I). If we add the “forbidden” simplex S∅(= S) to the collection

{SI : I ⊂ {1, . . . , k + 1}, |I| ≥ 1}, then these simplices together can be viewed as a piecewise

linear image of the boundary of a (k + 1)-dimensional combinatorial cross-polytope C.

More precisely, we consider an abstract cross-polytope C spanned by ±e1, . . . ,±ek+1 ∈

R
k+1 and map its vertices to R

k so that f(−ei) = xi and f(+ei) = qi. Then we extend

the map f to the boundary ∂C piecewise linearly. This boundary ∂C is a piecewise linear

sphere of dimension k and the degree of this piecewise linear map f : ∂C → R
k is well

defined and equal to zero. Hence, as any point in the interior of S is covered by S∅ =

f(Conv{−e1, . . . ,−ek+1}) (which is equal to S), it must also be covered by some other

SI = f(Conv ({+ei}i∈I ∪ {−ej}j 6∈I)) with |I| ≥ 1.

Proof of Theorem 3.6. We are given a set of points {qi}mi=1 ∈ ∂K such that 0 is in the

convex hull of their normals nK(qi) = ∇gK(qi).

First, we invoke the Carathéodory theorem and reduce to the subset {qi}i∈J ∈ ∂K of

size |J | ≤ n+1, such that 0 is still in the convex hull of {nK(qi)}i∈J . Moreover, we consider

the inclusion minimal J with this property, so that 0 is in the relative interior of the convex

hull of {nK(qi)}i∈J . It is clear that the closed polygonal line through this subset {qi}i∈J in

the same cyclic order is not longer than the original one, by the triangle inequality. So we

consider this new relabeled set {qi}
m′

i=1.

Next, we claim that there is no loss of generality in assuming that the vectors {nK(qi)}
m′

i=1

positively span R
n. Indeed, if not, then we may project onto the quotient by the annihilator

of the subspace spanned by the normals {nK(qi)}
m′

i=1. Under this projection, the length of

the closed polygonal line cannot increase, if we use the induced norm on the quotient. The

projections of qi remain on the boundary, since the respective normals are still norming

functionals. This all means that we may assume without loss of generality that m′ = n+1.

We thus conclude that, considering the half-spaces supporting K at qi, we may assume that

their intersection is an n-dimensional simplex. We denote its vertices by {xi}
n+1
i=1

, in such a

way that qi ∈ Conv({xj}j 6=i).

We claim that the length LengthK(q1q2 · · · qn+1) is at least 4. To this end we shall

replace this polygonal path q1q2 · · · qn+1 by a shorter one as follows. By Lemma 3.7, there

is a subset I of size at least 2 such that 0 is in the convex hull of {qi}i∈I and {xj}j 6∈I .

Note that if no xj’s participate, we are done by Theorem 3.1. We may thus assume that

|I| < n+ 1.

In particular, there exists a convex combination x of {xj}j 6∈I and a convex combination

q of {qi}i∈I such that 0 = (1− λ)q + λx for some λ ∈ (0, 1).

We shall first consider the shorter trajectory, which passes only through {qi}i∈I (in the

12



same order as before). By the triangle inequality, it is not longer than the original trajectory.

Then, consider the new trajectory passing through the new points q′i = (1−λ)qi+λx. Note

that 0 is in the convex hull of q′i. Further, note that q
′
i is a convex combination of two points

which are on the facet of S that is opposite to xi, since x is composed of xj with j 6∈ I

and in particular j 6= i. Therefore, by convexity, we see that q′i belongs to the hyperplane

supporting K via qi and in particular q′i 6∈ int(K). The length of the new path is of course

(1 − λ) times the length of the path via qi, and at the same time, by Theorem 3.1, this

length is at least 4, and the proof of Theorem 3.6 is now complete.

Remark 3.9. It is not difficult to check that the equality case in Theorem 3.6 is exactly

the same as in Theorem 3.1 above.

4 Proof of the Main Results

It is well known that the Hofer–Zehnder capacity c
HZ

is continuous with respect to the

Hausdorff metric on the class of convex domains (see e.g., [19], Exercise 12.7). Hence, we

can assume without loss of generality that K ∈ Ks(R
n
q ) is smooth, and strictly convex.

We shall make use of the following simple lemma regarding (K,T )-billiard trajectories.

Lemma 4.1. Let γ : S1 → ∂(K × T ) be a (K,T )-billiard trajectory and let γq = πq(γ(S
1))

denote its projection to R
n
q . Then

0 ∈ Conv
(
nK (γq ∩ ∂K)

)
,

In other words, the origin lies in the convex hull of the set of outer normals at those points

where the trajectory meets the boundary of K.

Proof of Lemma 4.1. For a proper billiard trajectory, the reflection rule at qi connects

the normal and the momenta before and after qi via:

λinK(qi) = pi−1 − pi,

for some nonnegative λi. This follows from the definition of (K,T )-billiard trajectories, and

also can be easily seen from the variational characterization of the trajectory. Indeed, apply

the Lagrange multipliers to optimizing hT (qi − qi−1) + hT (qi+1 − qi) under the constraint

gK(qi) = 1. The multiplier λi is nonnegative, since otherwise the trajectory would increase

its length while moving qi in the direction of an interior point of the segment [qi−1, qi+1],

which is impossible by the triangle inequality. Summing up, and using the fact that the

trajectory is closed, we obtain the required combination

m∑

i=1

λinK(qi) = 0.

For a gliding trajectory, it is known (see Proposition 2.2 in [2]) that there exist an equation

connecting the momentum and the outer normal of the form:

d

dt
p(t) = λ(t)nK(q(t)),
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for some smooth positive function λ : S1 → R. As in the case of a proper trajectory, this

gives the required convex combination after integration.

Proof of Theorem 1.7. We shall use Theorem 3.6, in order to show that any periodic

K◦-billiard trajectory in K has length (with respect to hK◦ = ‖ · ‖K) at least 4, and that

this bound is actually attained. Combining this with Theorem 2.5 will prove Theorem 1.7.

The fact that c
HZ
(K ×K◦) is at most 4 follows from the easily verified fact that for any

q ∈ ∂K, the path [−q, q] is a K◦-billiard trajectory in K (called a “bouncing orbit”). This

in turn follows from the fact that for a strictly convex body K one has

p =
nK(q)

‖nK(q)‖K◦

∈ ∂K◦ if and only if q =
nK◦(p)

‖nK◦(p)‖K
∈ ∂K. (4.1)

The lengths of these bouncing orbits are exactly 4, and so c
HZ
(K ×K◦) ≤ 4.

To show that any K◦-billiard trajectory in K has length at least 4 (again, with re-

spect to ‖ · ‖K), we consider such a trajectory γq = πq(γ(S
1)) and use Lemma 4.1 to-

gether with Carathéodory’s theorem to find n + 1 points qj ∈ γq ∩ ∂K, which satisfy

0 ∈ Conv({nK(qi)}
n+1
i=1

). By the triangle inequality, the length of γq is at least the length

of the closed polygonal line (q1 · · · qn+1). By Theorem 3.6, this length is at least 4, and the

proof of Theorem 1.7 is complete.

Proof of Theorem 1.8. Note that in the proof of Theorem 1.7 above we already showed

that the ‖·‖K -length of any periodicK◦-billiard trajectory in K is at least 4, and this bound

is clearly attained on 2-bouncing orbits. Moreover, as remarked after its proof, the equality

conditions in Theorem 3.6 in the strictly convex case are precisely those of Theorem 3.1.

Namely, equality is attained if and only if the trajectory is composed of two antipodal points

in ∂K, which is precisely 2-bouncing orbits.

Remark 4.2. It follows from Theorem 1.7 that for any centrally symmetric convex bodies

K ⊂ R
n
q , and T ⊂ R

n
p , one has

c
HZ
(K × T ) = c(K × T ) = 4 inradT ◦(K), (4.2)

where inradA(B) = max{r | rA ⊂ B}. As before, since the above expressions are continuous

with respect to the Hausdorff metric, one may assume that both K and T are smooth. To

establish (4.2), we first use Theorem 1.7, the monotonicity property of symplectic capacities,

and the fact that c is the largest possible symplectic capacity: if rT ◦ ⊂ K then T ⊃ rK◦,

and hence

c(K × T ) ≥ c
HZ
(K × T ) ≥ c

HZ
(K × rK◦) = 4r.

Next, we use the conformality property of symplectic capacities to assume without loss of

generality that inradT ◦(K) = 1. Let q0 ∈ ∂K ⊂ R
n
q be a tangency point of K and T ◦, and

set p0 ∈ ∂K◦ ⊂ R
n
p to be the point defined as in (4.1) above. Note that p0 is also a tangency

point of K◦ and T . Moreover, as in the proof of Theorem 1.8, the 2-bouncing trajectory

[−q0, q0] is not only a K◦-billiard trajectory in K, but also a T -billiard trajectory in K, as
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K and T ◦ share the same normals at the points ±q0, and K
◦ and T share the same normals

at ±p0. Now, by definition, the cylinder

Z̃ = {(p, q) ∈ R
2n : |q0(p)| ≤ 1 and |p0(q)| ≤ 1},

contains the body K × T . Moreover, its Hofer-Zehnder capacity satisfies c
HZ

(Z̃) ≤ 4 since

the above 2-bouncing trajectory is a closed characteristic on the boundary ∂Z̃, of action 4.

Finally, since q0(p0) = p0(q0) = 1, the interior of the cylinder Z̃ is symplectomorphic to the

interior of the standard symplectic cylinder B2

(√
4

π

)
× C

n−1, over which all symplectic

capacities coincide. Thus we conclude that c(K × T ) ≤ c(Z̃) = c
HZ
(Z̃) ≤ 4. Thus we have

established (4.2).
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